1 | #!/usr/bin/env python
|
---|
2 | #
|
---|
3 | # euclid graphics maths module
|
---|
4 | #
|
---|
5 | # Copyright (c) 2006 Alex Holkner
|
---|
6 | # Alex.Holkner@mail.google.com
|
---|
7 | #
|
---|
8 | # This library is free software; you can redistribute it and/or modify it
|
---|
9 | # under the terms of the GNU Lesser General Public License as published by the
|
---|
10 | # Free Software Foundation; either version 2.1 of the License, or (at your
|
---|
11 | # option) any later version.
|
---|
12 | #
|
---|
13 | # This library is distributed in the hope that it will be useful, but WITHOUT
|
---|
14 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
15 | # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
|
---|
16 | # for more details.
|
---|
17 | #
|
---|
18 | # You should have received a copy of the GNU Lesser General Public License
|
---|
19 | # along with this library; if not, write to the Free Software Foundation,
|
---|
20 | # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
21 |
|
---|
22 | '''euclid graphics maths module
|
---|
23 |
|
---|
24 | Documentation and tests are included in the file "euclid.txt", or online
|
---|
25 | at http://code.google.com/p/pyeuclid
|
---|
26 | '''
|
---|
27 |
|
---|
28 | __docformat__ = 'restructuredtext'
|
---|
29 | __version__ = '$Id$'
|
---|
30 | __revision__ = '$Revision$'
|
---|
31 |
|
---|
32 | import math
|
---|
33 | import operator
|
---|
34 | import types
|
---|
35 |
|
---|
36 | # Some magic here. If _use_slots is True, the classes will derive from
|
---|
37 | # object and will define a __slots__ class variable. If _use_slots is
|
---|
38 | # False, classes will be old-style and will not define __slots__.
|
---|
39 | #
|
---|
40 | # _use_slots = True: Memory efficient, probably faster in future versions
|
---|
41 | # of Python, "better".
|
---|
42 | # _use_slots = False: Ordinary classes, much faster than slots in current
|
---|
43 | # versions of Python (2.4 and 2.5).
|
---|
44 | _use_slots = True
|
---|
45 |
|
---|
46 | # If True, allows components of Vector2 and Vector3 to be set via swizzling;
|
---|
47 | # e.g. v.xyz = (1, 2, 3). This is much, much slower than the more verbose
|
---|
48 | # v.x = 1; v.y = 2; v.z = 3, and slows down ordinary element setting as
|
---|
49 | # well. Recommended setting is False.
|
---|
50 | _enable_swizzle_set = False
|
---|
51 |
|
---|
52 | # Requires class to derive from object.
|
---|
53 | if _enable_swizzle_set:
|
---|
54 | _use_slots = True
|
---|
55 |
|
---|
56 | # Implement _use_slots magic.
|
---|
57 | class _EuclidMetaclass(type):
|
---|
58 | def __new__(cls, name, bases, dct):
|
---|
59 | if '__slots__' in dct:
|
---|
60 | dct['__getstate__'] = cls._create_getstate(dct['__slots__'])
|
---|
61 | dct['__setstate__'] = cls._create_setstate(dct['__slots__'])
|
---|
62 | if _use_slots:
|
---|
63 | return type.__new__(cls, name, bases + (object,), dct)
|
---|
64 | else:
|
---|
65 | if '__slots__' in dct:
|
---|
66 | del dct['__slots__']
|
---|
67 | return types.ClassType.__new__(types.ClassType, name, bases, dct)
|
---|
68 |
|
---|
69 | @classmethod
|
---|
70 | def _create_getstate(cls, slots):
|
---|
71 | def __getstate__(self):
|
---|
72 | d = {}
|
---|
73 | for slot in slots:
|
---|
74 | d[slot] = getattr(self, slot)
|
---|
75 | return d
|
---|
76 | return __getstate__
|
---|
77 |
|
---|
78 | @classmethod
|
---|
79 | def _create_setstate(cls, slots):
|
---|
80 | def __setstate__(self, state):
|
---|
81 | for name, value in state.items():
|
---|
82 | setattr(self, name, value)
|
---|
83 | return __setstate__
|
---|
84 |
|
---|
85 | __metaclass__ = _EuclidMetaclass
|
---|
86 |
|
---|
87 | class Vector2:
|
---|
88 | __slots__ = ['x', 'y']
|
---|
89 | __hash__ = None
|
---|
90 |
|
---|
91 | def __init__(self, x=0, y=0):
|
---|
92 | self.x = x
|
---|
93 | self.y = y
|
---|
94 |
|
---|
95 | def __copy__(self):
|
---|
96 | return self.__class__(self.x, self.y)
|
---|
97 |
|
---|
98 | copy = __copy__
|
---|
99 |
|
---|
100 | def __repr__(self):
|
---|
101 | return 'Vector2(%.2f, %.2f)' % (self.x, self.y)
|
---|
102 |
|
---|
103 | def __eq__(self, other):
|
---|
104 | if isinstance(other, Vector2):
|
---|
105 | return self.x == other.x and \
|
---|
106 | self.y == other.y
|
---|
107 | else:
|
---|
108 | assert hasattr(other, '__len__') and len(other) == 2
|
---|
109 | return self.x == other[0] and \
|
---|
110 | self.y == other[1]
|
---|
111 |
|
---|
112 | def __ne__(self, other):
|
---|
113 | return not self.__eq__(other)
|
---|
114 |
|
---|
115 | def __nonzero__(self):
|
---|
116 | return self.x != 0 or self.y != 0
|
---|
117 |
|
---|
118 | def __len__(self):
|
---|
119 | return 2
|
---|
120 |
|
---|
121 | def __getitem__(self, key):
|
---|
122 | return (self.x, self.y)[key]
|
---|
123 |
|
---|
124 | def __setitem__(self, key, value):
|
---|
125 | l = [self.x, self.y]
|
---|
126 | l[key] = value
|
---|
127 | self.x, self.y = l
|
---|
128 |
|
---|
129 | def __iter__(self):
|
---|
130 | return iter((self.x, self.y))
|
---|
131 |
|
---|
132 | def __getattr__(self, name):
|
---|
133 | try:
|
---|
134 | return tuple([(self.x, self.y)['xy'.index(c)] \
|
---|
135 | for c in name])
|
---|
136 | except ValueError:
|
---|
137 | raise AttributeError, name
|
---|
138 |
|
---|
139 | if _enable_swizzle_set:
|
---|
140 | # This has detrimental performance on ordinary setattr as well
|
---|
141 | # if enabled
|
---|
142 | def __setattr__(self, name, value):
|
---|
143 | if len(name) == 1:
|
---|
144 | object.__setattr__(self, name, value)
|
---|
145 | else:
|
---|
146 | try:
|
---|
147 | l = [self.x, self.y]
|
---|
148 | for c, v in map(None, name, value):
|
---|
149 | l['xy'.index(c)] = v
|
---|
150 | self.x, self.y = l
|
---|
151 | except ValueError:
|
---|
152 | raise AttributeError, name
|
---|
153 |
|
---|
154 | def __add__(self, other):
|
---|
155 | if isinstance(other, Vector2):
|
---|
156 | # Vector + Vector -> Vector
|
---|
157 | # Vector + Point -> Point
|
---|
158 | # Point + Point -> Vector
|
---|
159 | if self.__class__ is other.__class__:
|
---|
160 | _class = Vector2
|
---|
161 | else:
|
---|
162 | _class = Point2
|
---|
163 | return _class(self.x + other.x,
|
---|
164 | self.y + other.y)
|
---|
165 | else:
|
---|
166 | assert hasattr(other, '__len__') and len(other) == 2
|
---|
167 | return Vector2(self.x + other[0],
|
---|
168 | self.y + other[1])
|
---|
169 | __radd__ = __add__
|
---|
170 |
|
---|
171 | def __iadd__(self, other):
|
---|
172 | if isinstance(other, Vector2):
|
---|
173 | self.x += other.x
|
---|
174 | self.y += other.y
|
---|
175 | else:
|
---|
176 | self.x += other[0]
|
---|
177 | self.y += other[1]
|
---|
178 | return self
|
---|
179 |
|
---|
180 | def __sub__(self, other):
|
---|
181 | if isinstance(other, Vector2):
|
---|
182 | # Vector - Vector -> Vector
|
---|
183 | # Vector - Point -> Point
|
---|
184 | # Point - Point -> Vector
|
---|
185 | if self.__class__ is other.__class__:
|
---|
186 | _class = Vector2
|
---|
187 | else:
|
---|
188 | _class = Point2
|
---|
189 | return _class(self.x - other.x,
|
---|
190 | self.y - other.y)
|
---|
191 | else:
|
---|
192 | assert hasattr(other, '__len__') and len(other) == 2
|
---|
193 | return Vector2(self.x - other[0],
|
---|
194 | self.y - other[1])
|
---|
195 |
|
---|
196 |
|
---|
197 | def __rsub__(self, other):
|
---|
198 | if isinstance(other, Vector2):
|
---|
199 | return Vector2(other.x - self.x,
|
---|
200 | other.y - self.y)
|
---|
201 | else:
|
---|
202 | assert hasattr(other, '__len__') and len(other) == 2
|
---|
203 | return Vector2(other.x - self[0],
|
---|
204 | other.y - self[1])
|
---|
205 |
|
---|
206 | def __mul__(self, other):
|
---|
207 | assert type(other) in (int, long, float)
|
---|
208 | return Vector2(self.x * other,
|
---|
209 | self.y * other)
|
---|
210 |
|
---|
211 | __rmul__ = __mul__
|
---|
212 |
|
---|
213 | def __imul__(self, other):
|
---|
214 | assert type(other) in (int, long, float)
|
---|
215 | self.x *= other
|
---|
216 | self.y *= other
|
---|
217 | return self
|
---|
218 |
|
---|
219 | def __div__(self, other):
|
---|
220 | assert type(other) in (int, long, float)
|
---|
221 | return Vector2(operator.div(self.x, other),
|
---|
222 | operator.div(self.y, other))
|
---|
223 |
|
---|
224 |
|
---|
225 | def __rdiv__(self, other):
|
---|
226 | assert type(other) in (int, long, float)
|
---|
227 | return Vector2(operator.div(other, self.x),
|
---|
228 | operator.div(other, self.y))
|
---|
229 |
|
---|
230 | def __floordiv__(self, other):
|
---|
231 | assert type(other) in (int, long, float)
|
---|
232 | return Vector2(operator.floordiv(self.x, other),
|
---|
233 | operator.floordiv(self.y, other))
|
---|
234 |
|
---|
235 |
|
---|
236 | def __rfloordiv__(self, other):
|
---|
237 | assert type(other) in (int, long, float)
|
---|
238 | return Vector2(operator.floordiv(other, self.x),
|
---|
239 | operator.floordiv(other, self.y))
|
---|
240 |
|
---|
241 | def __truediv__(self, other):
|
---|
242 | assert type(other) in (int, long, float)
|
---|
243 | return Vector2(operator.truediv(self.x, other),
|
---|
244 | operator.truediv(self.y, other))
|
---|
245 |
|
---|
246 |
|
---|
247 | def __rtruediv__(self, other):
|
---|
248 | assert type(other) in (int, long, float)
|
---|
249 | return Vector2(operator.truediv(other, self.x),
|
---|
250 | operator.truediv(other, self.y))
|
---|
251 |
|
---|
252 | def __neg__(self):
|
---|
253 | return Vector2(-self.x,
|
---|
254 | -self.y)
|
---|
255 |
|
---|
256 | __pos__ = __copy__
|
---|
257 |
|
---|
258 | def __abs__(self):
|
---|
259 | return math.sqrt(self.x ** 2 + \
|
---|
260 | self.y ** 2)
|
---|
261 |
|
---|
262 | magnitude = __abs__
|
---|
263 |
|
---|
264 | def magnitude_squared(self):
|
---|
265 | return self.x ** 2 + \
|
---|
266 | self.y ** 2
|
---|
267 |
|
---|
268 | def normalize(self):
|
---|
269 | d = self.magnitude()
|
---|
270 | if d:
|
---|
271 | self.x /= d
|
---|
272 | self.y /= d
|
---|
273 | return self
|
---|
274 |
|
---|
275 | def normalized(self):
|
---|
276 | d = self.magnitude()
|
---|
277 | if d:
|
---|
278 | return Vector2(self.x / d,
|
---|
279 | self.y / d)
|
---|
280 | return self.copy()
|
---|
281 |
|
---|
282 | def dot(self, other):
|
---|
283 | assert isinstance(other, Vector2)
|
---|
284 | return self.x * other.x + \
|
---|
285 | self.y * other.y
|
---|
286 |
|
---|
287 | def cross(self):
|
---|
288 | return Vector2(self.y, -self.x)
|
---|
289 |
|
---|
290 | def reflect(self, normal):
|
---|
291 | # assume normal is normalized
|
---|
292 | assert isinstance(normal, Vector2)
|
---|
293 | d = 2 * (self.x * normal.x + self.y * normal.y)
|
---|
294 | return Vector2(self.x - d * normal.x,
|
---|
295 | self.y - d * normal.y)
|
---|
296 |
|
---|
297 | def angle(self, other):
|
---|
298 | """Return the angle to the vector other"""
|
---|
299 | return math.acos(self.dot(other) / (self.magnitude()*other.magnitude()))
|
---|
300 |
|
---|
301 | def project(self, other):
|
---|
302 | """Return one vector projected on the vector other"""
|
---|
303 | n = other.normalized()
|
---|
304 | return self.dot(n)*n
|
---|
305 |
|
---|
306 | class Vector3:
|
---|
307 | __slots__ = ['x', 'y', 'z']
|
---|
308 | __hash__ = None
|
---|
309 |
|
---|
310 | def __init__(self, x=0, y=0, z=0):
|
---|
311 | self.x = x
|
---|
312 | self.y = y
|
---|
313 | self.z = z
|
---|
314 |
|
---|
315 | def __copy__(self):
|
---|
316 | return self.__class__(self.x, self.y, self.z)
|
---|
317 |
|
---|
318 | copy = __copy__
|
---|
319 |
|
---|
320 | def __repr__(self):
|
---|
321 | return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
|
---|
322 | self.y,
|
---|
323 | self.z)
|
---|
324 |
|
---|
325 | def __eq__(self, other):
|
---|
326 | if isinstance(other, Vector3):
|
---|
327 | return self.x == other.x and \
|
---|
328 | self.y == other.y and \
|
---|
329 | self.z == other.z
|
---|
330 | else:
|
---|
331 | assert hasattr(other, '__len__') and len(other) == 3
|
---|
332 | return self.x == other[0] and \
|
---|
333 | self.y == other[1] and \
|
---|
334 | self.z == other[2]
|
---|
335 |
|
---|
336 | def __ne__(self, other):
|
---|
337 | return not self.__eq__(other)
|
---|
338 |
|
---|
339 | def __nonzero__(self):
|
---|
340 | return self.x != 0 or self.y != 0 or self.z != 0
|
---|
341 |
|
---|
342 | def __len__(self):
|
---|
343 | return 3
|
---|
344 |
|
---|
345 | def __getitem__(self, key):
|
---|
346 | return (self.x, self.y, self.z)[key]
|
---|
347 |
|
---|
348 | def __setitem__(self, key, value):
|
---|
349 | l = [self.x, self.y, self.z]
|
---|
350 | l[key] = value
|
---|
351 | self.x, self.y, self.z = l
|
---|
352 |
|
---|
353 | def __iter__(self):
|
---|
354 | return iter((self.x, self.y, self.z))
|
---|
355 |
|
---|
356 | def __getattr__(self, name):
|
---|
357 | try:
|
---|
358 | return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \
|
---|
359 | for c in name])
|
---|
360 | except ValueError:
|
---|
361 | raise AttributeError, name
|
---|
362 |
|
---|
363 | if _enable_swizzle_set:
|
---|
364 | # This has detrimental performance on ordinary setattr as well
|
---|
365 | # if enabled
|
---|
366 | def __setattr__(self, name, value):
|
---|
367 | if len(name) == 1:
|
---|
368 | object.__setattr__(self, name, value)
|
---|
369 | else:
|
---|
370 | try:
|
---|
371 | l = [self.x, self.y, self.z]
|
---|
372 | for c, v in map(None, name, value):
|
---|
373 | l['xyz'.index(c)] = v
|
---|
374 | self.x, self.y, self.z = l
|
---|
375 | except ValueError:
|
---|
376 | raise AttributeError, name
|
---|
377 |
|
---|
378 |
|
---|
379 | def __add__(self, other):
|
---|
380 | if isinstance(other, Vector3):
|
---|
381 | # Vector + Vector -> Vector
|
---|
382 | # Vector + Point -> Point
|
---|
383 | # Point + Point -> Vector
|
---|
384 | if self.__class__ is other.__class__:
|
---|
385 | _class = Vector3
|
---|
386 | else:
|
---|
387 | _class = Point3
|
---|
388 | return _class(self.x + other.x,
|
---|
389 | self.y + other.y,
|
---|
390 | self.z + other.z)
|
---|
391 | else:
|
---|
392 | assert hasattr(other, '__len__') and len(other) == 3
|
---|
393 | return Vector3(self.x + other[0],
|
---|
394 | self.y + other[1],
|
---|
395 | self.z + other[2])
|
---|
396 | __radd__ = __add__
|
---|
397 |
|
---|
398 | def __iadd__(self, other):
|
---|
399 | if isinstance(other, Vector3):
|
---|
400 | self.x += other.x
|
---|
401 | self.y += other.y
|
---|
402 | self.z += other.z
|
---|
403 | else:
|
---|
404 | self.x += other[0]
|
---|
405 | self.y += other[1]
|
---|
406 | self.z += other[2]
|
---|
407 | return self
|
---|
408 |
|
---|
409 | def __sub__(self, other):
|
---|
410 | if isinstance(other, Vector3):
|
---|
411 | # Vector - Vector -> Vector
|
---|
412 | # Vector - Point -> Point
|
---|
413 | # Point - Point -> Vector
|
---|
414 | if self.__class__ is other.__class__:
|
---|
415 | _class = Vector3
|
---|
416 | else:
|
---|
417 | _class = Point3
|
---|
418 | return Vector3(self.x - other.x,
|
---|
419 | self.y - other.y,
|
---|
420 | self.z - other.z)
|
---|
421 | else:
|
---|
422 | assert hasattr(other, '__len__') and len(other) == 3
|
---|
423 | return Vector3(self.x - other[0],
|
---|
424 | self.y - other[1],
|
---|
425 | self.z - other[2])
|
---|
426 |
|
---|
427 |
|
---|
428 | def __rsub__(self, other):
|
---|
429 | if isinstance(other, Vector3):
|
---|
430 | return Vector3(other.x - self.x,
|
---|
431 | other.y - self.y,
|
---|
432 | other.z - self.z)
|
---|
433 | else:
|
---|
434 | assert hasattr(other, '__len__') and len(other) == 3
|
---|
435 | return Vector3(other.x - self[0],
|
---|
436 | other.y - self[1],
|
---|
437 | other.z - self[2])
|
---|
438 |
|
---|
439 | def __mul__(self, other):
|
---|
440 | if isinstance(other, Vector3):
|
---|
441 | # TODO component-wise mul/div in-place and on Vector2; docs.
|
---|
442 | if self.__class__ is Point3 or other.__class__ is Point3:
|
---|
443 | _class = Point3
|
---|
444 | else:
|
---|
445 | _class = Vector3
|
---|
446 | return _class(self.x * other.x,
|
---|
447 | self.y * other.y,
|
---|
448 | self.z * other.z)
|
---|
449 | else:
|
---|
450 | assert type(other) in (int, long, float)
|
---|
451 | return Vector3(self.x * other,
|
---|
452 | self.y * other,
|
---|
453 | self.z * other)
|
---|
454 |
|
---|
455 | __rmul__ = __mul__
|
---|
456 |
|
---|
457 | def __imul__(self, other):
|
---|
458 | assert type(other) in (int, long, float)
|
---|
459 | self.x *= other
|
---|
460 | self.y *= other
|
---|
461 | self.z *= other
|
---|
462 | return self
|
---|
463 |
|
---|
464 | def __div__(self, other):
|
---|
465 | assert type(other) in (int, long, float)
|
---|
466 | return Vector3(operator.div(self.x, other),
|
---|
467 | operator.div(self.y, other),
|
---|
468 | operator.div(self.z, other))
|
---|
469 |
|
---|
470 |
|
---|
471 | def __rdiv__(self, other):
|
---|
472 | assert type(other) in (int, long, float)
|
---|
473 | return Vector3(operator.div(other, self.x),
|
---|
474 | operator.div(other, self.y),
|
---|
475 | operator.div(other, self.z))
|
---|
476 |
|
---|
477 | def __floordiv__(self, other):
|
---|
478 | assert type(other) in (int, long, float)
|
---|
479 | return Vector3(operator.floordiv(self.x, other),
|
---|
480 | operator.floordiv(self.y, other),
|
---|
481 | operator.floordiv(self.z, other))
|
---|
482 |
|
---|
483 |
|
---|
484 | def __rfloordiv__(self, other):
|
---|
485 | assert type(other) in (int, long, float)
|
---|
486 | return Vector3(operator.floordiv(other, self.x),
|
---|
487 | operator.floordiv(other, self.y),
|
---|
488 | operator.floordiv(other, self.z))
|
---|
489 |
|
---|
490 | def __truediv__(self, other):
|
---|
491 | assert type(other) in (int, long, float)
|
---|
492 | return Vector3(operator.truediv(self.x, other),
|
---|
493 | operator.truediv(self.y, other),
|
---|
494 | operator.truediv(self.z, other))
|
---|
495 |
|
---|
496 |
|
---|
497 | def __rtruediv__(self, other):
|
---|
498 | assert type(other) in (int, long, float)
|
---|
499 | return Vector3(operator.truediv(other, self.x),
|
---|
500 | operator.truediv(other, self.y),
|
---|
501 | operator.truediv(other, self.z))
|
---|
502 |
|
---|
503 | def __neg__(self):
|
---|
504 | return Vector3(-self.x,
|
---|
505 | -self.y,
|
---|
506 | -self.z)
|
---|
507 |
|
---|
508 | __pos__ = __copy__
|
---|
509 |
|
---|
510 | def __abs__(self):
|
---|
511 | return math.sqrt(self.x ** 2 + \
|
---|
512 | self.y ** 2 + \
|
---|
513 | self.z ** 2)
|
---|
514 |
|
---|
515 | magnitude = __abs__
|
---|
516 |
|
---|
517 | def magnitude_squared(self):
|
---|
518 | return self.x ** 2 + \
|
---|
519 | self.y ** 2 + \
|
---|
520 | self.z ** 2
|
---|
521 |
|
---|
522 | def normalize(self):
|
---|
523 | d = self.magnitude()
|
---|
524 | if d:
|
---|
525 | self.x /= d
|
---|
526 | self.y /= d
|
---|
527 | self.z /= d
|
---|
528 | return self
|
---|
529 |
|
---|
530 | def normalized(self):
|
---|
531 | d = self.magnitude()
|
---|
532 | if d:
|
---|
533 | return Vector3(self.x / d,
|
---|
534 | self.y / d,
|
---|
535 | self.z / d)
|
---|
536 | return self.copy()
|
---|
537 |
|
---|
538 | def dot(self, other):
|
---|
539 | assert isinstance(other, Vector3)
|
---|
540 | return self.x * other.x + \
|
---|
541 | self.y * other.y + \
|
---|
542 | self.z * other.z
|
---|
543 |
|
---|
544 | def cross(self, other):
|
---|
545 | assert isinstance(other, Vector3)
|
---|
546 | return Vector3(self.y * other.z - self.z * other.y,
|
---|
547 | -self.x * other.z + self.z * other.x,
|
---|
548 | self.x * other.y - self.y * other.x)
|
---|
549 |
|
---|
550 | def reflect(self, normal):
|
---|
551 | # assume normal is normalized
|
---|
552 | assert isinstance(normal, Vector3)
|
---|
553 | d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z)
|
---|
554 | return Vector3(self.x - d * normal.x,
|
---|
555 | self.y - d * normal.y,
|
---|
556 | self.z - d * normal.z)
|
---|
557 |
|
---|
558 | def rotate_around(self, axis, theta):
|
---|
559 | """Return the vector rotated around axis through angle theta. Right hand rule applies"""
|
---|
560 |
|
---|
561 | # Adapted from equations published by Glenn Murray.
|
---|
562 | # http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.html
|
---|
563 | x, y, z = self.x, self.y,self.z
|
---|
564 | u, v, w = axis.x, axis.y, axis.z
|
---|
565 |
|
---|
566 | # Extracted common factors for simplicity and efficiency
|
---|
567 | r2 = u**2 + v**2 + w**2
|
---|
568 | r = math.sqrt(r2)
|
---|
569 | ct = math.cos(theta)
|
---|
570 | st = math.sin(theta) / r
|
---|
571 | dt = (u*x + v*y + w*z) * (1 - ct) / r2
|
---|
572 | return Vector3((u * dt + x * ct + (-w * y + v * z) * st),
|
---|
573 | (v * dt + y * ct + ( w * x - u * z) * st),
|
---|
574 | (w * dt + z * ct + (-v * x + u * y) * st))
|
---|
575 |
|
---|
576 | def angle(self, other):
|
---|
577 | """Return the angle to the vector other"""
|
---|
578 | return math.acos(self.dot(other) / (self.magnitude()*other.magnitude()))
|
---|
579 |
|
---|
580 | def project(self, other):
|
---|
581 | """Return one vector projected on the vector other"""
|
---|
582 | n = other.normalized()
|
---|
583 | return self.dot(n)*n
|
---|
584 |
|
---|
585 | # a b c
|
---|
586 | # e f g
|
---|
587 | # i j k
|
---|
588 |
|
---|
589 | class Matrix3:
|
---|
590 | __slots__ = list('abcefgijk')
|
---|
591 |
|
---|
592 | def __init__(self):
|
---|
593 | self.identity()
|
---|
594 |
|
---|
595 | def __copy__(self):
|
---|
596 | M = Matrix3()
|
---|
597 | M.a = self.a
|
---|
598 | M.b = self.b
|
---|
599 | M.c = self.c
|
---|
600 | M.e = self.e
|
---|
601 | M.f = self.f
|
---|
602 | M.g = self.g
|
---|
603 | M.i = self.i
|
---|
604 | M.j = self.j
|
---|
605 | M.k = self.k
|
---|
606 | return M
|
---|
607 |
|
---|
608 | copy = __copy__
|
---|
609 | def __repr__(self):
|
---|
610 | return ('Matrix3([% 8.2f % 8.2f % 8.2f\n' \
|
---|
611 | ' % 8.2f % 8.2f % 8.2f\n' \
|
---|
612 | ' % 8.2f % 8.2f % 8.2f])') \
|
---|
613 | % (self.a, self.b, self.c,
|
---|
614 | self.e, self.f, self.g,
|
---|
615 | self.i, self.j, self.k)
|
---|
616 |
|
---|
617 | def __getitem__(self, key):
|
---|
618 | return [self.a, self.e, self.i,
|
---|
619 | self.b, self.f, self.j,
|
---|
620 | self.c, self.g, self.k][key]
|
---|
621 |
|
---|
622 | def __setitem__(self, key, value):
|
---|
623 | L = self[:]
|
---|
624 | L[key] = value
|
---|
625 | (self.a, self.e, self.i,
|
---|
626 | self.b, self.f, self.j,
|
---|
627 | self.c, self.g, self.k) = L
|
---|
628 |
|
---|
629 | def __mul__(self, other):
|
---|
630 | if isinstance(other, Matrix3):
|
---|
631 | # Caching repeatedly accessed attributes in local variables
|
---|
632 | # apparently increases performance by 20%. Attrib: Will McGugan.
|
---|
633 | Aa = self.a
|
---|
634 | Ab = self.b
|
---|
635 | Ac = self.c
|
---|
636 | Ae = self.e
|
---|
637 | Af = self.f
|
---|
638 | Ag = self.g
|
---|
639 | Ai = self.i
|
---|
640 | Aj = self.j
|
---|
641 | Ak = self.k
|
---|
642 | Ba = other.a
|
---|
643 | Bb = other.b
|
---|
644 | Bc = other.c
|
---|
645 | Be = other.e
|
---|
646 | Bf = other.f
|
---|
647 | Bg = other.g
|
---|
648 | Bi = other.i
|
---|
649 | Bj = other.j
|
---|
650 | Bk = other.k
|
---|
651 | C = Matrix3()
|
---|
652 | C.a = Aa * Ba + Ab * Be + Ac * Bi
|
---|
653 | C.b = Aa * Bb + Ab * Bf + Ac * Bj
|
---|
654 | C.c = Aa * Bc + Ab * Bg + Ac * Bk
|
---|
655 | C.e = Ae * Ba + Af * Be + Ag * Bi
|
---|
656 | C.f = Ae * Bb + Af * Bf + Ag * Bj
|
---|
657 | C.g = Ae * Bc + Af * Bg + Ag * Bk
|
---|
658 | C.i = Ai * Ba + Aj * Be + Ak * Bi
|
---|
659 | C.j = Ai * Bb + Aj * Bf + Ak * Bj
|
---|
660 | C.k = Ai * Bc + Aj * Bg + Ak * Bk
|
---|
661 | return C
|
---|
662 | elif isinstance(other, Point2):
|
---|
663 | A = self
|
---|
664 | B = other
|
---|
665 | P = Point2(0, 0)
|
---|
666 | P.x = A.a * B.x + A.b * B.y + A.c
|
---|
667 | P.y = A.e * B.x + A.f * B.y + A.g
|
---|
668 | return P
|
---|
669 | elif isinstance(other, Vector2):
|
---|
670 | A = self
|
---|
671 | B = other
|
---|
672 | V = Vector2(0, 0)
|
---|
673 | V.x = A.a * B.x + A.b * B.y
|
---|
674 | V.y = A.e * B.x + A.f * B.y
|
---|
675 | return V
|
---|
676 | else:
|
---|
677 | other = other.copy()
|
---|
678 | other._apply_transform(self)
|
---|
679 | return other
|
---|
680 |
|
---|
681 | def __imul__(self, other):
|
---|
682 | assert isinstance(other, Matrix3)
|
---|
683 | # Cache attributes in local vars (see Matrix3.__mul__).
|
---|
684 | Aa = self.a
|
---|
685 | Ab = self.b
|
---|
686 | Ac = self.c
|
---|
687 | Ae = self.e
|
---|
688 | Af = self.f
|
---|
689 | Ag = self.g
|
---|
690 | Ai = self.i
|
---|
691 | Aj = self.j
|
---|
692 | Ak = self.k
|
---|
693 | Ba = other.a
|
---|
694 | Bb = other.b
|
---|
695 | Bc = other.c
|
---|
696 | Be = other.e
|
---|
697 | Bf = other.f
|
---|
698 | Bg = other.g
|
---|
699 | Bi = other.i
|
---|
700 | Bj = other.j
|
---|
701 | Bk = other.k
|
---|
702 | self.a = Aa * Ba + Ab * Be + Ac * Bi
|
---|
703 | self.b = Aa * Bb + Ab * Bf + Ac * Bj
|
---|
704 | self.c = Aa * Bc + Ab * Bg + Ac * Bk
|
---|
705 | self.e = Ae * Ba + Af * Be + Ag * Bi
|
---|
706 | self.f = Ae * Bb + Af * Bf + Ag * Bj
|
---|
707 | self.g = Ae * Bc + Af * Bg + Ag * Bk
|
---|
708 | self.i = Ai * Ba + Aj * Be + Ak * Bi
|
---|
709 | self.j = Ai * Bb + Aj * Bf + Ak * Bj
|
---|
710 | self.k = Ai * Bc + Aj * Bg + Ak * Bk
|
---|
711 | return self
|
---|
712 |
|
---|
713 | def identity(self):
|
---|
714 | self.a = self.f = self.k = 1.
|
---|
715 | self.b = self.c = self.e = self.g = self.i = self.j = 0
|
---|
716 | return self
|
---|
717 |
|
---|
718 | def scale(self, x, y):
|
---|
719 | self *= Matrix3.new_scale(x, y)
|
---|
720 | return self
|
---|
721 |
|
---|
722 | def translate(self, x, y):
|
---|
723 | self *= Matrix3.new_translate(x, y)
|
---|
724 | return self
|
---|
725 |
|
---|
726 | def rotate(self, angle):
|
---|
727 | self *= Matrix3.new_rotate(angle)
|
---|
728 | return self
|
---|
729 |
|
---|
730 | # Static constructors
|
---|
731 | def new_identity(cls):
|
---|
732 | self = cls()
|
---|
733 | return self
|
---|
734 | new_identity = classmethod(new_identity)
|
---|
735 |
|
---|
736 | def new_scale(cls, x, y):
|
---|
737 | self = cls()
|
---|
738 | self.a = x
|
---|
739 | self.f = y
|
---|
740 | return self
|
---|
741 | new_scale = classmethod(new_scale)
|
---|
742 |
|
---|
743 | def new_translate(cls, x, y):
|
---|
744 | self = cls()
|
---|
745 | self.c = x
|
---|
746 | self.g = y
|
---|
747 | return self
|
---|
748 | new_translate = classmethod(new_translate)
|
---|
749 |
|
---|
750 | def new_rotate(cls, angle):
|
---|
751 | self = cls()
|
---|
752 | s = math.sin(angle)
|
---|
753 | c = math.cos(angle)
|
---|
754 | self.a = self.f = c
|
---|
755 | self.b = -s
|
---|
756 | self.e = s
|
---|
757 | return self
|
---|
758 | new_rotate = classmethod(new_rotate)
|
---|
759 |
|
---|
760 | def determinant(self):
|
---|
761 | return (self.a*self.f*self.k
|
---|
762 | + self.b*self.g*self.i
|
---|
763 | + self.c*self.e*self.j
|
---|
764 | - self.a*self.g*self.j
|
---|
765 | - self.b*self.e*self.k
|
---|
766 | - self.c*self.f*self.i)
|
---|
767 |
|
---|
768 | def inverse(self):
|
---|
769 | tmp = Matrix3()
|
---|
770 | d = self.determinant()
|
---|
771 |
|
---|
772 | if abs(d) < 0.001:
|
---|
773 | # No inverse, return identity
|
---|
774 | return tmp
|
---|
775 | else:
|
---|
776 | d = 1.0 / d
|
---|
777 |
|
---|
778 | tmp.a = d * (self.f*self.k - self.g*self.j)
|
---|
779 | tmp.b = d * (self.c*self.j - self.b*self.k)
|
---|
780 | tmp.c = d * (self.b*self.g - self.c*self.f)
|
---|
781 | tmp.e = d * (self.g*self.i - self.e*self.k)
|
---|
782 | tmp.f = d * (self.a*self.k - self.c*self.i)
|
---|
783 | tmp.g = d * (self.c*self.e - self.a*self.g)
|
---|
784 | tmp.i = d * (self.e*self.j - self.f*self.i)
|
---|
785 | tmp.j = d * (self.b*self.i - self.a*self.j)
|
---|
786 | tmp.k = d * (self.a*self.f - self.b*self.e)
|
---|
787 |
|
---|
788 | return tmp
|
---|
789 |
|
---|
790 | # a b c d
|
---|
791 | # e f g h
|
---|
792 | # i j k l
|
---|
793 | # m n o p
|
---|
794 |
|
---|
795 | class Matrix4:
|
---|
796 | __slots__ = list('abcdefghijklmnop')
|
---|
797 |
|
---|
798 | def __init__(self):
|
---|
799 | self.identity()
|
---|
800 |
|
---|
801 | def __copy__(self):
|
---|
802 | M = Matrix4()
|
---|
803 | M.a = self.a
|
---|
804 | M.b = self.b
|
---|
805 | M.c = self.c
|
---|
806 | M.d = self.d
|
---|
807 | M.e = self.e
|
---|
808 | M.f = self.f
|
---|
809 | M.g = self.g
|
---|
810 | M.h = self.h
|
---|
811 | M.i = self.i
|
---|
812 | M.j = self.j
|
---|
813 | M.k = self.k
|
---|
814 | M.l = self.l
|
---|
815 | M.m = self.m
|
---|
816 | M.n = self.n
|
---|
817 | M.o = self.o
|
---|
818 | M.p = self.p
|
---|
819 | return M
|
---|
820 |
|
---|
821 | copy = __copy__
|
---|
822 |
|
---|
823 |
|
---|
824 | def __repr__(self):
|
---|
825 | return ('Matrix4([% 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
---|
826 | ' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
---|
827 | ' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
---|
828 | ' % 8.2f % 8.2f % 8.2f % 8.2f])') \
|
---|
829 | % (self.a, self.b, self.c, self.d,
|
---|
830 | self.e, self.f, self.g, self.h,
|
---|
831 | self.i, self.j, self.k, self.l,
|
---|
832 | self.m, self.n, self.o, self.p)
|
---|
833 |
|
---|
834 | def __getitem__(self, key):
|
---|
835 | return [self.a, self.e, self.i, self.m,
|
---|
836 | self.b, self.f, self.j, self.n,
|
---|
837 | self.c, self.g, self.k, self.o,
|
---|
838 | self.d, self.h, self.l, self.p][key]
|
---|
839 |
|
---|
840 | def __setitem__(self, key, value):
|
---|
841 | L = self[:]
|
---|
842 | L[key] = value
|
---|
843 | (self.a, self.e, self.i, self.m,
|
---|
844 | self.b, self.f, self.j, self.n,
|
---|
845 | self.c, self.g, self.k, self.o,
|
---|
846 | self.d, self.h, self.l, self.p) = L
|
---|
847 |
|
---|
848 | def __mul__(self, other):
|
---|
849 | if isinstance(other, Matrix4):
|
---|
850 | # Cache attributes in local vars (see Matrix3.__mul__).
|
---|
851 | Aa = self.a
|
---|
852 | Ab = self.b
|
---|
853 | Ac = self.c
|
---|
854 | Ad = self.d
|
---|
855 | Ae = self.e
|
---|
856 | Af = self.f
|
---|
857 | Ag = self.g
|
---|
858 | Ah = self.h
|
---|
859 | Ai = self.i
|
---|
860 | Aj = self.j
|
---|
861 | Ak = self.k
|
---|
862 | Al = self.l
|
---|
863 | Am = self.m
|
---|
864 | An = self.n
|
---|
865 | Ao = self.o
|
---|
866 | Ap = self.p
|
---|
867 | Ba = other.a
|
---|
868 | Bb = other.b
|
---|
869 | Bc = other.c
|
---|
870 | Bd = other.d
|
---|
871 | Be = other.e
|
---|
872 | Bf = other.f
|
---|
873 | Bg = other.g
|
---|
874 | Bh = other.h
|
---|
875 | Bi = other.i
|
---|
876 | Bj = other.j
|
---|
877 | Bk = other.k
|
---|
878 | Bl = other.l
|
---|
879 | Bm = other.m
|
---|
880 | Bn = other.n
|
---|
881 | Bo = other.o
|
---|
882 | Bp = other.p
|
---|
883 | C = Matrix4()
|
---|
884 | C.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
|
---|
885 | C.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
|
---|
886 | C.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
|
---|
887 | C.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
|
---|
888 | C.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
|
---|
889 | C.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
|
---|
890 | C.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
|
---|
891 | C.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
|
---|
892 | C.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
|
---|
893 | C.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
|
---|
894 | C.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
|
---|
895 | C.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
|
---|
896 | C.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
|
---|
897 | C.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
|
---|
898 | C.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
|
---|
899 | C.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
|
---|
900 | return C
|
---|
901 | elif isinstance(other, Point3):
|
---|
902 | A = self
|
---|
903 | B = other
|
---|
904 | P = Point3(0, 0, 0)
|
---|
905 | P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
|
---|
906 | P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
|
---|
907 | P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
|
---|
908 | return P
|
---|
909 | elif isinstance(other, Vector3):
|
---|
910 | A = self
|
---|
911 | B = other
|
---|
912 | V = Vector3(0, 0, 0)
|
---|
913 | V.x = A.a * B.x + A.b * B.y + A.c * B.z
|
---|
914 | V.y = A.e * B.x + A.f * B.y + A.g * B.z
|
---|
915 | V.z = A.i * B.x + A.j * B.y + A.k * B.z
|
---|
916 | return V
|
---|
917 | else:
|
---|
918 | other = other.copy()
|
---|
919 | other._apply_transform(self)
|
---|
920 | return other
|
---|
921 |
|
---|
922 | def __imul__(self, other):
|
---|
923 | assert isinstance(other, Matrix4)
|
---|
924 | # Cache attributes in local vars (see Matrix3.__mul__).
|
---|
925 | Aa = self.a
|
---|
926 | Ab = self.b
|
---|
927 | Ac = self.c
|
---|
928 | Ad = self.d
|
---|
929 | Ae = self.e
|
---|
930 | Af = self.f
|
---|
931 | Ag = self.g
|
---|
932 | Ah = self.h
|
---|
933 | Ai = self.i
|
---|
934 | Aj = self.j
|
---|
935 | Ak = self.k
|
---|
936 | Al = self.l
|
---|
937 | Am = self.m
|
---|
938 | An = self.n
|
---|
939 | Ao = self.o
|
---|
940 | Ap = self.p
|
---|
941 | Ba = other.a
|
---|
942 | Bb = other.b
|
---|
943 | Bc = other.c
|
---|
944 | Bd = other.d
|
---|
945 | Be = other.e
|
---|
946 | Bf = other.f
|
---|
947 | Bg = other.g
|
---|
948 | Bh = other.h
|
---|
949 | Bi = other.i
|
---|
950 | Bj = other.j
|
---|
951 | Bk = other.k
|
---|
952 | Bl = other.l
|
---|
953 | Bm = other.m
|
---|
954 | Bn = other.n
|
---|
955 | Bo = other.o
|
---|
956 | Bp = other.p
|
---|
957 | self.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
|
---|
958 | self.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
|
---|
959 | self.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
|
---|
960 | self.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
|
---|
961 | self.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
|
---|
962 | self.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
|
---|
963 | self.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
|
---|
964 | self.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
|
---|
965 | self.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
|
---|
966 | self.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
|
---|
967 | self.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
|
---|
968 | self.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
|
---|
969 | self.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
|
---|
970 | self.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
|
---|
971 | self.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
|
---|
972 | self.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
|
---|
973 | return self
|
---|
974 |
|
---|
975 | def transform(self, other):
|
---|
976 | A = self
|
---|
977 | B = other
|
---|
978 | P = Point3(0, 0, 0)
|
---|
979 | P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
|
---|
980 | P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
|
---|
981 | P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
|
---|
982 | w = A.m * B.x + A.n * B.y + A.o * B.z + A.p
|
---|
983 | if w != 0:
|
---|
984 | P.x /= w
|
---|
985 | P.y /= w
|
---|
986 | P.z /= w
|
---|
987 | return P
|
---|
988 |
|
---|
989 | def identity(self):
|
---|
990 | self.a = self.f = self.k = self.p = 1.
|
---|
991 | self.b = self.c = self.d = self.e = self.g = self.h = \
|
---|
992 | self.i = self.j = self.l = self.m = self.n = self.o = 0
|
---|
993 | return self
|
---|
994 |
|
---|
995 | def scale(self, x, y, z):
|
---|
996 | self *= Matrix4.new_scale(x, y, z)
|
---|
997 | return self
|
---|
998 |
|
---|
999 | def translate(self, x, y, z):
|
---|
1000 | self *= Matrix4.new_translate(x, y, z)
|
---|
1001 | return self
|
---|
1002 |
|
---|
1003 | def rotatex(self, angle):
|
---|
1004 | self *= Matrix4.new_rotatex(angle)
|
---|
1005 | return self
|
---|
1006 |
|
---|
1007 | def rotatey(self, angle):
|
---|
1008 | self *= Matrix4.new_rotatey(angle)
|
---|
1009 | return self
|
---|
1010 |
|
---|
1011 | def rotatez(self, angle):
|
---|
1012 | self *= Matrix4.new_rotatez(angle)
|
---|
1013 | return self
|
---|
1014 |
|
---|
1015 | def rotate_axis(self, angle, axis):
|
---|
1016 | self *= Matrix4.new_rotate_axis(angle, axis)
|
---|
1017 | return self
|
---|
1018 |
|
---|
1019 | def rotate_euler(self, heading, attitude, bank):
|
---|
1020 | self *= Matrix4.new_rotate_euler(heading, attitude, bank)
|
---|
1021 | return self
|
---|
1022 |
|
---|
1023 | def rotate_triple_axis(self, x, y, z):
|
---|
1024 | self *= Matrix4.new_rotate_triple_axis(x, y, z)
|
---|
1025 | return self
|
---|
1026 |
|
---|
1027 | def transpose(self):
|
---|
1028 | (self.a, self.e, self.i, self.m,
|
---|
1029 | self.b, self.f, self.j, self.n,
|
---|
1030 | self.c, self.g, self.k, self.o,
|
---|
1031 | self.d, self.h, self.l, self.p) = \
|
---|
1032 | (self.a, self.b, self.c, self.d,
|
---|
1033 | self.e, self.f, self.g, self.h,
|
---|
1034 | self.i, self.j, self.k, self.l,
|
---|
1035 | self.m, self.n, self.o, self.p)
|
---|
1036 |
|
---|
1037 | def transposed(self):
|
---|
1038 | M = self.copy()
|
---|
1039 | M.transpose()
|
---|
1040 | return M
|
---|
1041 |
|
---|
1042 | # Static constructors
|
---|
1043 | def new(cls, *values):
|
---|
1044 | M = cls()
|
---|
1045 | M[:] = values
|
---|
1046 | return M
|
---|
1047 | new = classmethod(new)
|
---|
1048 |
|
---|
1049 | def new_identity(cls):
|
---|
1050 | self = cls()
|
---|
1051 | return self
|
---|
1052 | new_identity = classmethod(new_identity)
|
---|
1053 |
|
---|
1054 | def new_scale(cls, x, y, z):
|
---|
1055 | self = cls()
|
---|
1056 | self.a = x
|
---|
1057 | self.f = y
|
---|
1058 | self.k = z
|
---|
1059 | return self
|
---|
1060 | new_scale = classmethod(new_scale)
|
---|
1061 |
|
---|
1062 | def new_translate(cls, x, y, z):
|
---|
1063 | self = cls()
|
---|
1064 | self.d = x
|
---|
1065 | self.h = y
|
---|
1066 | self.l = z
|
---|
1067 | return self
|
---|
1068 | new_translate = classmethod(new_translate)
|
---|
1069 |
|
---|
1070 | def new_rotatex(cls, angle):
|
---|
1071 | self = cls()
|
---|
1072 | s = math.sin(angle)
|
---|
1073 | c = math.cos(angle)
|
---|
1074 | self.f = self.k = c
|
---|
1075 | self.g = -s
|
---|
1076 | self.j = s
|
---|
1077 | return self
|
---|
1078 | new_rotatex = classmethod(new_rotatex)
|
---|
1079 |
|
---|
1080 | def new_rotatey(cls, angle):
|
---|
1081 | self = cls()
|
---|
1082 | s = math.sin(angle)
|
---|
1083 | c = math.cos(angle)
|
---|
1084 | self.a = self.k = c
|
---|
1085 | self.c = s
|
---|
1086 | self.i = -s
|
---|
1087 | return self
|
---|
1088 | new_rotatey = classmethod(new_rotatey)
|
---|
1089 |
|
---|
1090 | def new_rotatez(cls, angle):
|
---|
1091 | self = cls()
|
---|
1092 | s = math.sin(angle)
|
---|
1093 | c = math.cos(angle)
|
---|
1094 | self.a = self.f = c
|
---|
1095 | self.b = -s
|
---|
1096 | self.e = s
|
---|
1097 | return self
|
---|
1098 | new_rotatez = classmethod(new_rotatez)
|
---|
1099 |
|
---|
1100 | def new_rotate_axis(cls, angle, axis):
|
---|
1101 | assert(isinstance(axis, Vector3))
|
---|
1102 | vector = axis.normalized()
|
---|
1103 | x = vector.x
|
---|
1104 | y = vector.y
|
---|
1105 | z = vector.z
|
---|
1106 |
|
---|
1107 | self = cls()
|
---|
1108 | s = math.sin(angle)
|
---|
1109 | c = math.cos(angle)
|
---|
1110 | c1 = 1. - c
|
---|
1111 |
|
---|
1112 | # from the glRotate man page
|
---|
1113 | self.a = x * x * c1 + c
|
---|
1114 | self.b = x * y * c1 - z * s
|
---|
1115 | self.c = x * z * c1 + y * s
|
---|
1116 | self.e = y * x * c1 + z * s
|
---|
1117 | self.f = y * y * c1 + c
|
---|
1118 | self.g = y * z * c1 - x * s
|
---|
1119 | self.i = x * z * c1 - y * s
|
---|
1120 | self.j = y * z * c1 + x * s
|
---|
1121 | self.k = z * z * c1 + c
|
---|
1122 | return self
|
---|
1123 | new_rotate_axis = classmethod(new_rotate_axis)
|
---|
1124 |
|
---|
1125 | def new_rotate_euler(cls, heading, attitude, bank):
|
---|
1126 | # from http://www.euclideanspace.com/
|
---|
1127 | ch = math.cos(heading)
|
---|
1128 | sh = math.sin(heading)
|
---|
1129 | ca = math.cos(attitude)
|
---|
1130 | sa = math.sin(attitude)
|
---|
1131 | cb = math.cos(bank)
|
---|
1132 | sb = math.sin(bank)
|
---|
1133 |
|
---|
1134 | self = cls()
|
---|
1135 | self.a = ch * ca
|
---|
1136 | self.b = sh * sb - ch * sa * cb
|
---|
1137 | self.c = ch * sa * sb + sh * cb
|
---|
1138 | self.e = sa
|
---|
1139 | self.f = ca * cb
|
---|
1140 | self.g = -ca * sb
|
---|
1141 | self.i = -sh * ca
|
---|
1142 | self.j = sh * sa * cb + ch * sb
|
---|
1143 | self.k = -sh * sa * sb + ch * cb
|
---|
1144 | return self
|
---|
1145 | new_rotate_euler = classmethod(new_rotate_euler)
|
---|
1146 |
|
---|
1147 | def new_rotate_triple_axis(cls, x, y, z):
|
---|
1148 | m = cls()
|
---|
1149 |
|
---|
1150 | m.a, m.b, m.c = x.x, y.x, z.x
|
---|
1151 | m.e, m.f, m.g = x.y, y.y, z.y
|
---|
1152 | m.i, m.j, m.k = x.z, y.z, z.z
|
---|
1153 |
|
---|
1154 | return m
|
---|
1155 | new_rotate_triple_axis = classmethod(new_rotate_triple_axis)
|
---|
1156 |
|
---|
1157 | def new_look_at(cls, eye, at, up):
|
---|
1158 | z = (eye - at).normalized()
|
---|
1159 | x = up.cross(z).normalized()
|
---|
1160 | y = z.cross(x)
|
---|
1161 |
|
---|
1162 | m = cls.new_rotate_triple_axis(x, y, z)
|
---|
1163 | m.d, m.h, m.l = eye.x, eye.y, eye.z
|
---|
1164 | return m
|
---|
1165 | new_look_at = classmethod(new_look_at)
|
---|
1166 |
|
---|
1167 | def new_perspective(cls, fov_y, aspect, near, far):
|
---|
1168 | # from the gluPerspective man page
|
---|
1169 | f = 1 / math.tan(fov_y / 2)
|
---|
1170 | self = cls()
|
---|
1171 | assert near != 0.0 and near != far
|
---|
1172 | self.a = f / aspect
|
---|
1173 | self.f = f
|
---|
1174 | self.k = (far + near) / (near - far)
|
---|
1175 | self.l = 2 * far * near / (near - far)
|
---|
1176 | self.o = -1
|
---|
1177 | self.p = 0
|
---|
1178 | return self
|
---|
1179 | new_perspective = classmethod(new_perspective)
|
---|
1180 |
|
---|
1181 | def determinant(self):
|
---|
1182 | return ((self.a * self.f - self.e * self.b)
|
---|
1183 | * (self.k * self.p - self.o * self.l)
|
---|
1184 | - (self.a * self.j - self.i * self.b)
|
---|
1185 | * (self.g * self.p - self.o * self.h)
|
---|
1186 | + (self.a * self.n - self.m * self.b)
|
---|
1187 | * (self.g * self.l - self.k * self.h)
|
---|
1188 | + (self.e * self.j - self.i * self.f)
|
---|
1189 | * (self.c * self.p - self.o * self.d)
|
---|
1190 | - (self.e * self.n - self.m * self.f)
|
---|
1191 | * (self.c * self.l - self.k * self.d)
|
---|
1192 | + (self.i * self.n - self.m * self.j)
|
---|
1193 | * (self.c * self.h - self.g * self.d))
|
---|
1194 |
|
---|
1195 | def inverse(self):
|
---|
1196 | tmp = Matrix4()
|
---|
1197 | d = self.determinant();
|
---|
1198 |
|
---|
1199 | if abs(d) < 0.001:
|
---|
1200 | # No inverse, return identity
|
---|
1201 | return tmp
|
---|
1202 | else:
|
---|
1203 | d = 1.0 / d;
|
---|
1204 |
|
---|
1205 | tmp.a = d * (self.f * (self.k * self.p - self.o * self.l) + self.j * (self.o * self.h - self.g * self.p) + self.n * (self.g * self.l - self.k * self.h));
|
---|
1206 | tmp.e = d * (self.g * (self.i * self.p - self.m * self.l) + self.k * (self.m * self.h - self.e * self.p) + self.o * (self.e * self.l - self.i * self.h));
|
---|
1207 | tmp.i = d * (self.h * (self.i * self.n - self.m * self.j) + self.l * (self.m * self.f - self.e * self.n) + self.p * (self.e * self.j - self.i * self.f));
|
---|
1208 | tmp.m = d * (self.e * (self.n * self.k - self.j * self.o) + self.i * (self.f * self.o - self.n * self.g) + self.m * (self.j * self.g - self.f * self.k));
|
---|
1209 |
|
---|
1210 | tmp.b = d * (self.j * (self.c * self.p - self.o * self.d) + self.n * (self.k * self.d - self.c * self.l) + self.b * (self.o * self.l - self.k * self.p));
|
---|
1211 | tmp.f = d * (self.k * (self.a * self.p - self.m * self.d) + self.o * (self.i * self.d - self.a * self.l) + self.c * (self.m * self.l - self.i * self.p));
|
---|
1212 | tmp.j = d * (self.l * (self.a * self.n - self.m * self.b) + self.p * (self.i * self.b - self.a * self.j) + self.d * (self.m * self.j - self.i * self.n));
|
---|
1213 | tmp.n = d * (self.i * (self.n * self.c - self.b * self.o) + self.m * (self.b * self.k - self.j * self.c) + self.a * (self.j * self.o - self.n * self.k));
|
---|
1214 |
|
---|
1215 | tmp.c = d * (self.n * (self.c * self.h - self.g * self.d) + self.b * (self.g * self.p - self.o * self.h) + self.f * (self.o * self.d - self.c * self.p));
|
---|
1216 | tmp.g = d * (self.o * (self.a * self.h - self.e * self.d) + self.c * (self.e * self.p - self.m * self.h) + self.g * (self.m * self.d - self.a * self.p));
|
---|
1217 | tmp.k = d * (self.p * (self.a * self.f - self.e * self.b) + self.d * (self.e * self.n - self.m * self.f) + self.h * (self.m * self.b - self.a * self.n));
|
---|
1218 | tmp.o = d * (self.m * (self.f * self.c - self.b * self.g) + self.a * (self.n * self.g - self.f * self.o) + self.e * (self.b * self.o - self.n * self.c));
|
---|
1219 |
|
---|
1220 | tmp.d = d * (self.b * (self.k * self.h - self.g * self.l) + self.f * (self.c * self.l - self.k * self.d) + self.j * (self.g * self.d - self.c * self.h));
|
---|
1221 | tmp.h = d * (self.c * (self.i * self.h - self.e * self.l) + self.g * (self.a * self.l - self.i * self.d) + self.k * (self.e * self.d - self.a * self.h));
|
---|
1222 | tmp.l = d * (self.d * (self.i * self.f - self.e * self.j) + self.h * (self.a * self.j - self.i * self.b) + self.l * (self.e * self.b - self.a * self.f));
|
---|
1223 | tmp.p = d * (self.a * (self.f * self.k - self.j * self.g) + self.e * (self.j * self.c - self.b * self.k) + self.i * (self.b * self.g - self.f * self.c));
|
---|
1224 |
|
---|
1225 | return tmp;
|
---|
1226 |
|
---|
1227 |
|
---|
1228 | class Quaternion:
|
---|
1229 | # All methods and naming conventions based off
|
---|
1230 | # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions
|
---|
1231 |
|
---|
1232 | # w is the real part, (x, y, z) are the imaginary parts
|
---|
1233 | __slots__ = ['w', 'x', 'y', 'z']
|
---|
1234 |
|
---|
1235 | def __init__(self, w=1, x=0, y=0, z=0):
|
---|
1236 | self.w = w
|
---|
1237 | self.x = x
|
---|
1238 | self.y = y
|
---|
1239 | self.z = z
|
---|
1240 |
|
---|
1241 | def __copy__(self):
|
---|
1242 | Q = Quaternion()
|
---|
1243 | Q.w = self.w
|
---|
1244 | Q.x = self.x
|
---|
1245 | Q.y = self.y
|
---|
1246 | Q.z = self.z
|
---|
1247 | return Q
|
---|
1248 |
|
---|
1249 | copy = __copy__
|
---|
1250 |
|
---|
1251 | def __repr__(self):
|
---|
1252 | return 'Quaternion(real=%.2f, imag=<%.2f, %.2f, %.2f>)' % \
|
---|
1253 | (self.w, self.x, self.y, self.z)
|
---|
1254 |
|
---|
1255 | def __mul__(self, other):
|
---|
1256 | if isinstance(other, Quaternion):
|
---|
1257 | Ax = self.x
|
---|
1258 | Ay = self.y
|
---|
1259 | Az = self.z
|
---|
1260 | Aw = self.w
|
---|
1261 | Bx = other.x
|
---|
1262 | By = other.y
|
---|
1263 | Bz = other.z
|
---|
1264 | Bw = other.w
|
---|
1265 | Q = Quaternion()
|
---|
1266 | Q.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
---|
1267 | Q.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
---|
1268 | Q.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
---|
1269 | Q.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
---|
1270 | return Q
|
---|
1271 | elif isinstance(other, Vector3):
|
---|
1272 | w = self.w
|
---|
1273 | x = self.x
|
---|
1274 | y = self.y
|
---|
1275 | z = self.z
|
---|
1276 | Vx = other.x
|
---|
1277 | Vy = other.y
|
---|
1278 | Vz = other.z
|
---|
1279 | ww = w * w
|
---|
1280 | w2 = w * 2
|
---|
1281 | wx2 = w2 * x
|
---|
1282 | wy2 = w2 * y
|
---|
1283 | wz2 = w2 * z
|
---|
1284 | xx = x * x
|
---|
1285 | x2 = x * 2
|
---|
1286 | xy2 = x2 * y
|
---|
1287 | xz2 = x2 * z
|
---|
1288 | yy = y * y
|
---|
1289 | yz2 = 2 * y * z
|
---|
1290 | zz = z * z
|
---|
1291 | return other.__class__(\
|
---|
1292 | ww * Vx + wy2 * Vz - wz2 * Vy + \
|
---|
1293 | xx * Vx + xy2 * Vy + xz2 * Vz - \
|
---|
1294 | zz * Vx - yy * Vx,
|
---|
1295 | xy2 * Vx + yy * Vy + yz2 * Vz + \
|
---|
1296 | wz2 * Vx - zz * Vy + ww * Vy - \
|
---|
1297 | wx2 * Vz - xx * Vy,
|
---|
1298 | xz2 * Vx + yz2 * Vy + \
|
---|
1299 | zz * Vz - wy2 * Vx - yy * Vz + \
|
---|
1300 | wx2 * Vy - xx * Vz + ww * Vz)
|
---|
1301 | else:
|
---|
1302 | other = other.copy()
|
---|
1303 | other._apply_transform(self)
|
---|
1304 | return other
|
---|
1305 |
|
---|
1306 | def __imul__(self, other):
|
---|
1307 | assert isinstance(other, Quaternion)
|
---|
1308 | Ax = self.x
|
---|
1309 | Ay = self.y
|
---|
1310 | Az = self.z
|
---|
1311 | Aw = self.w
|
---|
1312 | Bx = other.x
|
---|
1313 | By = other.y
|
---|
1314 | Bz = other.z
|
---|
1315 | Bw = other.w
|
---|
1316 | self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
---|
1317 | self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
---|
1318 | self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
---|
1319 | self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
---|
1320 | return self
|
---|
1321 |
|
---|
1322 | def __abs__(self):
|
---|
1323 | return math.sqrt(self.w ** 2 + \
|
---|
1324 | self.x ** 2 + \
|
---|
1325 | self.y ** 2 + \
|
---|
1326 | self.z ** 2)
|
---|
1327 |
|
---|
1328 | magnitude = __abs__
|
---|
1329 |
|
---|
1330 | def magnitude_squared(self):
|
---|
1331 | return self.w ** 2 + \
|
---|
1332 | self.x ** 2 + \
|
---|
1333 | self.y ** 2 + \
|
---|
1334 | self.z ** 2
|
---|
1335 |
|
---|
1336 | def identity(self):
|
---|
1337 | self.w = 1
|
---|
1338 | self.x = 0
|
---|
1339 | self.y = 0
|
---|
1340 | self.z = 0
|
---|
1341 | return self
|
---|
1342 |
|
---|
1343 | def rotate_axis(self, angle, axis):
|
---|
1344 | self *= Quaternion.new_rotate_axis(angle, axis)
|
---|
1345 | return self
|
---|
1346 |
|
---|
1347 | def rotate_euler(self, heading, attitude, bank):
|
---|
1348 | self *= Quaternion.new_rotate_euler(heading, attitude, bank)
|
---|
1349 | return self
|
---|
1350 |
|
---|
1351 | def rotate_matrix(self, m):
|
---|
1352 | self *= Quaternion.new_rotate_matrix(m)
|
---|
1353 | return self
|
---|
1354 |
|
---|
1355 | def conjugated(self):
|
---|
1356 | Q = Quaternion()
|
---|
1357 | Q.w = self.w
|
---|
1358 | Q.x = -self.x
|
---|
1359 | Q.y = -self.y
|
---|
1360 | Q.z = -self.z
|
---|
1361 | return Q
|
---|
1362 |
|
---|
1363 | def normalize(self):
|
---|
1364 | d = self.magnitude()
|
---|
1365 | if d != 0:
|
---|
1366 | self.w /= d
|
---|
1367 | self.x /= d
|
---|
1368 | self.y /= d
|
---|
1369 | self.z /= d
|
---|
1370 | return self
|
---|
1371 |
|
---|
1372 | def normalized(self):
|
---|
1373 | d = self.magnitude()
|
---|
1374 | if d != 0:
|
---|
1375 | Q = Quaternion()
|
---|
1376 | Q.w = self.w / d
|
---|
1377 | Q.x = self.x / d
|
---|
1378 | Q.y = self.y / d
|
---|
1379 | Q.z = self.z / d
|
---|
1380 | return Q
|
---|
1381 | else:
|
---|
1382 | return self.copy()
|
---|
1383 |
|
---|
1384 | def get_angle_axis(self):
|
---|
1385 | if self.w > 1:
|
---|
1386 | self = self.normalized()
|
---|
1387 | angle = 2 * math.acos(self.w)
|
---|
1388 | s = math.sqrt(1 - self.w ** 2)
|
---|
1389 | if s < 0.001:
|
---|
1390 | return angle, Vector3(1, 0, 0)
|
---|
1391 | else:
|
---|
1392 | return angle, Vector3(self.x / s, self.y / s, self.z / s)
|
---|
1393 |
|
---|
1394 | def get_euler(self):
|
---|
1395 | t = self.x * self.y + self.z * self.w
|
---|
1396 | if t > 0.4999:
|
---|
1397 | heading = 2 * math.atan2(self.x, self.w)
|
---|
1398 | attitude = math.pi / 2
|
---|
1399 | bank = 0
|
---|
1400 | elif t < -0.4999:
|
---|
1401 | heading = -2 * math.atan2(self.x, self.w)
|
---|
1402 | attitude = -math.pi / 2
|
---|
1403 | bank = 0
|
---|
1404 | else:
|
---|
1405 | sqx = self.x ** 2
|
---|
1406 | sqy = self.y ** 2
|
---|
1407 | sqz = self.z ** 2
|
---|
1408 | heading = math.atan2(2 * self.y * self.w - 2 * self.x * self.z,
|
---|
1409 | 1 - 2 * sqy - 2 * sqz)
|
---|
1410 | attitude = math.asin(2 * t)
|
---|
1411 | bank = math.atan2(2 * self.x * self.w - 2 * self.y * self.z,
|
---|
1412 | 1 - 2 * sqx - 2 * sqz)
|
---|
1413 | return heading, attitude, bank
|
---|
1414 |
|
---|
1415 | def get_matrix(self):
|
---|
1416 | xx = self.x ** 2
|
---|
1417 | xy = self.x * self.y
|
---|
1418 | xz = self.x * self.z
|
---|
1419 | xw = self.x * self.w
|
---|
1420 | yy = self.y ** 2
|
---|
1421 | yz = self.y * self.z
|
---|
1422 | yw = self.y * self.w
|
---|
1423 | zz = self.z ** 2
|
---|
1424 | zw = self.z * self.w
|
---|
1425 | M = Matrix4()
|
---|
1426 | M.a = 1 - 2 * (yy + zz)
|
---|
1427 | M.b = 2 * (xy - zw)
|
---|
1428 | M.c = 2 * (xz + yw)
|
---|
1429 | M.e = 2 * (xy + zw)
|
---|
1430 | M.f = 1 - 2 * (xx + zz)
|
---|
1431 | M.g = 2 * (yz - xw)
|
---|
1432 | M.i = 2 * (xz - yw)
|
---|
1433 | M.j = 2 * (yz + xw)
|
---|
1434 | M.k = 1 - 2 * (xx + yy)
|
---|
1435 | return M
|
---|
1436 |
|
---|
1437 | # Static constructors
|
---|
1438 | def new_identity(cls):
|
---|
1439 | return cls()
|
---|
1440 | new_identity = classmethod(new_identity)
|
---|
1441 |
|
---|
1442 | def new_rotate_axis(cls, angle, axis):
|
---|
1443 | assert(isinstance(axis, Vector3))
|
---|
1444 | axis = axis.normalized()
|
---|
1445 | s = math.sin(angle / 2)
|
---|
1446 | Q = cls()
|
---|
1447 | Q.w = math.cos(angle / 2)
|
---|
1448 | Q.x = axis.x * s
|
---|
1449 | Q.y = axis.y * s
|
---|
1450 | Q.z = axis.z * s
|
---|
1451 | return Q
|
---|
1452 | new_rotate_axis = classmethod(new_rotate_axis)
|
---|
1453 |
|
---|
1454 | def new_rotate_euler(cls, heading, attitude, bank):
|
---|
1455 | Q = cls()
|
---|
1456 | c1 = math.cos(heading / 2)
|
---|
1457 | s1 = math.sin(heading / 2)
|
---|
1458 | c2 = math.cos(attitude / 2)
|
---|
1459 | s2 = math.sin(attitude / 2)
|
---|
1460 | c3 = math.cos(bank / 2)
|
---|
1461 | s3 = math.sin(bank / 2)
|
---|
1462 |
|
---|
1463 | Q.w = c1 * c2 * c3 - s1 * s2 * s3
|
---|
1464 | Q.x = s1 * s2 * c3 + c1 * c2 * s3
|
---|
1465 | Q.y = s1 * c2 * c3 + c1 * s2 * s3
|
---|
1466 | Q.z = c1 * s2 * c3 - s1 * c2 * s3
|
---|
1467 | return Q
|
---|
1468 | new_rotate_euler = classmethod(new_rotate_euler)
|
---|
1469 |
|
---|
1470 | def new_rotate_matrix(cls, m):
|
---|
1471 | if m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] > 0.00000001:
|
---|
1472 | t = m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] + 1.0
|
---|
1473 | s = 0.5/math.sqrt(t)
|
---|
1474 |
|
---|
1475 | return cls(
|
---|
1476 | s*t,
|
---|
1477 | (m[1*4 + 2] - m[2*4 + 1])*s,
|
---|
1478 | (m[2*4 + 0] - m[0*4 + 2])*s,
|
---|
1479 | (m[0*4 + 1] - m[1*4 + 0])*s
|
---|
1480 | )
|
---|
1481 |
|
---|
1482 | elif m[0*4 + 0] > m[1*4 + 1] and m[0*4 + 0] > m[2*4 + 2]:
|
---|
1483 | t = m[0*4 + 0] - m[1*4 + 1] - m[2*4 + 2] + 1.0
|
---|
1484 | s = 0.5/math.sqrt(t)
|
---|
1485 |
|
---|
1486 | return cls(
|
---|
1487 | (m[1*4 + 2] - m[2*4 + 1])*s,
|
---|
1488 | s*t,
|
---|
1489 | (m[0*4 + 1] + m[1*4 + 0])*s,
|
---|
1490 | (m[2*4 + 0] + m[0*4 + 2])*s
|
---|
1491 | )
|
---|
1492 |
|
---|
1493 | elif m[1*4 + 1] > m[2*4 + 2]:
|
---|
1494 | t = -m[0*4 + 0] + m[1*4 + 1] - m[2*4 + 2] + 1.0
|
---|
1495 | s = 0.5/math.sqrt(t)
|
---|
1496 |
|
---|
1497 | return cls(
|
---|
1498 | (m[2*4 + 0] - m[0*4 + 2])*s,
|
---|
1499 | (m[0*4 + 1] + m[1*4 + 0])*s,
|
---|
1500 | s*t,
|
---|
1501 | (m[1*4 + 2] + m[2*4 + 1])*s
|
---|
1502 | )
|
---|
1503 |
|
---|
1504 | else:
|
---|
1505 | t = -m[0*4 + 0] - m[1*4 + 1] + m[2*4 + 2] + 1.0
|
---|
1506 | s = 0.5/math.sqrt(t)
|
---|
1507 |
|
---|
1508 | return cls(
|
---|
1509 | (m[0*4 + 1] - m[1*4 + 0])*s,
|
---|
1510 | (m[2*4 + 0] + m[0*4 + 2])*s,
|
---|
1511 | (m[1*4 + 2] + m[2*4 + 1])*s,
|
---|
1512 | s*t
|
---|
1513 | )
|
---|
1514 | new_rotate_matrix = classmethod(new_rotate_matrix)
|
---|
1515 |
|
---|
1516 | def new_interpolate(cls, q1, q2, t):
|
---|
1517 | assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
---|
1518 | Q = cls()
|
---|
1519 |
|
---|
1520 | costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
|
---|
1521 | if costheta < 0.:
|
---|
1522 | costheta = -costheta
|
---|
1523 | q1 = q1.conjugated()
|
---|
1524 | elif costheta > 1:
|
---|
1525 | costheta = 1
|
---|
1526 |
|
---|
1527 | theta = math.acos(costheta)
|
---|
1528 | if abs(theta) < 0.01:
|
---|
1529 | Q.w = q2.w
|
---|
1530 | Q.x = q2.x
|
---|
1531 | Q.y = q2.y
|
---|
1532 | Q.z = q2.z
|
---|
1533 | return Q
|
---|
1534 |
|
---|
1535 | sintheta = math.sqrt(1.0 - costheta * costheta)
|
---|
1536 | if abs(sintheta) < 0.01:
|
---|
1537 | Q.w = (q1.w + q2.w) * 0.5
|
---|
1538 | Q.x = (q1.x + q2.x) * 0.5
|
---|
1539 | Q.y = (q1.y + q2.y) * 0.5
|
---|
1540 | Q.z = (q1.z + q2.z) * 0.5
|
---|
1541 | return Q
|
---|
1542 |
|
---|
1543 | ratio1 = math.sin((1 - t) * theta) / sintheta
|
---|
1544 | ratio2 = math.sin(t * theta) / sintheta
|
---|
1545 |
|
---|
1546 | Q.w = q1.w * ratio1 + q2.w * ratio2
|
---|
1547 | Q.x = q1.x * ratio1 + q2.x * ratio2
|
---|
1548 | Q.y = q1.y * ratio1 + q2.y * ratio2
|
---|
1549 | Q.z = q1.z * ratio1 + q2.z * ratio2
|
---|
1550 | return Q
|
---|
1551 | new_interpolate = classmethod(new_interpolate)
|
---|
1552 |
|
---|
1553 | # Geometry
|
---|
1554 | # Much maths thanks to Paul Bourke, http://astronomy.swin.edu.au/~pbourke
|
---|
1555 | # ---------------------------------------------------------------------------
|
---|
1556 |
|
---|
1557 | class Geometry:
|
---|
1558 | def _connect_unimplemented(self, other):
|
---|
1559 | raise AttributeError, 'Cannot connect %s to %s' % \
|
---|
1560 | (self.__class__, other.__class__)
|
---|
1561 |
|
---|
1562 | def _intersect_unimplemented(self, other):
|
---|
1563 | raise AttributeError, 'Cannot intersect %s and %s' % \
|
---|
1564 | (self.__class__, other.__class__)
|
---|
1565 |
|
---|
1566 | _intersect_point2 = _intersect_unimplemented
|
---|
1567 | _intersect_line2 = _intersect_unimplemented
|
---|
1568 | _intersect_circle = _intersect_unimplemented
|
---|
1569 | _connect_point2 = _connect_unimplemented
|
---|
1570 | _connect_line2 = _connect_unimplemented
|
---|
1571 | _connect_circle = _connect_unimplemented
|
---|
1572 |
|
---|
1573 | _intersect_point3 = _intersect_unimplemented
|
---|
1574 | _intersect_line3 = _intersect_unimplemented
|
---|
1575 | _intersect_sphere = _intersect_unimplemented
|
---|
1576 | _intersect_plane = _intersect_unimplemented
|
---|
1577 | _connect_point3 = _connect_unimplemented
|
---|
1578 | _connect_line3 = _connect_unimplemented
|
---|
1579 | _connect_sphere = _connect_unimplemented
|
---|
1580 | _connect_plane = _connect_unimplemented
|
---|
1581 |
|
---|
1582 | def intersect(self, other):
|
---|
1583 | raise NotImplementedError
|
---|
1584 |
|
---|
1585 | def connect(self, other):
|
---|
1586 | raise NotImplementedError
|
---|
1587 |
|
---|
1588 | def distance(self, other):
|
---|
1589 | c = self.connect(other)
|
---|
1590 | if c:
|
---|
1591 | return c.length
|
---|
1592 | return 0.0
|
---|
1593 |
|
---|
1594 | def _intersect_point2_circle(P, C):
|
---|
1595 | return abs(P - C.c) <= C.r
|
---|
1596 |
|
---|
1597 | def _intersect_line2_line2(A, B):
|
---|
1598 | d = B.v.y * A.v.x - B.v.x * A.v.y
|
---|
1599 | if d == 0:
|
---|
1600 | return None
|
---|
1601 |
|
---|
1602 | dy = A.p.y - B.p.y
|
---|
1603 | dx = A.p.x - B.p.x
|
---|
1604 | ua = (B.v.x * dy - B.v.y * dx) / d
|
---|
1605 | if not A._u_in(ua):
|
---|
1606 | return None
|
---|
1607 | ub = (A.v.x * dy - A.v.y * dx) / d
|
---|
1608 | if not B._u_in(ub):
|
---|
1609 | return None
|
---|
1610 |
|
---|
1611 | return Point2(A.p.x + ua * A.v.x,
|
---|
1612 | A.p.y + ua * A.v.y)
|
---|
1613 |
|
---|
1614 | def _intersect_line2_circle(L, C):
|
---|
1615 | a = L.v.magnitude_squared()
|
---|
1616 | b = 2 * (L.v.x * (L.p.x - C.c.x) + \
|
---|
1617 | L.v.y * (L.p.y - C.c.y))
|
---|
1618 | c = C.c.magnitude_squared() + \
|
---|
1619 | L.p.magnitude_squared() - \
|
---|
1620 | 2 * C.c.dot(L.p) - \
|
---|
1621 | C.r ** 2
|
---|
1622 | det = b ** 2 - 4 * a * c
|
---|
1623 | if det < 0:
|
---|
1624 | return None
|
---|
1625 | sq = math.sqrt(det)
|
---|
1626 | u1 = (-b + sq) / (2 * a)
|
---|
1627 | u2 = (-b - sq) / (2 * a)
|
---|
1628 | if not L._u_in(u1):
|
---|
1629 | u1 = max(min(u1, 1.0), 0.0)
|
---|
1630 | if not L._u_in(u2):
|
---|
1631 | u2 = max(min(u2, 1.0), 0.0)
|
---|
1632 |
|
---|
1633 | # Tangent
|
---|
1634 | if u1 == u2:
|
---|
1635 | return Point2(L.p.x + u1 * L.v.x,
|
---|
1636 | L.p.y + u1 * L.v.y)
|
---|
1637 |
|
---|
1638 | return LineSegment2(Point2(L.p.x + u1 * L.v.x,
|
---|
1639 | L.p.y + u1 * L.v.y),
|
---|
1640 | Point2(L.p.x + u2 * L.v.x,
|
---|
1641 | L.p.y + u2 * L.v.y))
|
---|
1642 |
|
---|
1643 | def _connect_point2_line2(P, L):
|
---|
1644 | d = L.v.magnitude_squared()
|
---|
1645 | assert d != 0
|
---|
1646 | u = ((P.x - L.p.x) * L.v.x + \
|
---|
1647 | (P.y - L.p.y) * L.v.y) / d
|
---|
1648 | if not L._u_in(u):
|
---|
1649 | u = max(min(u, 1.0), 0.0)
|
---|
1650 | return LineSegment2(P,
|
---|
1651 | Point2(L.p.x + u * L.v.x,
|
---|
1652 | L.p.y + u * L.v.y))
|
---|
1653 |
|
---|
1654 | def _connect_point2_circle(P, C):
|
---|
1655 | v = P - C.c
|
---|
1656 | v.normalize()
|
---|
1657 | v *= C.r
|
---|
1658 | return LineSegment2(P, Point2(C.c.x + v.x, C.c.y + v.y))
|
---|
1659 |
|
---|
1660 | def _connect_line2_line2(A, B):
|
---|
1661 | d = B.v.y * A.v.x - B.v.x * A.v.y
|
---|
1662 | if d == 0:
|
---|
1663 | # Parallel, connect an endpoint with a line
|
---|
1664 | if isinstance(B, Ray2) or isinstance(B, LineSegment2):
|
---|
1665 | p1, p2 = _connect_point2_line2(B.p, A)
|
---|
1666 | return p2, p1
|
---|
1667 | # No endpoint (or endpoint is on A), possibly choose arbitrary point
|
---|
1668 | # on line.
|
---|
1669 | return _connect_point2_line2(A.p, B)
|
---|
1670 |
|
---|
1671 | dy = A.p.y - B.p.y
|
---|
1672 | dx = A.p.x - B.p.x
|
---|
1673 | ua = (B.v.x * dy - B.v.y * dx) / d
|
---|
1674 | if not A._u_in(ua):
|
---|
1675 | ua = max(min(ua, 1.0), 0.0)
|
---|
1676 | ub = (A.v.x * dy - A.v.y * dx) / d
|
---|
1677 | if not B._u_in(ub):
|
---|
1678 | ub = max(min(ub, 1.0), 0.0)
|
---|
1679 |
|
---|
1680 | return LineSegment2(Point2(A.p.x + ua * A.v.x, A.p.y + ua * A.v.y),
|
---|
1681 | Point2(B.p.x + ub * B.v.x, B.p.y + ub * B.v.y))
|
---|
1682 |
|
---|
1683 | def _connect_circle_line2(C, L):
|
---|
1684 | d = L.v.magnitude_squared()
|
---|
1685 | assert d != 0
|
---|
1686 | u = ((C.c.x - L.p.x) * L.v.x + (C.c.y - L.p.y) * L.v.y) / d
|
---|
1687 | if not L._u_in(u):
|
---|
1688 | u = max(min(u, 1.0), 0.0)
|
---|
1689 | point = Point2(L.p.x + u * L.v.x, L.p.y + u * L.v.y)
|
---|
1690 | v = (point - C.c)
|
---|
1691 | v.normalize()
|
---|
1692 | v *= C.r
|
---|
1693 | return LineSegment2(Point2(C.c.x + v.x, C.c.y + v.y), point)
|
---|
1694 |
|
---|
1695 | def _connect_circle_circle(A, B):
|
---|
1696 | v = B.c - A.c
|
---|
1697 | d = v.magnitude()
|
---|
1698 | if A.r >= B.r and d < A.r:
|
---|
1699 | #centre B inside A
|
---|
1700 | s1,s2 = +1, +1
|
---|
1701 | elif B.r > A.r and d < B.r:
|
---|
1702 | #centre A inside B
|
---|
1703 | s1,s2 = -1, -1
|
---|
1704 | elif d >= A.r and d >= B.r:
|
---|
1705 | s1,s2 = +1, -1
|
---|
1706 | v.normalize()
|
---|
1707 | return LineSegment2(Point2(A.c.x + s1 * v.x * A.r, A.c.y + s1 * v.y * A.r),
|
---|
1708 | Point2(B.c.x + s2 * v.x * B.r, B.c.y + s2 * v.y * B.r))
|
---|
1709 |
|
---|
1710 |
|
---|
1711 | class Point2(Vector2, Geometry):
|
---|
1712 | def __repr__(self):
|
---|
1713 | return 'Point2(%.2f, %.2f)' % (self.x, self.y)
|
---|
1714 |
|
---|
1715 | def intersect(self, other):
|
---|
1716 | return other._intersect_point2(self)
|
---|
1717 |
|
---|
1718 | def _intersect_circle(self, other):
|
---|
1719 | return _intersect_point2_circle(self, other)
|
---|
1720 |
|
---|
1721 | def connect(self, other):
|
---|
1722 | return other._connect_point2(self)
|
---|
1723 |
|
---|
1724 | def _connect_point2(self, other):
|
---|
1725 | return LineSegment2(other, self)
|
---|
1726 |
|
---|
1727 | def _connect_line2(self, other):
|
---|
1728 | c = _connect_point2_line2(self, other)
|
---|
1729 | if c:
|
---|
1730 | return c._swap()
|
---|
1731 |
|
---|
1732 | def _connect_circle(self, other):
|
---|
1733 | c = _connect_point2_circle(self, other)
|
---|
1734 | if c:
|
---|
1735 | return c._swap()
|
---|
1736 |
|
---|
1737 | class Line2(Geometry):
|
---|
1738 | __slots__ = ['p', 'v']
|
---|
1739 |
|
---|
1740 | def __init__(self, *args):
|
---|
1741 | if len(args) == 3:
|
---|
1742 | assert isinstance(args[0], Point2) and \
|
---|
1743 | isinstance(args[1], Vector2) and \
|
---|
1744 | type(args[2]) == float
|
---|
1745 | self.p = args[0].copy()
|
---|
1746 | self.v = args[1] * args[2] / abs(args[1])
|
---|
1747 | elif len(args) == 2:
|
---|
1748 | if isinstance(args[0], Point2) and isinstance(args[1], Point2):
|
---|
1749 | self.p = args[0].copy()
|
---|
1750 | self.v = args[1] - args[0]
|
---|
1751 | elif isinstance(args[0], Point2) and isinstance(args[1], Vector2):
|
---|
1752 | self.p = args[0].copy()
|
---|
1753 | self.v = args[1].copy()
|
---|
1754 | else:
|
---|
1755 | raise AttributeError, '%r' % (args,)
|
---|
1756 | elif len(args) == 1:
|
---|
1757 | if isinstance(args[0], Line2):
|
---|
1758 | self.p = args[0].p.copy()
|
---|
1759 | self.v = args[0].v.copy()
|
---|
1760 | else:
|
---|
1761 | raise AttributeError, '%r' % (args,)
|
---|
1762 | else:
|
---|
1763 | raise AttributeError, '%r' % (args,)
|
---|
1764 |
|
---|
1765 | if not self.v:
|
---|
1766 | raise AttributeError, 'Line has zero-length vector'
|
---|
1767 |
|
---|
1768 | def __copy__(self):
|
---|
1769 | return self.__class__(self.p, self.v)
|
---|
1770 |
|
---|
1771 | copy = __copy__
|
---|
1772 |
|
---|
1773 | def __repr__(self):
|
---|
1774 | return 'Line2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
|
---|
1775 | (self.p.x, self.p.y, self.v.x, self.v.y)
|
---|
1776 |
|
---|
1777 | p1 = property(lambda self: self.p)
|
---|
1778 | p2 = property(lambda self: Point2(self.p.x + self.v.x,
|
---|
1779 | self.p.y + self.v.y))
|
---|
1780 |
|
---|
1781 | def _apply_transform(self, t):
|
---|
1782 | self.p = t * self.p
|
---|
1783 | self.v = t * self.v
|
---|
1784 |
|
---|
1785 | def _u_in(self, u):
|
---|
1786 | return True
|
---|
1787 |
|
---|
1788 | def intersect(self, other):
|
---|
1789 | return other._intersect_line2(self)
|
---|
1790 |
|
---|
1791 | def _intersect_line2(self, other):
|
---|
1792 | return _intersect_line2_line2(self, other)
|
---|
1793 |
|
---|
1794 | def _intersect_circle(self, other):
|
---|
1795 | return _intersect_line2_circle(self, other)
|
---|
1796 |
|
---|
1797 | def connect(self, other):
|
---|
1798 | return other._connect_line2(self)
|
---|
1799 |
|
---|
1800 | def _connect_point2(self, other):
|
---|
1801 | return _connect_point2_line2(other, self)
|
---|
1802 |
|
---|
1803 | def _connect_line2(self, other):
|
---|
1804 | return _connect_line2_line2(other, self)
|
---|
1805 |
|
---|
1806 | def _connect_circle(self, other):
|
---|
1807 | return _connect_circle_line2(other, self)
|
---|
1808 |
|
---|
1809 | class Ray2(Line2):
|
---|
1810 | def __repr__(self):
|
---|
1811 | return 'Ray2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
|
---|
1812 | (self.p.x, self.p.y, self.v.x, self.v.y)
|
---|
1813 |
|
---|
1814 | def _u_in(self, u):
|
---|
1815 | return u >= 0.0
|
---|
1816 |
|
---|
1817 | class LineSegment2(Line2):
|
---|
1818 | def __repr__(self):
|
---|
1819 | return 'LineSegment2(<%.2f, %.2f> to <%.2f, %.2f>)' % \
|
---|
1820 | (self.p.x, self.p.y, self.p.x + self.v.x, self.p.y + self.v.y)
|
---|
1821 |
|
---|
1822 | def _u_in(self, u):
|
---|
1823 | return u >= 0.0 and u <= 1.0
|
---|
1824 |
|
---|
1825 | def __abs__(self):
|
---|
1826 | return abs(self.v)
|
---|
1827 |
|
---|
1828 | def magnitude_squared(self):
|
---|
1829 | return self.v.magnitude_squared()
|
---|
1830 |
|
---|
1831 | def _swap(self):
|
---|
1832 | # used by connect methods to switch order of points
|
---|
1833 | self.p = self.p2
|
---|
1834 | self.v *= -1
|
---|
1835 | return self
|
---|
1836 |
|
---|
1837 | length = property(lambda self: abs(self.v))
|
---|
1838 |
|
---|
1839 | class Circle(Geometry):
|
---|
1840 | __slots__ = ['c', 'r']
|
---|
1841 |
|
---|
1842 | def __init__(self, center, radius):
|
---|
1843 | assert isinstance(center, Vector2) and type(radius) == float
|
---|
1844 | self.c = center.copy()
|
---|
1845 | self.r = radius
|
---|
1846 |
|
---|
1847 | def __copy__(self):
|
---|
1848 | return self.__class__(self.c, self.r)
|
---|
1849 |
|
---|
1850 | copy = __copy__
|
---|
1851 |
|
---|
1852 | def __repr__(self):
|
---|
1853 | return 'Circle(<%.2f, %.2f>, radius=%.2f)' % \
|
---|
1854 | (self.c.x, self.c.y, self.r)
|
---|
1855 |
|
---|
1856 | def _apply_transform(self, t):
|
---|
1857 | self.c = t * self.c
|
---|
1858 |
|
---|
1859 | def intersect(self, other):
|
---|
1860 | return other._intersect_circle(self)
|
---|
1861 |
|
---|
1862 | def _intersect_point2(self, other):
|
---|
1863 | return _intersect_point2_circle(other, self)
|
---|
1864 |
|
---|
1865 | def _intersect_line2(self, other):
|
---|
1866 | return _intersect_line2_circle(other, self)
|
---|
1867 |
|
---|
1868 | def connect(self, other):
|
---|
1869 | return other._connect_circle(self)
|
---|
1870 |
|
---|
1871 | def _connect_point2(self, other):
|
---|
1872 | return _connect_point2_circle(other, self)
|
---|
1873 |
|
---|
1874 | def _connect_line2(self, other):
|
---|
1875 | c = _connect_circle_line2(self, other)
|
---|
1876 | if c:
|
---|
1877 | return c._swap()
|
---|
1878 |
|
---|
1879 | def _connect_circle(self, other):
|
---|
1880 | return _connect_circle_circle(other, self)
|
---|
1881 |
|
---|
1882 | # 3D Geometry
|
---|
1883 | # -------------------------------------------------------------------------
|
---|
1884 |
|
---|
1885 | def _connect_point3_line3(P, L):
|
---|
1886 | d = L.v.magnitude_squared()
|
---|
1887 | assert d != 0
|
---|
1888 | u = ((P.x - L.p.x) * L.v.x + \
|
---|
1889 | (P.y - L.p.y) * L.v.y + \
|
---|
1890 | (P.z - L.p.z) * L.v.z) / d
|
---|
1891 | if not L._u_in(u):
|
---|
1892 | u = max(min(u, 1.0), 0.0)
|
---|
1893 | return LineSegment3(P, Point3(L.p.x + u * L.v.x,
|
---|
1894 | L.p.y + u * L.v.y,
|
---|
1895 | L.p.z + u * L.v.z))
|
---|
1896 |
|
---|
1897 | def _connect_point3_sphere(P, S):
|
---|
1898 | v = P - S.c
|
---|
1899 | v.normalize()
|
---|
1900 | v *= S.r
|
---|
1901 | return LineSegment3(P, Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z))
|
---|
1902 |
|
---|
1903 | def _connect_point3_plane(p, plane):
|
---|
1904 | n = plane.n.normalized()
|
---|
1905 | d = p.dot(plane.n) - plane.k
|
---|
1906 | return LineSegment3(p, Point3(p.x - n.x * d, p.y - n.y * d, p.z - n.z * d))
|
---|
1907 |
|
---|
1908 | def _connect_line3_line3(A, B):
|
---|
1909 | assert A.v and B.v
|
---|
1910 | p13 = A.p - B.p
|
---|
1911 | d1343 = p13.dot(B.v)
|
---|
1912 | d4321 = B.v.dot(A.v)
|
---|
1913 | d1321 = p13.dot(A.v)
|
---|
1914 | d4343 = B.v.magnitude_squared()
|
---|
1915 | denom = A.v.magnitude_squared() * d4343 - d4321 ** 2
|
---|
1916 | if denom == 0:
|
---|
1917 | # Parallel, connect an endpoint with a line
|
---|
1918 | if isinstance(B, Ray3) or isinstance(B, LineSegment3):
|
---|
1919 | return _connect_point3_line3(B.p, A)._swap()
|
---|
1920 | # No endpoint (or endpoint is on A), possibly choose arbitrary
|
---|
1921 | # point on line.
|
---|
1922 | return _connect_point3_line3(A.p, B)
|
---|
1923 |
|
---|
1924 | ua = (d1343 * d4321 - d1321 * d4343) / denom
|
---|
1925 | if not A._u_in(ua):
|
---|
1926 | ua = max(min(ua, 1.0), 0.0)
|
---|
1927 | ub = (d1343 + d4321 * ua) / d4343
|
---|
1928 | if not B._u_in(ub):
|
---|
1929 | ub = max(min(ub, 1.0), 0.0)
|
---|
1930 | return LineSegment3(Point3(A.p.x + ua * A.v.x,
|
---|
1931 | A.p.y + ua * A.v.y,
|
---|
1932 | A.p.z + ua * A.v.z),
|
---|
1933 | Point3(B.p.x + ub * B.v.x,
|
---|
1934 | B.p.y + ub * B.v.y,
|
---|
1935 | B.p.z + ub * B.v.z))
|
---|
1936 |
|
---|
1937 | def _connect_line3_plane(L, P):
|
---|
1938 | d = P.n.dot(L.v)
|
---|
1939 | if not d:
|
---|
1940 | # Parallel, choose an endpoint
|
---|
1941 | return _connect_point3_plane(L.p, P)
|
---|
1942 | u = (P.k - P.n.dot(L.p)) / d
|
---|
1943 | if not L._u_in(u):
|
---|
1944 | # intersects out of range, choose nearest endpoint
|
---|
1945 | u = max(min(u, 1.0), 0.0)
|
---|
1946 | return _connect_point3_plane(Point3(L.p.x + u * L.v.x,
|
---|
1947 | L.p.y + u * L.v.y,
|
---|
1948 | L.p.z + u * L.v.z), P)
|
---|
1949 | # Intersection
|
---|
1950 | return None
|
---|
1951 |
|
---|
1952 | def _connect_sphere_line3(S, L):
|
---|
1953 | d = L.v.magnitude_squared()
|
---|
1954 | assert d != 0
|
---|
1955 | u = ((S.c.x - L.p.x) * L.v.x + \
|
---|
1956 | (S.c.y - L.p.y) * L.v.y + \
|
---|
1957 | (S.c.z - L.p.z) * L.v.z) / d
|
---|
1958 | if not L._u_in(u):
|
---|
1959 | u = max(min(u, 1.0), 0.0)
|
---|
1960 | point = Point3(L.p.x + u * L.v.x, L.p.y + u * L.v.y, L.p.z + u * L.v.z)
|
---|
1961 | v = (point - S.c)
|
---|
1962 | v.normalize()
|
---|
1963 | v *= S.r
|
---|
1964 | return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
|
---|
1965 | point)
|
---|
1966 |
|
---|
1967 | def _connect_sphere_sphere(A, B):
|
---|
1968 | v = B.c - A.c
|
---|
1969 | d = v.magnitude()
|
---|
1970 | if A.r >= B.r and d < A.r:
|
---|
1971 | #centre B inside A
|
---|
1972 | s1,s2 = +1, +1
|
---|
1973 | elif B.r > A.r and d < B.r:
|
---|
1974 | #centre A inside B
|
---|
1975 | s1,s2 = -1, -1
|
---|
1976 | elif d >= A.r and d >= B.r:
|
---|
1977 | s1,s2 = +1, -1
|
---|
1978 |
|
---|
1979 | v.normalize()
|
---|
1980 | return LineSegment3(Point3(A.c.x + s1* v.x * A.r,
|
---|
1981 | A.c.y + s1* v.y * A.r,
|
---|
1982 | A.c.z + s1* v.z * A.r),
|
---|
1983 | Point3(B.c.x + s2* v.x * B.r,
|
---|
1984 | B.c.y + s2* v.y * B.r,
|
---|
1985 | B.c.z + s2* v.z * B.r))
|
---|
1986 |
|
---|
1987 | def _connect_sphere_plane(S, P):
|
---|
1988 | c = _connect_point3_plane(S.c, P)
|
---|
1989 | if not c:
|
---|
1990 | return None
|
---|
1991 | p2 = c.p2
|
---|
1992 | v = p2 - S.c
|
---|
1993 | v.normalize()
|
---|
1994 | v *= S.r
|
---|
1995 | return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
|
---|
1996 | p2)
|
---|
1997 |
|
---|
1998 | def _connect_plane_plane(A, B):
|
---|
1999 | if A.n.cross(B.n):
|
---|
2000 | # Planes intersect
|
---|
2001 | return None
|
---|
2002 | else:
|
---|
2003 | # Planes are parallel, connect to arbitrary point
|
---|
2004 | return _connect_point3_plane(A._get_point(), B)
|
---|
2005 |
|
---|
2006 | def _intersect_point3_sphere(P, S):
|
---|
2007 | return abs(P - S.c) <= S.r
|
---|
2008 |
|
---|
2009 | def _intersect_line3_sphere(L, S):
|
---|
2010 | a = L.v.magnitude_squared()
|
---|
2011 | b = 2 * (L.v.x * (L.p.x - S.c.x) + \
|
---|
2012 | L.v.y * (L.p.y - S.c.y) + \
|
---|
2013 | L.v.z * (L.p.z - S.c.z))
|
---|
2014 | c = S.c.magnitude_squared() + \
|
---|
2015 | L.p.magnitude_squared() - \
|
---|
2016 | 2 * S.c.dot(L.p) - \
|
---|
2017 | S.r ** 2
|
---|
2018 | det = b ** 2 - 4 * a * c
|
---|
2019 | if det < 0:
|
---|
2020 | return None
|
---|
2021 | sq = math.sqrt(det)
|
---|
2022 | u1 = (-b + sq) / (2 * a)
|
---|
2023 | u2 = (-b - sq) / (2 * a)
|
---|
2024 | if not L._u_in(u1):
|
---|
2025 | u1 = max(min(u1, 1.0), 0.0)
|
---|
2026 | if not L._u_in(u2):
|
---|
2027 | u2 = max(min(u2, 1.0), 0.0)
|
---|
2028 | return LineSegment3(Point3(L.p.x + u1 * L.v.x,
|
---|
2029 | L.p.y + u1 * L.v.y,
|
---|
2030 | L.p.z + u1 * L.v.z),
|
---|
2031 | Point3(L.p.x + u2 * L.v.x,
|
---|
2032 | L.p.y + u2 * L.v.y,
|
---|
2033 | L.p.z + u2 * L.v.z))
|
---|
2034 |
|
---|
2035 | def _intersect_line3_plane(L, P):
|
---|
2036 | d = P.n.dot(L.v)
|
---|
2037 | if not d:
|
---|
2038 | # Parallel
|
---|
2039 | return None
|
---|
2040 | u = (P.k - P.n.dot(L.p)) / d
|
---|
2041 | if not L._u_in(u):
|
---|
2042 | return None
|
---|
2043 | return Point3(L.p.x + u * L.v.x,
|
---|
2044 | L.p.y + u * L.v.y,
|
---|
2045 | L.p.z + u * L.v.z)
|
---|
2046 |
|
---|
2047 | def _intersect_plane_plane(A, B):
|
---|
2048 | n1_m = A.n.magnitude_squared()
|
---|
2049 | n2_m = B.n.magnitude_squared()
|
---|
2050 | n1d2 = A.n.dot(B.n)
|
---|
2051 | det = n1_m * n2_m - n1d2 ** 2
|
---|
2052 | if det == 0:
|
---|
2053 | # Parallel
|
---|
2054 | return None
|
---|
2055 | c1 = (A.k * n2_m - B.k * n1d2) / det
|
---|
2056 | c2 = (B.k * n1_m - A.k * n1d2) / det
|
---|
2057 | return Line3(Point3(c1 * A.n.x + c2 * B.n.x,
|
---|
2058 | c1 * A.n.y + c2 * B.n.y,
|
---|
2059 | c1 * A.n.z + c2 * B.n.z),
|
---|
2060 | A.n.cross(B.n))
|
---|
2061 |
|
---|
2062 | class Point3(Vector3, Geometry):
|
---|
2063 | def __repr__(self):
|
---|
2064 | return 'Point3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)
|
---|
2065 |
|
---|
2066 | def intersect(self, other):
|
---|
2067 | return other._intersect_point3(self)
|
---|
2068 |
|
---|
2069 | def _intersect_sphere(self, other):
|
---|
2070 | return _intersect_point3_sphere(self, other)
|
---|
2071 |
|
---|
2072 | def connect(self, other):
|
---|
2073 | return other._connect_point3(self)
|
---|
2074 |
|
---|
2075 | def _connect_point3(self, other):
|
---|
2076 | if self != other:
|
---|
2077 | return LineSegment3(other, self)
|
---|
2078 | return None
|
---|
2079 |
|
---|
2080 | def _connect_line3(self, other):
|
---|
2081 | c = _connect_point3_line3(self, other)
|
---|
2082 | if c:
|
---|
2083 | return c._swap()
|
---|
2084 |
|
---|
2085 | def _connect_sphere(self, other):
|
---|
2086 | c = _connect_point3_sphere(self, other)
|
---|
2087 | if c:
|
---|
2088 | return c._swap()
|
---|
2089 |
|
---|
2090 | def _connect_plane(self, other):
|
---|
2091 | c = _connect_point3_plane(self, other)
|
---|
2092 | if c:
|
---|
2093 | return c._swap()
|
---|
2094 |
|
---|
2095 | class Line3:
|
---|
2096 | __slots__ = ['p', 'v']
|
---|
2097 |
|
---|
2098 | def __init__(self, *args):
|
---|
2099 | if len(args) == 3:
|
---|
2100 | assert isinstance(args[0], Point3) and \
|
---|
2101 | isinstance(args[1], Vector3) and \
|
---|
2102 | type(args[2]) == float
|
---|
2103 | self.p = args[0].copy()
|
---|
2104 | self.v = args[1] * args[2] / abs(args[1])
|
---|
2105 | elif len(args) == 2:
|
---|
2106 | if isinstance(args[0], Point3) and isinstance(args[1], Point3):
|
---|
2107 | self.p = args[0].copy()
|
---|
2108 | self.v = args[1] - args[0]
|
---|
2109 | elif isinstance(args[0], Point3) and isinstance(args[1], Vector3):
|
---|
2110 | self.p = args[0].copy()
|
---|
2111 | self.v = args[1].copy()
|
---|
2112 | else:
|
---|
2113 | raise AttributeError, '%r' % (args,)
|
---|
2114 | elif len(args) == 1:
|
---|
2115 | if isinstance(args[0], Line3):
|
---|
2116 | self.p = args[0].p.copy()
|
---|
2117 | self.v = args[0].v.copy()
|
---|
2118 | else:
|
---|
2119 | raise AttributeError, '%r' % (args,)
|
---|
2120 | else:
|
---|
2121 | raise AttributeError, '%r' % (args,)
|
---|
2122 |
|
---|
2123 | # XXX This is annoying.
|
---|
2124 | #if not self.v:
|
---|
2125 | # raise AttributeError, 'Line has zero-length vector'
|
---|
2126 |
|
---|
2127 | def __copy__(self):
|
---|
2128 | return self.__class__(self.p, self.v)
|
---|
2129 |
|
---|
2130 | copy = __copy__
|
---|
2131 |
|
---|
2132 | def __repr__(self):
|
---|
2133 | return 'Line3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
|
---|
2134 | (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
|
---|
2135 |
|
---|
2136 | p1 = property(lambda self: self.p)
|
---|
2137 | p2 = property(lambda self: Point3(self.p.x + self.v.x,
|
---|
2138 | self.p.y + self.v.y,
|
---|
2139 | self.p.z + self.v.z))
|
---|
2140 |
|
---|
2141 | def _apply_transform(self, t):
|
---|
2142 | self.p = t * self.p
|
---|
2143 | self.v = t * self.v
|
---|
2144 |
|
---|
2145 | def _u_in(self, u):
|
---|
2146 | return True
|
---|
2147 |
|
---|
2148 | def intersect(self, other):
|
---|
2149 | return other._intersect_line3(self)
|
---|
2150 |
|
---|
2151 | def _intersect_sphere(self, other):
|
---|
2152 | return _intersect_line3_sphere(self, other)
|
---|
2153 |
|
---|
2154 | def _intersect_plane(self, other):
|
---|
2155 | return _intersect_line3_plane(self, other)
|
---|
2156 |
|
---|
2157 | def connect(self, other):
|
---|
2158 | return other._connect_line3(self)
|
---|
2159 |
|
---|
2160 | def _connect_point3(self, other):
|
---|
2161 | return _connect_point3_line3(other, self)
|
---|
2162 |
|
---|
2163 | def _connect_line3(self, other):
|
---|
2164 | return _connect_line3_line3(other, self)
|
---|
2165 |
|
---|
2166 | def _connect_sphere(self, other):
|
---|
2167 | return _connect_sphere_line3(other, self)
|
---|
2168 |
|
---|
2169 | def _connect_plane(self, other):
|
---|
2170 | c = _connect_line3_plane(self, other)
|
---|
2171 | if c:
|
---|
2172 | return c
|
---|
2173 |
|
---|
2174 | class Ray3(Line3):
|
---|
2175 | def __repr__(self):
|
---|
2176 | return 'Ray3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
|
---|
2177 | (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
|
---|
2178 |
|
---|
2179 | def _u_in(self, u):
|
---|
2180 | return u >= 0.0
|
---|
2181 |
|
---|
2182 | class LineSegment3(Line3):
|
---|
2183 | def __repr__(self):
|
---|
2184 | return 'LineSegment3(<%.2f, %.2f, %.2f> to <%.2f, %.2f, %.2f>)' % \
|
---|
2185 | (self.p.x, self.p.y, self.p.z,
|
---|
2186 | self.p.x + self.v.x, self.p.y + self.v.y, self.p.z + self.v.z)
|
---|
2187 |
|
---|
2188 | def _u_in(self, u):
|
---|
2189 | return u >= 0.0 and u <= 1.0
|
---|
2190 |
|
---|
2191 | def __abs__(self):
|
---|
2192 | return abs(self.v)
|
---|
2193 |
|
---|
2194 | def magnitude_squared(self):
|
---|
2195 | return self.v.magnitude_squared()
|
---|
2196 |
|
---|
2197 | def _swap(self):
|
---|
2198 | # used by connect methods to switch order of points
|
---|
2199 | self.p = self.p2
|
---|
2200 | self.v *= -1
|
---|
2201 | return self
|
---|
2202 |
|
---|
2203 | length = property(lambda self: abs(self.v))
|
---|
2204 |
|
---|
2205 | class Sphere:
|
---|
2206 | __slots__ = ['c', 'r']
|
---|
2207 |
|
---|
2208 | def __init__(self, center, radius):
|
---|
2209 | assert isinstance(center, Vector3) and type(radius) == float
|
---|
2210 | self.c = center.copy()
|
---|
2211 | self.r = radius
|
---|
2212 |
|
---|
2213 | def __copy__(self):
|
---|
2214 | return self.__class__(self.c, self.r)
|
---|
2215 |
|
---|
2216 | copy = __copy__
|
---|
2217 |
|
---|
2218 | def __repr__(self):
|
---|
2219 | return 'Sphere(<%.2f, %.2f, %.2f>, radius=%.2f)' % \
|
---|
2220 | (self.c.x, self.c.y, self.c.z, self.r)
|
---|
2221 |
|
---|
2222 | def _apply_transform(self, t):
|
---|
2223 | self.c = t * self.c
|
---|
2224 |
|
---|
2225 | def intersect(self, other):
|
---|
2226 | return other._intersect_sphere(self)
|
---|
2227 |
|
---|
2228 | def _intersect_point3(self, other):
|
---|
2229 | return _intersect_point3_sphere(other, self)
|
---|
2230 |
|
---|
2231 | def _intersect_line3(self, other):
|
---|
2232 | return _intersect_line3_sphere(other, self)
|
---|
2233 |
|
---|
2234 | def connect(self, other):
|
---|
2235 | return other._connect_sphere(self)
|
---|
2236 |
|
---|
2237 | def _connect_point3(self, other):
|
---|
2238 | return _connect_point3_sphere(other, self)
|
---|
2239 |
|
---|
2240 | def _connect_line3(self, other):
|
---|
2241 | c = _connect_sphere_line3(self, other)
|
---|
2242 | if c:
|
---|
2243 | return c._swap()
|
---|
2244 |
|
---|
2245 | def _connect_sphere(self, other):
|
---|
2246 | return _connect_sphere_sphere(other, self)
|
---|
2247 |
|
---|
2248 | def _connect_plane(self, other):
|
---|
2249 | c = _connect_sphere_plane(self, other)
|
---|
2250 | if c:
|
---|
2251 | return c
|
---|
2252 |
|
---|
2253 | class Plane:
|
---|
2254 | # n.p = k, where n is normal, p is point on plane, k is constant scalar
|
---|
2255 | __slots__ = ['n', 'k']
|
---|
2256 |
|
---|
2257 | def __init__(self, *args):
|
---|
2258 | if len(args) == 3:
|
---|
2259 | assert isinstance(args[0], Point3) and \
|
---|
2260 | isinstance(args[1], Point3) and \
|
---|
2261 | isinstance(args[2], Point3)
|
---|
2262 | self.n = (args[1] - args[0]).cross(args[2] - args[0])
|
---|
2263 | self.n.normalize()
|
---|
2264 | self.k = self.n.dot(args[0])
|
---|
2265 | elif len(args) == 2:
|
---|
2266 | if isinstance(args[0], Point3) and isinstance(args[1], Vector3):
|
---|
2267 | self.n = args[1].normalized()
|
---|
2268 | self.k = self.n.dot(args[0])
|
---|
2269 | elif isinstance(args[0], Vector3) and type(args[1]) == float:
|
---|
2270 | self.n = args[0].normalized()
|
---|
2271 | self.k = args[1]
|
---|
2272 | else:
|
---|
2273 | raise AttributeError, '%r' % (args,)
|
---|
2274 |
|
---|
2275 | else:
|
---|
2276 | raise AttributeError, '%r' % (args,)
|
---|
2277 |
|
---|
2278 | if not self.n:
|
---|
2279 | raise AttributeError, 'Points on plane are colinear'
|
---|
2280 |
|
---|
2281 | def __copy__(self):
|
---|
2282 | return self.__class__(self.n, self.k)
|
---|
2283 |
|
---|
2284 | copy = __copy__
|
---|
2285 |
|
---|
2286 | def __repr__(self):
|
---|
2287 | return 'Plane(<%.2f, %.2f, %.2f>.p = %.2f)' % \
|
---|
2288 | (self.n.x, self.n.y, self.n.z, self.k)
|
---|
2289 |
|
---|
2290 | def _get_point(self):
|
---|
2291 | # Return an arbitrary point on the plane
|
---|
2292 | if self.n.z:
|
---|
2293 | return Point3(0., 0., self.k / self.n.z)
|
---|
2294 | elif self.n.y:
|
---|
2295 | return Point3(0., self.k / self.n.y, 0.)
|
---|
2296 | else:
|
---|
2297 | return Point3(self.k / self.n.x, 0., 0.)
|
---|
2298 |
|
---|
2299 | def _apply_transform(self, t):
|
---|
2300 | p = t * self._get_point()
|
---|
2301 | self.n = t * self.n
|
---|
2302 | self.k = self.n.dot(p)
|
---|
2303 |
|
---|
2304 | def intersect(self, other):
|
---|
2305 | return other._intersect_plane(self)
|
---|
2306 |
|
---|
2307 | def _intersect_line3(self, other):
|
---|
2308 | return _intersect_line3_plane(other, self)
|
---|
2309 |
|
---|
2310 | def _intersect_plane(self, other):
|
---|
2311 | return _intersect_plane_plane(self, other)
|
---|
2312 |
|
---|
2313 | def connect(self, other):
|
---|
2314 | return other._connect_plane(self)
|
---|
2315 |
|
---|
2316 | def _connect_point3(self, other):
|
---|
2317 | return _connect_point3_plane(other, self)
|
---|
2318 |
|
---|
2319 | def _connect_line3(self, other):
|
---|
2320 | return _connect_line3_plane(other, self)
|
---|
2321 |
|
---|
2322 | def _connect_sphere(self, other):
|
---|
2323 | return _connect_sphere_plane(other, self)
|
---|
2324 |
|
---|
2325 | def _connect_plane(self, other):
|
---|
2326 | return _connect_plane_plane(other, self)
|
---|
2327 |
|
---|