1 | #!/usr/bin/python -tt
|
---|
2 | #
|
---|
3 | # Dominik Neise, Werner Lustermann
|
---|
4 | # TU Dortmund, ETH Zurich
|
---|
5 | #
|
---|
6 | import numpy as np
|
---|
7 | import matplotlib.pyplot as plt
|
---|
8 | from generator import *
|
---|
9 | from fir_filter import *
|
---|
10 |
|
---|
11 | class GlobalMaxFinder(object):
|
---|
12 | """ Pulse Extractor
|
---|
13 | Finds the global maximum in the given window.
|
---|
14 | (Best used with filtered data)
|
---|
15 | """
|
---|
16 |
|
---|
17 | def __init__(self, min=30, max=250 , name = 'GlobalMaxFinder'):
|
---|
18 | """ initialize search Window
|
---|
19 |
|
---|
20 | """
|
---|
21 | self.min = min
|
---|
22 | self.max = max
|
---|
23 | self.name = name
|
---|
24 |
|
---|
25 | def __call__(self, data):
|
---|
26 | if data.ndim > 1:
|
---|
27 | time = np.argmax( data[ : , self.min:self.max ], 1)
|
---|
28 | amplitude = np.max( data[ : , self.min:self.max], 1)
|
---|
29 | else:
|
---|
30 | time = np.argmax( data[self.min:self.max])
|
---|
31 | amplitude = np.max( data[self.min:self.max])
|
---|
32 | return amplitude, time+self.min
|
---|
33 |
|
---|
34 | def __str__(self):
|
---|
35 | s = self.name + '\n'
|
---|
36 | s += 'window:\n'
|
---|
37 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
---|
38 | return s
|
---|
39 |
|
---|
40 | def test(self):
|
---|
41 | pass
|
---|
42 |
|
---|
43 |
|
---|
44 | class WindowIntegrator(object):
|
---|
45 | """ Integrates in a given intergration window around the given position
|
---|
46 | """
|
---|
47 |
|
---|
48 | def __init__(self, min=13, max=23 , name = 'WindowIntegrator'):
|
---|
49 | """ initialize integration Window
|
---|
50 | """
|
---|
51 | self.min = min
|
---|
52 | self.max = max
|
---|
53 | self.name = name
|
---|
54 |
|
---|
55 | def __call__(self, data, pos):
|
---|
56 | integral = np.empty( data.shape[0] )
|
---|
57 | for pixel in range( data.shape[0] ):
|
---|
58 | integral[pixel] = data[pixel, (pos[pixel]-self.min):(pos[pixel]+self.max)].sum()
|
---|
59 | return integral
|
---|
60 |
|
---|
61 | def __str__(self):
|
---|
62 | s = self.name + '\n'
|
---|
63 | s += 'window:\n'
|
---|
64 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
---|
65 | return s
|
---|
66 |
|
---|
67 | class FixedWindowIntegrator(object):
|
---|
68 | """ Integrates in a given intergration window
|
---|
69 | """
|
---|
70 |
|
---|
71 | def __init__(self, min=55, max=105 , name = 'FixedWindowIntegrator'):
|
---|
72 | """ initialize integration Window
|
---|
73 | """
|
---|
74 | self.min = min
|
---|
75 | self.max = max
|
---|
76 | self.name = name
|
---|
77 |
|
---|
78 | def __call__(self, data):
|
---|
79 | integral = np.empty( data.shape[0] )
|
---|
80 | for pixel in range( data.shape[0] ):
|
---|
81 | integral[pixel] = data[pixel, self.min:self.max].sum()
|
---|
82 | return integral
|
---|
83 |
|
---|
84 | def __str__(self):
|
---|
85 | s = self.name + '\n'
|
---|
86 | s += 'window:\n'
|
---|
87 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
---|
88 | return s
|
---|
89 |
|
---|
90 | class ZeroXing(object):
|
---|
91 | """ Finds zero crossings in given data
|
---|
92 | (should be used on CFD output for peak finding)
|
---|
93 | returns list of lists of time_of_zero_crossing
|
---|
94 | """
|
---|
95 | def __init__(self, slope=1, name = 'ZeroXing'):
|
---|
96 | if (slope >= 0):
|
---|
97 | self.slope = 1 # search for rising edge crossing
|
---|
98 | elif (slope < 0):
|
---|
99 | self.slope = -1 # search for falling edge crossing
|
---|
100 | self.name = name
|
---|
101 |
|
---|
102 |
|
---|
103 | def __call__(self, data):
|
---|
104 | all_hits = []
|
---|
105 | for pix_data in data:
|
---|
106 | hits = []
|
---|
107 | for i in range( data.shape[1]-1 ):
|
---|
108 | if ( self.slope > 0 ):
|
---|
109 | if ( pix_data[i] > 0 ):
|
---|
110 | continue
|
---|
111 | else:
|
---|
112 | if ( pix_data[i] < 0):
|
---|
113 | continue
|
---|
114 | if ( pix_data[i] * pix_data[i+1] <= 0 ):
|
---|
115 | # interpolate time of zero crossing with
|
---|
116 | # linear polynomial: y = ax + b
|
---|
117 | a = (pix_data[i+1] - pix_data[i]) / ((i+1) - i)
|
---|
118 | time = -1.0/a * pix_data[i] + i
|
---|
119 | hits.append(time)
|
---|
120 | all_hits.append(hits)
|
---|
121 | return all_hits
|
---|
122 |
|
---|
123 | def __str__(self):
|
---|
124 | s = self.name + '\n'
|
---|
125 | if (self.slope == 1):
|
---|
126 | s += 'search for rising edge crossing.\n'
|
---|
127 | else:
|
---|
128 | s += 'search for falling edge crossing.\n'
|
---|
129 | return s
|
---|
130 |
|
---|
131 |
|
---|
132 |
|
---|
133 | def _test_GlobalMaxFinder():
|
---|
134 | gmf = GlobalMaxFinder(30,250)
|
---|
135 | print gmf
|
---|
136 | amplitude, time = gmf(event)
|
---|
137 | if abs(amplitude.mean() - 10) < 0.5:
|
---|
138 | print "Test 1: OK GlobalMaxFinder found amplitude correctly", amplitude.mean()
|
---|
139 | if abs(time.mean() - 65) < 2:
|
---|
140 | print "Test 1: OK GlobalMaxFinder found time correctly", time.mean()
|
---|
141 | else:
|
---|
142 | print "BAD: time mean:", time.mean()
|
---|
143 |
|
---|
144 | def _test_FixedWindowIntegrator():
|
---|
145 | fwi = FixedWindowIntegrator(50,200)
|
---|
146 | print fwi
|
---|
147 | integral = fwi(event)
|
---|
148 | #value of integral should be: 150*bsl + 8*10/2 + 100*10/2 = 465
|
---|
149 | if abs( integral.mean() - 465) < 2:
|
---|
150 | print "Test 2: OK FixedWindowIntegrator found integral correctly", integral.mean()
|
---|
151 | else:
|
---|
152 | print "Test 2: X FixedWindowIntegrator integral.mean failed:", integral.mean()
|
---|
153 |
|
---|
154 | def _test_ZeroXing():
|
---|
155 | cfd = CFD()
|
---|
156 | sa = SlidingAverage(8)
|
---|
157 | print sa
|
---|
158 | cfd_out = sa(event)
|
---|
159 | cfd_out = cfd(cfd_out )
|
---|
160 | cfd_out = sa(cfd_out)
|
---|
161 | zx = ZeroXing()
|
---|
162 | print zx
|
---|
163 | list_of_list_of_times = zx(cfd_out)
|
---|
164 | times = []
|
---|
165 | for list_of_times in list_of_list_of_times:
|
---|
166 | times.extend(list_of_times)
|
---|
167 | times = np.array(times)
|
---|
168 |
|
---|
169 | hist,bins = np.histogram(times,3000,(0,300))
|
---|
170 | most_probable_time = np.argmax(hist)
|
---|
171 | print 'most probable time of zero-crossing', most_probable_time/10.
|
---|
172 | print 'this includes filter delays ... for average filter setting 8 this turns out to be 78.8 most of the time'
|
---|
173 |
|
---|
174 | if __name__ == '__main__':
|
---|
175 | """ test the extractors """
|
---|
176 |
|
---|
177 | # Generate a fake event, with a triangular pulse at slice 65
|
---|
178 | sg = SignalGenerator()
|
---|
179 | pulse_str = 'len 300 bsl -0.5 noise 0.5 triangle 65 10 8 100'
|
---|
180 | pulse = sg(pulse_str)
|
---|
181 | event = []
|
---|
182 | for i in range(1440):
|
---|
183 | event.append(sg(pulse_str))
|
---|
184 | event = np.array(event)
|
---|
185 | print 'test event with 1000 pixel generated, like this:'
|
---|
186 | print pulse_str
|
---|
187 | print
|
---|
188 |
|
---|
189 | print '_test_GlobalMaxFinder()'
|
---|
190 | _test_GlobalMaxFinder()
|
---|
191 | print
|
---|
192 | print
|
---|
193 | print '_test_FixedWindowIntegrator()'
|
---|
194 | _test_FixedWindowIntegrator()
|
---|
195 | print
|
---|
196 | print
|
---|
197 | print '_test_ZeroXing()'
|
---|
198 | _test_ZeroXing()
|
---|
199 | print
|
---|