| 1 | #!/usr/bin/python -tt
|
|---|
| 2 | #
|
|---|
| 3 | # Dominik Neise, Werner Lustermann
|
|---|
| 4 | # TU Dortmund, ETH Zurich
|
|---|
| 5 | #
|
|---|
| 6 | import numpy as np
|
|---|
| 7 | from generator import *
|
|---|
| 8 | from fir_filter import *
|
|---|
| 9 |
|
|---|
| 10 | class GlobalMaxFinder(object):
|
|---|
| 11 | """ Pulse Extractor
|
|---|
| 12 | Finds the global maximum in the given window.
|
|---|
| 13 | (Best used with filtered data)
|
|---|
| 14 | """
|
|---|
| 15 |
|
|---|
| 16 | def __init__(self, min=30, max=250 , name = 'GlobalMaxFinder'):
|
|---|
| 17 | """ initialize search Window
|
|---|
| 18 |
|
|---|
| 19 | """
|
|---|
| 20 | self.__module__="extractor"
|
|---|
| 21 | self.min = min
|
|---|
| 22 | self.max = max
|
|---|
| 23 | self.name = name
|
|---|
| 24 |
|
|---|
| 25 | def __call__(self, data):
|
|---|
| 26 | if data.ndim > 1:
|
|---|
| 27 | time = np.argmax( data[ : , self.min:self.max ], 1)
|
|---|
| 28 | amplitude = np.max( data[ : , self.min:self.max], 1)
|
|---|
| 29 | else:
|
|---|
| 30 | time = np.argmax( data[self.min:self.max])
|
|---|
| 31 | amplitude = np.max( data[self.min:self.max])
|
|---|
| 32 | return amplitude, time+self.min
|
|---|
| 33 |
|
|---|
| 34 | def __str__(self):
|
|---|
| 35 | s = self.name + '\n'
|
|---|
| 36 | s += 'window:\n'
|
|---|
| 37 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
|---|
| 38 | return s
|
|---|
| 39 |
|
|---|
| 40 | def test(self):
|
|---|
| 41 | pass
|
|---|
| 42 |
|
|---|
| 43 |
|
|---|
| 44 | class WindowIntegrator(object):
|
|---|
| 45 | """ Integrates in a given intergration window around the given position
|
|---|
| 46 | """
|
|---|
| 47 |
|
|---|
| 48 | def __init__(self, min=13, max=23 , name = 'WindowIntegrator'):
|
|---|
| 49 | """ initialize integration Window
|
|---|
| 50 | """
|
|---|
| 51 | self.__module__="extractor"
|
|---|
| 52 | self.min = min
|
|---|
| 53 | self.max = max
|
|---|
| 54 | self.name = name
|
|---|
| 55 |
|
|---|
| 56 | def __call__(self, data, pos):
|
|---|
| 57 | integral = np.empty( data.shape[0] )
|
|---|
| 58 | for pixel in range( data.shape[0] ):
|
|---|
| 59 | integral[pixel] = data[pixel, (pos[pixel]-self.min):(pos[pixel]+self.max)].sum()
|
|---|
| 60 | return integral
|
|---|
| 61 |
|
|---|
| 62 | def __str__(self):
|
|---|
| 63 | s = self.name + '\n'
|
|---|
| 64 | s += 'window:\n'
|
|---|
| 65 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
|---|
| 66 | return s
|
|---|
| 67 |
|
|---|
| 68 | class FixedWindowIntegrator(object):
|
|---|
| 69 | """ Integrates in a given intergration window
|
|---|
| 70 | """
|
|---|
| 71 |
|
|---|
| 72 | def __init__(self, min=55, max=105 , name = 'FixedWindowIntegrator'):
|
|---|
| 73 | """ initialize integration Window
|
|---|
| 74 | """
|
|---|
| 75 | self.__module__="extractor"
|
|---|
| 76 | self.min = min
|
|---|
| 77 | self.max = max
|
|---|
| 78 | self.name = name
|
|---|
| 79 |
|
|---|
| 80 | def __call__(self, data):
|
|---|
| 81 | integral = np.empty( data.shape[0] )
|
|---|
| 82 | for pixel in range( data.shape[0] ):
|
|---|
| 83 | integral[pixel] = data[pixel, self.min:self.max].sum()
|
|---|
| 84 | return integral
|
|---|
| 85 |
|
|---|
| 86 | def __str__(self):
|
|---|
| 87 | s = self.name + '\n'
|
|---|
| 88 | s += 'window:\n'
|
|---|
| 89 | s += '(min,max) = (' + str(self.min) + ',' + str(self.max) + ')'
|
|---|
| 90 | return s
|
|---|
| 91 |
|
|---|
| 92 | class ZeroXing(object):
|
|---|
| 93 | """ Finds zero crossings in given data
|
|---|
| 94 | (should be used on CFD output for peak finding)
|
|---|
| 95 | returns list of lists of time_of_zero_crossing
|
|---|
| 96 | """
|
|---|
| 97 | def __init__(self, slope=1, name = 'ZeroXing'):
|
|---|
| 98 | self.__module__="extractor"
|
|---|
| 99 | if (slope >= 0):
|
|---|
| 100 | self.slope = 1 # search for rising edge crossing
|
|---|
| 101 | elif (slope < 0):
|
|---|
| 102 | self.slope = -1 # search for falling edge crossing
|
|---|
| 103 | self.name = name
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | def __call__(self, data, zero_level = 0):
|
|---|
| 107 | all_hits = []
|
|---|
| 108 | for pix_data in data:
|
|---|
| 109 | hits = []
|
|---|
| 110 | for i in range( data.shape[1]-1 ):
|
|---|
| 111 | dat = pix_data[i] - zero_level
|
|---|
| 112 | next_dat = pix_data[i+1] - zero_level
|
|---|
| 113 | if ( self.slope > 0 ):
|
|---|
| 114 | if ( dat > 0 ):
|
|---|
| 115 | continue
|
|---|
| 116 | else:
|
|---|
| 117 | if ( dat < 0):
|
|---|
| 118 | continue
|
|---|
| 119 | if ( dat * next_dat <= 0 ):
|
|---|
| 120 | # interpolate time of zero crossing with
|
|---|
| 121 | # linear polynomial: y = ax + b
|
|---|
| 122 | a = (next_dat - dat) / ((i+1) - i)
|
|---|
| 123 | time = -1.0/a * dat + i
|
|---|
| 124 | hits.append(time)
|
|---|
| 125 | all_hits.append(hits)
|
|---|
| 126 | return all_hits
|
|---|
| 127 |
|
|---|
| 128 | def __str__(self):
|
|---|
| 129 | s = self.name + '\n'
|
|---|
| 130 | if (self.slope == 1):
|
|---|
| 131 | s += 'search for rising edge crossing.\n'
|
|---|
| 132 | else:
|
|---|
| 133 | s += 'search for falling edge crossing.\n'
|
|---|
| 134 | return s
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 |
|
|---|
| 138 | def _test_GlobalMaxFinder():
|
|---|
| 139 | gmf = GlobalMaxFinder(30,250)
|
|---|
| 140 | print gmf
|
|---|
| 141 | amplitude, time = gmf(event)
|
|---|
| 142 | if abs(amplitude.mean() - 10) < 0.5:
|
|---|
| 143 | print "Test 1: OK GlobalMaxFinder found amplitude correctly", amplitude.mean()
|
|---|
| 144 | if abs(time.mean() - 65) < 2:
|
|---|
| 145 | print "Test 1: OK GlobalMaxFinder found time correctly", time.mean()
|
|---|
| 146 | else:
|
|---|
| 147 | print "BAD: time mean:", time.mean()
|
|---|
| 148 |
|
|---|
| 149 | def _test_FixedWindowIntegrator():
|
|---|
| 150 | fwi = FixedWindowIntegrator(50,200)
|
|---|
| 151 | print fwi
|
|---|
| 152 | integral = fwi(event)
|
|---|
| 153 | #value of integral should be: 150*bsl + 8*10/2 + 100*10/2 = 465
|
|---|
| 154 | if abs( integral.mean() - 465) < 2:
|
|---|
| 155 | print "Test 2: OK FixedWindowIntegrator found integral correctly", integral.mean()
|
|---|
| 156 | else:
|
|---|
| 157 | print "Test 2: X FixedWindowIntegrator integral.mean failed:", integral.mean()
|
|---|
| 158 |
|
|---|
| 159 | def _test_ZeroXing():
|
|---|
| 160 | cfd = CFD()
|
|---|
| 161 | sa = SlidingAverage(8)
|
|---|
| 162 | print sa
|
|---|
| 163 | cfd_out = sa(event)
|
|---|
| 164 | cfd_out = cfd(cfd_out )
|
|---|
| 165 | cfd_out = sa(cfd_out)
|
|---|
| 166 | zx = ZeroXing()
|
|---|
| 167 | print zx
|
|---|
| 168 | list_of_list_of_times = zx(cfd_out)
|
|---|
| 169 | times = []
|
|---|
| 170 | for list_of_times in list_of_list_of_times:
|
|---|
| 171 | times.extend(list_of_times)
|
|---|
| 172 | times = np.array(times)
|
|---|
| 173 |
|
|---|
| 174 | hist,bins = np.histogram(times,3000,(0,300))
|
|---|
| 175 | most_probable_time = np.argmax(hist)
|
|---|
| 176 | print 'most probable time of zero-crossing', most_probable_time/10.
|
|---|
| 177 | print 'this includes filter delays ... for average filter setting 8 this turns out to be 78.8 most of the time'
|
|---|
| 178 |
|
|---|
| 179 | if __name__ == '__main__':
|
|---|
| 180 | import matplotlib.pyplot as plt
|
|---|
| 181 | """ test the extractors """
|
|---|
| 182 |
|
|---|
| 183 | # Generate a fake event, with a triangular pulse at slice 65
|
|---|
| 184 | sg = SignalGenerator()
|
|---|
| 185 | pulse_str = 'len 300 bsl -0.5 noise 0.5 triangle 65 10 8 100'
|
|---|
| 186 | pulse = sg(pulse_str)
|
|---|
| 187 | event = []
|
|---|
| 188 | for i in range(1440):
|
|---|
| 189 | event.append(sg(pulse_str))
|
|---|
| 190 | event = np.array(event)
|
|---|
| 191 | print 'test event with 1000 pixel generated, like this:'
|
|---|
| 192 | print pulse_str
|
|---|
| 193 | print
|
|---|
| 194 |
|
|---|
| 195 | print '_test_GlobalMaxFinder()'
|
|---|
| 196 | _test_GlobalMaxFinder()
|
|---|
| 197 | print
|
|---|
| 198 | print
|
|---|
| 199 | print '_test_FixedWindowIntegrator()'
|
|---|
| 200 | _test_FixedWindowIntegrator()
|
|---|
| 201 | print
|
|---|
| 202 | print
|
|---|
| 203 | print '_test_ZeroXing()'
|
|---|
| 204 | _test_ZeroXing()
|
|---|
| 205 | print
|
|---|