source: fact/tools/pyscripts/pyfact/factfits.py@ 13397

Last change on this file since 13397 was 13395, checked in by neise, 13 years ago
quick hack
  • Property svn:executable set to *
File size: 12.7 KB
Line 
1#!/usr/bin/python -itt
2import numpy as np
3import pprint
4import ctypes
5
6from ROOT import gSystem
7gSystem.Load('pyfits_h.so')
8from ROOT import *
9
10class FactFits( fits ):
11 """ -Fact Fits File-
12 A Python wrapper for the fits-class implemented in pyfits.h
13 provides easy access to the fits file meta data.
14 * dictionary of file metadata - self.meta
15 * dict of table metadata - self.columns
16 * variable table column access, thus possibly increased speed while looping
17 """
18 def __init__(self, path):
19 """ creates meta and columns dictionaries
20 """
21 self.path = path
22 try:
23 fits.__init__(self,path)
24 except IOError:
25 print 'problem accessing data file: ', data_file_name
26 raise # stop ! no data
27
28 self.meta = self._make_meta_dict()
29 self.columns = self._make_columns_dict()
30
31 self.treat_meta_dict()
32
33
34 # list of columns, which are already registered
35 # see method register()
36 self._registered_cols = []
37 # dict of column data, this is used, in order to be able to remove
38 # the ctypes of
39 self._table_cols = {}
40
41 # I need to count the rows, since the normal loop mechanism seems not to work.
42 self._current_row = 0
43
44 self.stacked_cols = {}
45
46 def _make_meta_dict(self):
47 # intermediate variables for file metadata dict generation
48 keys=self.GetPy_KeyKeys()
49 values=self.GetPy_KeyValues()
50 comments=self.GetPy_KeyComments()
51 types=self.GetPy_KeyTypes()
52
53 if len(keys) != len(values):
54 raise TypeError('len(keys)',len(keys),' != len(values)', len(values))
55 if len(keys) != len(types):
56 raise TypeError('len(keys)',len(keys),' != len(types)', len(types))
57 if len(keys) != len(comments):
58 raise TypeError('len(keys)',len(keys),' != len(comments)', len(comments))
59
60 meta_dict = {}
61 for i in range(len(keys)):
62 type = types[i]
63 if type == 'I':
64 value = int(values[i])
65 elif type == 'F':
66 value = float(values[i])
67 elif type == 'B':
68 if values[i] == 'T':
69 value = True
70 elif values[i] == 'F':
71 value = False
72 else:
73 raise TypeError("meta-type is 'B', but meta-value is neither 'T' nor 'F'. meta-value:",values[i])
74 elif type == 'T':
75 value = values[i]
76 else:
77 raise TypeError("unknown meta-type: known meta types are: I,F,B and T. meta-type:",type)
78 meta_dict[keys[i]]=(value, comments[i])
79 return meta_dict
80
81
82 def _make_columns_dict(self):
83 # intermediate variables for file table-metadata dict generation
84 keys=self.GetPy_ColumnKeys()
85 #offsets=self.GetPy_ColumnOffsets() #not needed on python level...
86 nums=self.GetPy_ColumnNums()
87 sizes=self.GetPy_ColumnSizes()
88 types=self.GetPy_ColumnTypes()
89 units=self.GetPy_ColumnUnits()
90
91 # zip the values
92 values = zip(nums,sizes,types,units)
93 # create the columns dictionary
94 columns = dict(zip(keys ,values))
95 return columns
96
97 def stack(self, on=True):
98 self.next()
99 for col in self._registered_cols:
100 if isinstance( self.dict[col], type(np.array('')) ):
101 self.stacked_cols[col] = self.dict[col]
102 else:
103# elif isinstance(self.dict[col], ctypes._SimpleCData):
104 self.stacked_cols[col] = np.array(self.dict[col])
105# else:
106# raise TypeError("I don't know how to stack "+col+". It is of type: "+str(type(self.dict[col])))
107
108 def register(self, input_str):
109 columns = self.columns
110 if input_str.lower() == 'all':
111 for col in columns:
112 self._register(col)
113 else:
114 #check if colname is in columns:
115 if input_str not in columns:
116 error_msg = 'colname:'+ input_str +' is not a column in the binary table.\n'
117 error_msg+= 'possible colnames are\n'
118 for key in columns:
119 error_msg += key+'\n'
120 raise KeyError(error_msg)
121 else:
122 self._register(input_str)
123
124 # 'private' method, do not use
125 def _register( self, colname):
126 columns = self.columns
127 local = None
128
129 number_of_elements = int(columns[colname][0])
130 size_of_elements_in_bytes = int(columns[colname][1])
131 ctypecode_of_elements = columns[colname][2]
132 physical_unit_of_elements = columns[colname][3]
133
134 # snippet from the C++ source code, or header file to be precise:
135 #case 'L': gLog << "bool(8)"; break;
136 #case 'B': gLog << "byte(8)"; break;
137 #case 'I': gLog << "short(16)"; break;
138 #case 'J': gLog << "int(32)"; break;
139 #case 'K': gLog << "int(64)"; break;
140 #case 'E': gLog << "float(32)"; break;
141 #case 'D': gLog << "double(64)"; break;
142
143
144
145 # the fields inside the columns can either contain single numbers,
146 # or whole arrays of numbers as well.
147 # we treat single elements differently...
148 if number_of_elements == 1:
149 # allocate some memory for a single number according to its type
150 if ctypecode_of_elements == 'J': # J is for a 4byte int, i.e. an unsigned long
151 local = ctypes.c_ulong()
152 un_c_type = long
153 elif ctypecode_of_elements == 'I': # I is for a 2byte int, i.e. an unsinged int
154 local = ctypes.c_ushort()
155 un_c_type = int
156 elif ctypecode_of_elements == 'B': # B is for a byte
157 local = ctypes.c_ubyte()
158 un_c_type = int
159 elif ctypecode_of_elements == 'D':
160 local = ctypes.c_double()
161 un_c_type = float
162 elif ctypecode_of_elements == 'E':
163 local = ctypes.c_float()
164 un_c_type = float
165 elif ctypecode_of_elements == 'A':
166 local = ctypes.c_uchar()
167 un_c_type = chr
168 elif ctypecode_of_elements == 'K':
169 local = ctypes.c_ulonglong()
170 un_c_type = long
171 else:
172 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
173 else:
174 if ctypecode_of_elements == 'B': # B is for a byte
175 nptype = np.int8
176 elif ctypecode_of_elements == 'A': # A is for a char .. but I don't know how to handle it
177 nptype = np.int8
178 elif ctypecode_of_elements == 'I': # I is for a 2byte int
179 nptype = np.int16
180 elif ctypecode_of_elements == 'J': # J is for a 4byte int
181 nptype = np.int32
182 elif ctypecode_of_elements == 'K': # B is for a byte
183 nptype = np.int64
184 elif ctypecode_of_elements == 'E': # B is for a byte
185 nptype = np.float32
186 elif ctypecode_of_elements == 'D': # B is for a byte
187 nptype = np.float64
188 else:
189 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
190 local = np.zeros( number_of_elements, nptype)
191
192 # Set the Pointer Address
193 self.SetPtrAddress(colname, local)
194 self._table_cols[colname] = local
195 if number_of_elements > 1:
196 self.__dict__[colname] = local
197 self.dict[colname] = local
198 else:
199 # remove any traces of ctypes:
200 self.__dict__[colname] = local.value
201 self.dict[colname] = local.value
202 self._registered_cols.append(colname)
203
204
205 def treat_meta_dict(self):
206 """make 'interesting' meta information available like normal members.
207 non interesting are:
208 TFORM, TUNIT, and TTYPE
209 since these are available via the columns dict.
210 """
211
212 self.number_of_rows = self.meta['NAXIS2'][0]
213 self.number_of_columns = self.meta['TFIELDS'][0]
214
215 # there are some information in the meta dict, which are alsways there:
216 # there are regarded as not interesting:
217 uninteresting_meta = {}
218 uninteresting_meta['arraylike'] = {}
219 uninteresting = ['NAXIS', 'NAXIS1', 'NAXIS2',
220 'TFIELDS',
221 'XTENSION','EXTNAME','EXTREL',
222 'BITPIX', 'PCOUNT', 'GCOUNT',
223 'ORIGIN',
224 'PACKAGE', 'COMPILED', 'CREATOR',
225 'TELESCOP','TIMESYS','TIMEUNIT','VERSION']
226 for key in uninteresting:
227 if key in self.meta:
228 uninteresting_meta[key]=self.meta[key]
229 del self.meta[key]
230
231 # the table meta data contains
232
233
234 # shortcut to access the meta dict. But this needs to
235 # be cleaned up quickly!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
236 meta = self.meta
237
238 # loop over keys:
239 # * try to find array-like keys
240 arraylike = {}
241 singlelike = []
242 for key in self.meta:
243 stripped = key.rstrip('1234567890')
244 if stripped == key:
245 singlelike.append(key)
246 else:
247 if stripped not in arraylike:
248 arraylike[stripped] = 0
249 else:
250 arraylike[stripped] += 1
251 newmeta = {}
252 for key in singlelike:
253 newmeta[key.lower()] = meta[key]
254 for key in arraylike:
255 uninteresting_meta['arraylike'][key.lower()] = []
256 for i in range(arraylike[key]+1):
257 if key+str(i) in meta:
258 uninteresting_meta['arraylike'][key.lower()].append(meta[key+str(i)])
259 self.ui_meta = uninteresting_meta
260 # make newmeta self
261 for key in newmeta:
262 self.__dict__[key]=newmeta[key]
263
264 dict = self.__dict__.copy()
265 del dict['meta']
266 del dict['ui_meta']
267 self.dict = dict
268
269 def __iter__(self):
270 """ iterator """
271 return self
272
273 def next(self):
274 """ used by __iter__ """
275 # Here one might check, if looping makes any sense, and if not
276 # one could stop looping or so...
277 # like this:
278 #
279 # if len(self._registered_cols) == 0:
280 # print 'warning: looping without any registered columns'
281 if self._current_row < self.number_of_rows:
282 if self.GetNextRow() == False:
283 raise StopIteration
284 for col in self._registered_cols:
285 if isinstance(self._table_cols[col], ctypes._SimpleCData):
286 self.__dict__[col] = self._table_cols[col].value
287 self.dict[col] = self._table_cols[col].value
288
289 for col in self.stacked_cols:
290 if isinstance(self.dict[col], type(np.array(''))):
291 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],self.dict[col]) )
292 else:
293# elif isinstance(self.dict[col], ctypes._SimpleCData):
294 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],np.array(self.dict[col])) )
295 #else:
296 #raise TypeError("I don't know how to stack "+col+". It is of type: "+str(type(self.dict[col])))
297
298
299
300
301 self._current_row += 1
302 else:
303 raise StopIteration
304 return self
305
306 def show(self):
307 pprint.pprint(self.dict)
308
309if __name__ == '__main__':
310 import sys
311 if len(sys.argv) == 1:
312 print 'usage:', sys.argv[0], 'fits-file-name'
313
314 file = FactFits(sys.argv[1])
315 print '-'*70
316 print "opened :", sys.argv[1], " as 'file'"
317 print
318 print '-'*70
319 print 'type file.show() to look at its contents'
320 print "type file.register( columnname ) or file.register('all') in order to register columns"
321 print
322 print " due column-registration you declare, that you would like to retrieve the contents of one of the columns"
323 print " after column-registration, the 'file' has new member variables, they are named like the columns"
324 print " PLEASE NOTE: immediatly after registration, the members exist, but they are empty."
325 print " the values are assigned only, when you call file.next() or when you loop over the 'file'"
326 print
327 print "in order to loop over it, just go like this:"
328 print "for row in file:"
329 print " print row.columnname_one, row.columnname_two"
330 print
331 print ""
332 print '-'*70
333
Note: See TracBrowser for help on using the repository browser.