1 | #!/usr/bin/python -tt
|
---|
2 | #
|
---|
3 | # Dominik Neise, Werner Lustermann
|
---|
4 | # TU Dortmund, ETH Zurich
|
---|
5 | #
|
---|
6 | import numpy as np
|
---|
7 | from scipy import signal
|
---|
8 |
|
---|
9 | # For FastSlidingAverage
|
---|
10 | from scipy import weave
|
---|
11 | from scipy.weave import converters
|
---|
12 |
|
---|
13 | class FirFilter(object):
|
---|
14 | """ finite impulse response filter
|
---|
15 |
|
---|
16 | """
|
---|
17 |
|
---|
18 | def __init__(self, b, a, name = 'general FIR filter'):
|
---|
19 | """
|
---|
20 | See `scipy.signal.lfilter() <http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter>`_
|
---|
21 | *b* The numerator coefficient vector (1D)
|
---|
22 |
|
---|
23 | *a* The denominator coefficient vector (1D).
|
---|
24 |
|
---|
25 | If a[0] is not 1, then both a and b are normalized by a[0].
|
---|
26 | """
|
---|
27 | self.a = a
|
---|
28 | self.b = b
|
---|
29 | self.name = name
|
---|
30 |
|
---|
31 | def __call__(self, data):
|
---|
32 | """ Apply generic FIR filter to *data* using scipy.signal.lfilter()
|
---|
33 |
|
---|
34 | *data* 1D or 2D numpy array
|
---|
35 |
|
---|
36 | remark:
|
---|
37 | I did not understand how to use the initial filter conditions of lfilter()
|
---|
38 | to produce the output, I expected.
|
---|
39 | So I apply the filters as follows.
|
---|
40 | the filter *delay* is equal to its length-1
|
---|
41 | Then I extend the input data by this delay-length, adding copies of the
|
---|
42 | first value.
|
---|
43 | Then the filter runs ovter this extended data.
|
---|
44 | The output will have a filter artifact in the first samples, which
|
---|
45 | will be cut off anyway, because they were artificially added before.
|
---|
46 | """
|
---|
47 | delay = max(len(self.a),len(self.b))-1
|
---|
48 |
|
---|
49 | if ( data.ndim == 1):
|
---|
50 | initial = np.ones(delay)
|
---|
51 | initial *= data[0]
|
---|
52 | elif ( data.ndim == 2):
|
---|
53 | initial = np.ones( (data.shape[0], delay) )
|
---|
54 | for i in range(data.shape[0]):
|
---|
55 | initial[i,:] *= data[i,0]
|
---|
56 | else:
|
---|
57 | print 'HELP.'
|
---|
58 | pass
|
---|
59 | data = np.hstack( (initial,data) )
|
---|
60 |
|
---|
61 | filtered= signal.lfilter(self.b, self.a, data)
|
---|
62 | if ( data.ndim == 1):
|
---|
63 | filtered = filtered[delay:]
|
---|
64 | elif ( data.ndim == 2):
|
---|
65 | filtered = filtered[:,delay:]
|
---|
66 |
|
---|
67 | return filtered
|
---|
68 |
|
---|
69 | def __str__(self):
|
---|
70 | s = self.name + '\n'
|
---|
71 | s += 'initial condition for filter: signal@rest = 1st sample\n'
|
---|
72 | s += 'filter, coefficients:\n'
|
---|
73 | s += 'nominator ' + str(self.b) + '\n'
|
---|
74 | s += 'denominator ' + str(self.a)
|
---|
75 | return s
|
---|
76 |
|
---|
77 | class SlidingAverage(FirFilter):
|
---|
78 | """ data smoothing in the time domain with a sliding average
|
---|
79 |
|
---|
80 | """
|
---|
81 |
|
---|
82 | def __init__(self, length=8):
|
---|
83 | """ initialize the object
|
---|
84 | length: lenght of the averaging window
|
---|
85 |
|
---|
86 | """
|
---|
87 | b = np.ones(length)
|
---|
88 | a = np.zeros(length)
|
---|
89 | if length > 0:
|
---|
90 | a[0] = len(b)
|
---|
91 | FirFilter.__init__(self, b, a, 'sliding average')
|
---|
92 |
|
---|
93 |
|
---|
94 |
|
---|
95 |
|
---|
96 | class FastSlidingAverage( object ):
|
---|
97 | def __init__(self, shape, length=8):
|
---|
98 | """ initialize the object
|
---|
99 | length: lenght of the averaging window
|
---|
100 | """
|
---|
101 | self.length = length
|
---|
102 | # allocate memory for the filtered data once
|
---|
103 | self.filtered = np.zeros( shape, np.float64 )
|
---|
104 | self.shape = shape
|
---|
105 |
|
---|
106 | def __call__(self, data):
|
---|
107 | if self.shape != data.shape:
|
---|
108 | raise TypeException('data has wrong shape')
|
---|
109 |
|
---|
110 | length = self.length
|
---|
111 | numpix = data.shape[0]
|
---|
112 | numslices = data.shape[1]
|
---|
113 |
|
---|
114 | filtered = self.filtered
|
---|
115 | cppcode = """
|
---|
116 | double sum = 0;
|
---|
117 | for (int pix=0; pix<numpix; pix++)
|
---|
118 | {
|
---|
119 | for ( int sl=0; sl<numslices-length; ++sl)
|
---|
120 | {
|
---|
121 | for ( int i=0; i<length; ++i)
|
---|
122 | {
|
---|
123 | sum += data(pix,sl+i);
|
---|
124 | }
|
---|
125 | filtered(pix,sl) = sum/length;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | """
|
---|
129 |
|
---|
130 | ## this seems to run a little bit faster.
|
---|
131 |
|
---|
132 | cppcode2 = """
|
---|
133 | double sum = 0;
|
---|
134 | for (int pix=0; pix<numpix; pix++)
|
---|
135 | {
|
---|
136 | sum = 0;
|
---|
137 | for ( int i=0; i<length-1; ++i)
|
---|
138 | {
|
---|
139 | sum += data(pix,i);
|
---|
140 | }
|
---|
141 | for ( int sl=length-1; sl<numslices-length; ++sl)
|
---|
142 | {
|
---|
143 | sum += data(pix,sl);
|
---|
144 | filtered(pix,sl) = sum/length;
|
---|
145 | sum -= data(pix,sl-(length-1) );
|
---|
146 | }
|
---|
147 | }
|
---|
148 | """
|
---|
149 |
|
---|
150 | weave.inline( cppcode2,
|
---|
151 | [ 'length' , 'numpix', 'numslices', 'data', 'filtered'],
|
---|
152 | type_converters=converters.blitz)
|
---|
153 |
|
---|
154 | return filtered
|
---|
155 |
|
---|
156 | class CFD(FirFilter):
|
---|
157 | """ Constant Fraction Discriminator """
|
---|
158 | def __init__(self, length = 10., ratio = 0.75):
|
---|
159 |
|
---|
160 | b = np.zeros(length)
|
---|
161 | a = np.zeros(length)
|
---|
162 | if length > 0:
|
---|
163 | b[0] = -1. * ratio
|
---|
164 | b[length-1] = 1.
|
---|
165 | a[0] = 1.
|
---|
166 | FirFilter.__init__(self, b, a, 'constant fraction discriminator')
|
---|
167 |
|
---|
168 |
|
---|
169 | class RemoveSignal(FirFilter):
|
---|
170 | """ estimator to identify DRS4 spikes
|
---|
171 |
|
---|
172 | """
|
---|
173 |
|
---|
174 | def __init__(self):
|
---|
175 | """ initialize the object """
|
---|
176 |
|
---|
177 | b = np.array((-0.5, 1., -0.5))
|
---|
178 | a = np.zeros(len(b))
|
---|
179 | a[0] = 1.0
|
---|
180 | FirFilter.__init__(self, b, a, 'remove signal')
|
---|
181 |
|
---|
182 |
|
---|
183 | def _test_SlidingAverage():
|
---|
184 | """ test the sliding average function
|
---|
185 | use a step function as input
|
---|
186 |
|
---|
187 | """
|
---|
188 | from plotters import Plotter
|
---|
189 | from generator import SignalGenerator
|
---|
190 | generate = SignalGenerator()
|
---|
191 | plot = Plotter('_test_SlidingAverage')
|
---|
192 |
|
---|
193 | safilter = SlidingAverage(8)
|
---|
194 | print safilter
|
---|
195 |
|
---|
196 | signal = generate('len 100 noise 1.5 step 20 10 50')
|
---|
197 | filtered = safilter(signal)
|
---|
198 | plot( [signal, filtered] , ['original', 'filtered'] )
|
---|
199 |
|
---|
200 | raw_input('press any key to go on')
|
---|
201 | plt.close(plot.figure)
|
---|
202 |
|
---|
203 |
|
---|
204 | def _test_SlidingAverage2():
|
---|
205 | """ test the sliding average function
|
---|
206 | use a step function as input
|
---|
207 | """
|
---|
208 | from plotters import Plotter
|
---|
209 | from generator import SignalGenerator
|
---|
210 | generate = SignalGenerator()
|
---|
211 | plot = Plotter('_test_SlidingAverage')
|
---|
212 |
|
---|
213 | safilter = SlidingAverage(8)
|
---|
214 | print safilter
|
---|
215 |
|
---|
216 | signal = np.ones( (6,20) ) * 3.0
|
---|
217 | filtered = safilter(signal)
|
---|
218 | #plot( [signal[0], filtered[0]] , ['original', 'filtered'] )
|
---|
219 |
|
---|
220 | raw_input('press any key to go on')
|
---|
221 | plt.close(plot.figure)
|
---|
222 |
|
---|
223 |
|
---|
224 |
|
---|
225 | def _test_CFD():
|
---|
226 | """ test the remove signal function
|
---|
227 |
|
---|
228 | """
|
---|
229 | from plotters import Plotter
|
---|
230 | from generator import SignalGenerator
|
---|
231 | generate = SignalGenerator()
|
---|
232 | plot = Plotter('_test_CFD')
|
---|
233 |
|
---|
234 | sa = SlidingAverage(3)
|
---|
235 | print 'I apply a weak smooting with a filter length of 3'
|
---|
236 | cfd = CFD(8, 0.6)
|
---|
237 | print cfd
|
---|
238 |
|
---|
239 | signal = generate('len 100 noise 1.5 bsl -20 triangle 30 30 8 50')
|
---|
240 | filtered = cfd(sa(signal))
|
---|
241 | plot( [signal, filtered] , ['original', 'filtered'] )
|
---|
242 |
|
---|
243 | raw_input('press any key to go on')
|
---|
244 | plt.close(plot.figure)
|
---|
245 |
|
---|
246 | def _test_RemoveSignal():
|
---|
247 | """ test the remove signal function
|
---|
248 |
|
---|
249 | """
|
---|
250 | from plotters import Plotter
|
---|
251 | from generator import SignalGenerator
|
---|
252 | generate = SignalGenerator()
|
---|
253 | plot = Plotter('_test_RemoveSignal')
|
---|
254 |
|
---|
255 | remove_signal = RemoveSignal()
|
---|
256 | print remove_signal
|
---|
257 |
|
---|
258 | signal = generate('len 100 noise 2 bsl -20 triangle 20 30 8 40 50 30 spike 50 50 15 50 80 50')
|
---|
259 | filtered = remove_signal(signal)
|
---|
260 | plot( [signal, filtered] , ['original', 'filtered'] )
|
---|
261 |
|
---|
262 | raw_input('press any key to go on')
|
---|
263 | plt.close(plot.figure)
|
---|
264 |
|
---|
265 | def _test(filter_type, sig, noise_sigma = 1.):
|
---|
266 | from plotters import Plotter
|
---|
267 |
|
---|
268 | filt = filter_type
|
---|
269 | samples = len(sig)
|
---|
270 | # add noise to the signal
|
---|
271 | sig += np.random.randn(samples) * noise_sigma
|
---|
272 |
|
---|
273 | plot = Plotter('_test with ' + str(filt.name))
|
---|
274 | plot( [sig, filt(sig)], ['original', 'filtered'] )
|
---|
275 | raw_input('press any key to go on')
|
---|
276 | plt.close(plot.figure)
|
---|
277 |
|
---|
278 | if __name__ == '__main__':
|
---|
279 | import matplotlib.pyplot as plt
|
---|
280 | """ test the class """
|
---|
281 |
|
---|
282 | _test_SlidingAverage()
|
---|
283 | _test_CFD()
|
---|
284 | _test_RemoveSignal()
|
---|
285 |
|
---|
286 | tsig = np.ones(100)
|
---|
287 | _test(filter_type=SlidingAverage(8), sig=tsig, noise_sigma=3.)
|
---|