#!/usr/bin/python -tt # # Werner Lustermann, Dominik Neise # ETH Zurich, TU Dortmund # # plotter.py import numpy as np import matplotlib.pyplot as plt import os.path import sys # this class was formerly called Plotter in the depricated # module plotter.py class SimplePlotter(object): """ simple x-y plot """ def __init__(self, name, x, style = 'b', xlabel='x', ylabel='y'): """ initialize the object """ self.name = name self.fig = plt.figure() self.line, = plt.plot(x, style) plt.title(name) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.grid(True) def __call__(self, ydata): """ set ydata of plot """ plt.figure(self.fig.number) plt.ylim( np.min(ydata), np.max(ydata) ) self.line.set_ydata(ydata) plt.draw() class Plotter(object): """ simple x-y plot """ def __init__(self, name, x=None, style = '.:', xlabel='x', ylabel='y', ion=True, grid=True, fname=None): """ initialize the object """ self.name = name self.x = x self.style = style self.xlabel = xlabel self.ylabel = ylabel #not sure if this should go here if ion: plt.ion() self.figure = plt.figure() self.fig_id = self.figure.number plt.grid(grid) self.grid = grid self.fname = fname def __call__(self, ydata, label=None): """ set ydata of plot """ style = self.style # make acitve and clear plt.figure(self.fig_id) plt.cla() # the following if else stuff is horrible, # but I want all those possibilities, .... still working on it. # check if 1Dim oder 2Dim ydata = np.array(ydata) if ydata.ndim ==1: if self.x==None: plt.plot(ydata, self.style, label=label) else: plt.plot(self.x, ydata, self.style, label=label) else: for i in range(len(ydata)): if self.x==None: if label: plt.plot(ydata[i], style, label=label[i]) else: plt.plot(ydata[i], style) else: if label: plt.plot(self.x, ydata[i], style, label=label[i]) else: plt.plot(self.x, ydata[i], style) plt.title(self.name) plt.xlabel(self.xlabel) plt.ylabel(self.ylabel) if label: plt.legend() if self.fname != None: plt.savefig(self.fname) plt.grid(self.grid) plt.draw() class CamPlotter(object): """ plotting data color-coded into FACT-camera """ def __init__(self, name, ion=True, grid=True, fname=None, map_file_path = '../map_dn.txt', vmin=None, vmax=None): """ initialize the object """ path = os.path.abspath(__file__) path = os.path.dirname(path) map_file_path = os.path.join(path, map_file_path) if not os.path.isfile(map_file_path): print 'not able to find file:', map_file_path sys.exit(-2) self.name = name if ion: plt.ion() chid, y,x,xe,ye,yh,xh,softid,hardid = np.loadtxt(map_file_path ,unpack=True) self.xe = xe self.ye = ye self.H = (6,0,30./180.*3.1415926) self.figure = plt.figure(figsize=(6, 6), dpi=80) self.fig_id = self.figure.number self.grid = grid self.fname = fname self.vmin = vmin self.vmax = vmax def __call__(self, data, mask=None): # define some shortcuts xe = self.xe ye = self.ye H = self.H name = self.name grid = self.grid vmin = self.vmin vmax = self.vmax # get the figure, clean it, and set it up nicely. # maybe cleaning is not necessary and takes long, but # I've got no time to test it at the moment. plt.figure(self.fig_id) plt.clf() self.ax = self.figure.add_subplot(111, aspect='equal') self.ax.axis([-22,22,-22,22]) self.ax.set_title(name) self.ax.grid(grid) # throw data into numpy array for simplicity data = np.array(data) #handle masked case specially if mask!= None: if len(mask)==0: return elif mask.dtype == bool and data.ndim ==1 and len(mask)==1440: length = mask.sum() mask = np.where(mask)[0] mxe = np.empty( length ) mye = np.empty( length ) mdata = np.empty( length ) for i,chid in enumerate(mask): #print i , chid mxe[i] = xe[chid] mye[i] = ye[chid] mdata[i] = data[chid] #print 'mxe', mxe, 'len', len(mxe) #print 'mye', mye, 'len', len(mye) #print 'mxe', mdata, 'len', len(mdata) self.ax.axis([-22,22,-22,22]) self.ax.set_title(name) self.ax.grid(grid) # the next line is a stupid hack # I plot invisible pixels, so that the axes show look ok. # this must be possible differently, but I don't know how... self.ax.scatter(xe,ye,s=25,alpha=0,marker=H) result = self.ax.scatter(mxe,mye,s=25,alpha=1., c=mdata, marker=H, linewidths=0., vmin=vmin, vmax=vmax) self.figure.colorbar( result, shrink=0.8, pad=-0.04 ) plt.draw() elif mask.dtype == int and data.ndim ==1: length = len(mask) mxe = np.empty( length ) mye = np.empty( length ) mdata = np.empty( length ) for i,chid in enumerate(mask): mxe[i] = xe[chid] mye[i] = ye[chid] mdata[i] = data[chid] self.ax.axis([-22,22,-22,22]) self.ax.set_title(name) self.ax.grid(grid) # the next line is a stupid hack # I plot invisible pixels, so that the axes show look ok. # this must be possible differently, but I don't know how... self.ax.scatter(xe,ye,s=25,alpha=0,marker=H) result = self.ax.scatter(mxe,mye,s=25,alpha=1., c=mdata, marker=H, linewidths=0., vmin=vmin, vmax=vmax) self.figure.colorbar( result, shrink=0.8, pad=-0.04 ) plt.draw() else: print "there is a mask, but I don't know how to treat it!!!" sys.exit(-1) else: # i.e. when mask is None # handle 1D and 2D case differently if data.ndim == 1 and len(data)==1440: result = self.ax.scatter(xe,ye,s=25,alpha=1, c=data, marker=H, linewidths=0., vmin=vmin, vmax=vmax) self.figure.colorbar( result, shrink=0.8, pad=-0.04 ) plt.draw() elif data.ndim == 2 and data.shape[0] == 2 and data.shape[1] <=1440: # I assume the first row of data, contains the CHIDs # and the 2nd row contains the actual data. chids = data[0] # check if there are double chids in chids if len(chids)!=len(set(chids)): print 'warning: there are doubled chids in input data', print 'you might want to plot something else, but I plot it anyway...' print chids data = data[1] # now I have to mask the xe, and ye vectors accordingly mxe = np.empty( len(chids) ) mye = np.empty( len(chids) ) for i,chid in enumerate(chids): mxe[i] = xe[chid] mye[i] = ye[chid] # check if I did it right if len(mxe)!=len(data) or len(mye)!=len(data): print 'the masking did not work:' print 'len(mxe)', len(mxe) print 'len(mye)', len(mye) print 'len(data)', len(data) self.ax.axis([-22,22,-22,22]) self.ax.set_title(name) self.ax.grid(grid) # the next line is a stupid hack # I plot invisible pixels, so that the axes show look ok. # this must be possible differently, but I don't know how... self.ax.scatter(xe,ye,s=25,alpha=0,marker=H) result = self.ax.scatter(mxe,mye,s=25,alpha=1., c=data, marker=H, linewidths=0., vmin=vmin, vmax=vmax) self.figure.colorbar( result, shrink=0.8, pad=-0.04 ) plt.draw() else: print 'CamPlotter call input data has bad format' print 'data.ndim', data.ndim print 'data.shape', data.shape print 'data:----------------------------------' print data class HistPlotter(object): def __init__(self, name, bins, range, grid=True, ion=True): """ initialize the object """ self.bins = bins self.range = range self.name = name self.figure = plt.figure() self.fig_id = self.figure.number self.grid = grid if ion: plt.ion() def __call__(self, ydata, label=None, log=False): plt.figure(self.fig_id) plt.cla() bins = self.bins range = self.range grid = self.grid ydata = np.array(ydata) if ydata.ndim > 1: ydata = ydata.flatten() if label: plt.hist(ydata, bins, range, label=label, log=log) plt.legend() else: plt.hist(ydata, bins, range, log=log) plt.title(self.name) plt.draw() def _test_SimplePlotter(): """ test of maintaining two independant plotter instances """ plt.ion() x = np.linspace(0., 10.) plot1 = SimplePlotter('plot1', x, 'r') print 'plot1.fig.number: ', plot1.fig.number plot2 = SimplePlotter('plot2', x, 'g.') print 'plot2.fig.number: ', plot2.fig.number plot1(np.sin(x) * 7.) plot2(x*x) raw_input('next') plot1(np.cos(x) * 3.) plot2(x) raw_input('next') def _test_Plotter(): """ test of maintaining two independant plotter instances with different examples for init and call """ x = np.linspace(0., 2*np.pi , 100) plot1 = Plotter('plot1', x, 'r.:') plot2 = Plotter('plot2') y1 = np.sin(x) * 7 plot1(y1) number_of_graphs_in_plot2 = 3 no = number_of_graphs_in_plot2 # short form # this is where you do your analysis... y2 = np.empty( (no, len(x)) ) # prepare some space y2_labels = [] # prepare labels for k in range(no): y2[k] = np.sin( (k+1)*x ) y2_labels.append('sin(%d*x)' % (k+1) ) # plot the result of your analysis plot2(y2, y2_labels) raw_input('next') # do not forget this line, or your graph is lost plot1(np.cos(x) * 3.) plot2.name += ' without labels!!!' # changing titles 'on the fly' is possible plot2(y2) raw_input('next') # DO NOT forget def _test_CamPlotter(): """ test of CamPlotter """ c1 = np.array(range(20)) chids1 = np.empty( len(c1) , dtype=int) for i in range(len(chids1)-2): chids1[i] = np.random.randint(1440) chids1[-1] = 15 chids1[-2] = 15 c2 = np.linspace(0., 1., num=1440) plot1 = CamPlotter('plot1') plot2 = CamPlotter('plot2') plot1( (chids1,c1) ) plot2(c2) raw_input('next') def _test_HistPlotter(): """ test of the HistPlotter """ plt.ion() data = np.random.randn(1000) hp = HistPlotter('test hist plotter',34, (-5,4)) hp(data, 'test-label') raw_input('next') if __name__ == '__main__': """ test the class """ print ' testing SimplePlotter' _test_SimplePlotter() print ' testing Plotter' _test_Plotter() print 'testing CamPlotter ... testing what happens if doubled IDs in mask' _test_CamPlotter() print 'testing basic HistPlotter functionality' _test_HistPlotter()