source: fact/tools/pyscripts/pyfact/pyfact.py@ 14215

Last change on this file since 14215 was 14158, checked in by neise, 13 years ago
SlowData.register() had a bug, input_str was not renamed everywhere to col_name
  • Property svn:executable set to *
File size: 34.9 KB
Line 
1#!/usr/bin/python -tt
2#
3# Werner Lustermann, Dominik Neise
4# ETH Zurich, TU Dortmund
5#
6from ctypes import *
7import numpy as np
8import pprint # for SlowData
9from scipy import signal
10
11# get the ROOT stuff + my shared libs
12from ROOT import gSystem
13# factfits_h.so is made from factfits.h and is used to access the data
14# make sure the location of factfits_h.so is in LD_LIBRARY_PATH.
15# having it in PYTHONPATH is *not* sufficient
16gSystem.Load('factfits_h.so')
17gSystem.Load('calfactfits_h.so')
18from ROOT import *
19
20class RawDataFeeder( object ):
21 """ Wrapper class for RawData class
22 capable of iterating over multiple RawData Files
23 """
24
25 def __init__(self, filelist):
26 """ *filelist* list of files to iterate over
27 the list should contain tuples, or sublists of two filenames
28 the first should be a data file (\*.fits.gz)
29 the second should be an amplitude calibration file(\*.drs.fits.gz)
30 """
31
32 self.__module__ = 'pyfact'
33
34 # sanity check for input
35 if type(filelist) != type(list()):
36 raise TypeError('filelist should be a list')
37 for entry in filelist:
38 if len(entry) != 2:
39 raise TypeError('the entries of filelist should have length == 2')
40 for path in entry:
41 if type(path) != type(str()):
42 raise TypeError('the entries of filelist should be path, i.e. of type str()')
43 #todo check if 'path' is a valid path
44 # else: throw an Exception, or Warning?
45
46 self.filelist = filelist
47 self._current_RawData = RawData(filelist[0][0], filelist[0][1], return_dict=True)
48 del filelist[0]
49
50 def __iter__(self):
51 return self
52
53 def next():
54 """ Method being called by the iterator.
55 Since the RawData Objects are simply looped over, the event_id from the
56 RawData object will not be unique.
57 Each RawData obejct will start with event_id = 1 as usual.
58 """
59 try:
60 return self._current_RawData.next()
61 except StopIteration:
62 # current_RawData was completely processed
63 # delete it (I hope this calls the destructor of the fits file and/or closes it)
64 del self._current_RawData
65 # and remake it, if possible
66 if len(self.filelist) > 0:
67 self._current_RawData = RawData(filelist[0][0], filelist[0][1], return_dict=True)
68 del filelist[0]
69 else:
70 raise
71
72
73
74class RawData( object ):
75 """ raw data access and calibration
76
77 class is **iterable**
78
79 - open raw data file and drs calibration file
80 - performs amplitude calibration
81 - performs baseline substraction if wanted
82 - provides all data in an array:
83 row = number of pixel
84 col = length of region of interest
85
86 """
87
88
89 def __init__(self, data_file_name, calib_file_name,
90 baseline_file_name='',
91 return_dict = True,
92 use_CalFactFits = True,
93 do_calibration = True,
94 user_action_calib=lambda acal_data, data, blm, tom, gm, scells, nroi: None):
95 """ -constructor-
96
97 - open data file and calibration data file
98 - get basic information about the data in data_file_name
99 - allocate buffers for data access
100
101 *data_file_name* : fits or fits.gz file of the data including the path
102
103 *calib_file_name* : fits or fits.gz file containing DRS calibration data
104
105 *baseline_file_name* : npy file containing the baseline values
106
107 *return_dict* : this option will be removed in future releases.
108 formerly the next() method returned only a subset of (important) event information,
109 and it was not transparent how to retrieve the other (less important) information.
110 Nowadays next() returns self.__dict__ which contains everything we were able to find in the fits file.
111
112 *use_CalFactFits* : formerly the DRS amplitude calibration was
113 implemented in python. But for performance reasons this was now moved into
114 a C++ class called CalFactFits. For test purposes, this option can be set to
115 False, but this is not really maintained anymore. If DRS the DRS calibration algorithm is
116 beeing updated in C++ it may not be updated in the python implementation.
117
118 *do_calibration* : In case *use_CalFactFits* is False, one may choose
119 not to calibrate the data at all, thus safe quite some time.
120 This is imho only needed in case one is interesting in learning something about the
121 calibration algorithm itself.
122
123 *user_action_calib* : callback function, intended for tests of the DRS calibration algorithm.
124 but since this is not done in the Python regime anymore, this function is never called.
125 (depending on *use_CalFactFits* of course)
126 """
127 self.__module__='pyfact'
128 # manual implementation of default value, but I need to find out
129 # if the user of this class is aware of the new option
130 if return_dict == False:
131 print 'DEPRECATION WARNING:'
132 print 'you are using RawData in a way, which is nor supported anymore.'
133 print ' Please set: return_dict = True, in the __init__ call'
134 self.return_dict = return_dict
135 self.use_CalFactFits = use_CalFactFits
136
137 self.do_calibration = do_calibration
138
139 self.data_file_name = data_file_name
140 self.calib_file_name = calib_file_name
141 self.baseline_file_name = baseline_file_name
142
143 self.user_action_calib = user_action_calib
144
145 # baseline correction: True / False
146 if len(baseline_file_name) == 0:
147 self.correct_baseline = False
148 else:
149 self.correct_baseline = True
150
151
152 # access data file
153 if use_CalFactFits:
154 try:
155 data_file = CalFactFits(data_file_name, calib_file_name)
156 except IOError:
157 print 'problem accessing data file: ', data_file_name
158 raise # stop ! no data
159
160 #: either CalFactFits object or FactFits object, depending on *use_CalFactFits*
161 self.data_file = data_file
162 #: 1440x300 nparray containing the event data. pixel sorted according to CHID
163 self.data = np.empty( data_file.npix * data_file.nroi, np.float64)
164 data_file.SetNpcaldataPtr(self.data)
165 self.data = self.data.reshape( data_file.npix, data_file.nroi )
166 #: copy of data. here for historical reasons
167 self.acal_data = self.data
168 #: region of interest. (number of DRS slices read).
169 # for FACT data mostly 300. for special runs sometimes 1024.
170 self.nroi = data_file.nroi
171 #: number of Pixel in FACT. should be 1440
172 self.npix = data_file.npix
173 #: the total number of events in the data_file
174 self.nevents = data_file.nevents
175
176 # Data per event
177 #: starting at 1
178 self.event_id = None
179 #: data=4 ; the rest I don't know by heart .. should be documented here :-)
180 self.trigger_type = None
181 #self.start_cells = None
182 #self.board_times = None
183 #: slice where drs readout started for all DRS chips (160) .. but enlarged to the size of 1440 pixel. thus there are always 9 equal numbers inside.
184 self.start_cells = np.zeros( self.npix, np.int16 )
185 #: each FAD has an onboard clock running from startup time. Currently I don't know the time unit. However this is an array of 40 times, since we have 40 boards.
186 self.board_times = np.zeros( 40, np.int32 )
187
188 # data_file is a CalFactFits object
189 # data_file.datafile is one of the two FactFits objects hold by a CalFactFits.
190 # sorry for the strange naming ..
191 data_file.datafile.SetPtrAddress('StartCellData', self.start_cells)
192 data_file.datafile.SetPtrAddress('BoardTime', self.board_times)
193
194 else:
195 try:
196 data_file = FactFits(self.data_file_name)
197 except IOError:
198 print 'problem accessing data file: ', data_file_name
199 raise # stop ! no data
200
201 self.data_file = data_file
202
203 # get basic information about the data file
204 self.nroi = data_file.GetUInt('NROI')
205 self.npix = data_file.GetUInt('NPIX')
206 self.nevents = data_file.GetNumRows()
207
208 # allocate the data memories
209 self.event_id = c_ulong()
210 self.trigger_type = c_ushort()
211 self.data = np.zeros( self.npix * self.nroi, np.int16 ).reshape(self.npix ,self.nroi)
212 self.start_cells = np.zeros( self.npix, np.int16 )
213 self.board_times = np.zeros( 40, np.int32 )
214
215 # set the pointers to the data++
216 data_file.SetPtrAddress('EventNum', self.event_id)
217 data_file.SetPtrAddress('TriggerType', self.trigger_type)
218 data_file.SetPtrAddress('StartCellData', self.start_cells)
219 data_file.SetPtrAddress('Data', self.data)
220 data_file.SetPtrAddress('BoardTime', self.board_times)
221
222 # open the calibration file
223 try:
224 calib_file = FactFits(self.calib_file_name)
225 except IOError:
226 print 'problem accessing calibration file: ', calib_file_name
227 raise
228 #: drs calibration file
229 self.calib_file = calib_file
230
231 baseline_mean = calib_file.GetN('BaselineMean')
232 gain_mean = calib_file.GetN('GainMean')
233 trigger_offset_mean = calib_file.GetN('TriggerOffsetMean')
234
235 self.Nblm = baseline_mean / self.npix
236 self.Ngm = gain_mean / self.npix
237 self.Ntom = trigger_offset_mean / self.npix
238
239 self.blm = np.zeros(baseline_mean, np.float32).reshape(self.npix , self.Nblm)
240 self.gm = np.zeros(gain_mean, np.float32).reshape(self.npix , self.Ngm)
241 self.tom = np.zeros(trigger_offset_mean, np.float32).reshape(self.npix , self.Ntom)
242
243 calib_file.SetPtrAddress('BaselineMean', self.blm)
244 calib_file.SetPtrAddress('GainMean', self.gm)
245 calib_file.SetPtrAddress('TriggerOffsetMean', self.tom)
246 calib_file.GetRow(0)
247
248 # make calibration constants double, so we never need to roll
249 self.blm = np.hstack((self.blm, self.blm))
250 self.gm = np.hstack((self.gm, self.gm))
251 self.tom = np.hstack((self.tom, self.tom))
252
253 self.v_bsl = np.zeros(self.npix) # array of baseline values (all ZERO)
254
255 def __iter__(self):
256 """ iterator """
257 return self
258
259 def next(self):
260 """ used by __iter__
261
262 returns self.__dict__
263 """
264 if self.use_CalFactFits:
265 if self.data_file.GetCalEvent() == False:
266 raise StopIteration
267 else:
268 self.event_id = self.data_file.event_id
269 self.trigger_type = self.data_file.event_triggertype
270 #self.start_cells = self.data_file.event_offset
271 #self.board_times = self.data_file.event_boardtimes
272 #self.acal_data = self.data.copy().reshape(self.data_file.npix, self.data_file.nroi)
273 else:
274 if self.data_file.GetNextRow() == False:
275 raise StopIteration
276 else:
277 if self.do_calibration == True:
278 self.calibrate_drs_amplitude()
279
280 #print 'nevents = ', self.nevents, 'event_id = ', self.event_id.value
281 if self.return_dict:
282 return self.__dict__
283 else:
284 return self.acal_data, self.start_cells, self.trigger_type.value
285
286 def next_event(self):
287 """ ---- DEPRICATED ----
288
289 load the next event from disk and calibrate it
290 """
291 if self.use_CalFactFits:
292 self.data_file.GetCalEvent()
293 else:
294 self.data_file.GetNextRow()
295 self.calibrate_drs_amplitude()
296
297 def calibrate_drs_amplitude(self):
298 """ --- DEPRICATED ---
299
300 since the DRS calibration is done by the C++ class CalFactFits
301
302 perform the drs amplitude calibration of the event data
303 """
304 # shortcuts
305 blm = self.blm
306 gm = self.gm
307 tom = self.tom
308
309 to_mV = 2000./4096.
310 #: 2D array with amplitude calibrated dat in mV
311 acal_data = self.data * to_mV # convert ADC counts to mV
312
313
314 for pixel in range( self.npix ):
315 #shortcuts
316 sc = self.start_cells[pixel]
317 roi = self.nroi
318 # rotate the pixel baseline mean to the Data startCell
319 acal_data[pixel,:] -= blm[pixel,sc:sc+roi]
320 # the 'trigger offset mean' does not need to be rolled
321 # on the contrary, it seems there is an offset in the DRS data,
322 # which is related to its distance to the startCell, not to its
323 # distance to the beginning of the physical pipeline in the DRS chip
324 acal_data[pixel,:] -= tom[pixel,0:roi]
325 # rotate the pixel gain mean to the Data startCell
326 acal_data[pixel,:] /= gm[pixel,sc:sc+roi]
327
328
329 self.acal_data = acal_data * 1907.35
330
331 self.user_action_calib( self.acal_data,
332 np.reshape(self.data, (self.npix, self.nroi) ), blm, tom, gm, self.start_cells, self.nroi)
333
334
335 def baseline_read_values(self, file, bsl_hist='bsl_sum/hplt_mean'):
336 """
337 open ROOT file with baseline histogram and read baseline values
338
339 *file* : name of the root file
340
341 *bsl_hist* : path to the histogram containing the basline values
342 """
343
344 try:
345 f = TFile(file)
346 except:
347 print 'Baseline data file could not be read: ', file
348 return
349
350 h = f.Get(bsl_hist)
351
352 for i in range(self.npix):
353 self.v_bsl[i] = h.GetBinContent(i+1)
354
355 f.Close()
356
357 def baseline_correct(self):
358 """ subtract baseline from the data
359
360 DN 08.06.2011: I didn't use this function at all so far... don't know how well it works.
361 """
362
363 for pixel in range(self.npix):
364 self.acal_data[pixel,:] -= self.v_bsl[pixel]
365
366 def info(self):
367 """ print run information
368
369 not very well implemented ... we need more info here.
370 """
371 print 'data file: ', self.data_file_name
372 print 'calib file: ', self.calib_file_name
373 print '... we need more information printed here ... '
374
375# -----------------------------------------------------------------------------
376class RawDataFake( object ):
377 """ raw data FAKE access similar to real RawData access
378
379 DO NOT USE ... its not working
380 """
381
382
383 def __init__(self, data_file_name, calib_file_name,
384 user_action_calib=lambda acal_data, data, blm, tom, gm, scells, nroi: None,
385 baseline_file_name=''):
386 self.__module__='pyfact'
387
388 self.nroi = 300
389 self.npix = 9
390 self.nevents = 1000
391
392 self.simulator = None
393
394 self.time = np.ones(1024) * 0.5
395
396
397 self.event_id = c_ulong(0)
398 self.trigger_type = c_ushort(4)
399 self.data = np.zeros( self.npix * self.nroi, np.int16 ).reshape(self.npix ,self.nroi)
400 self.start_cells = np.zeros( self.npix, np.int16 )
401 self.board_times = np.zeros( 40, np.int32 )
402 def __iter__(self):
403 """ iterator """
404 return self
405
406 def next(self):
407 """ used by __iter__ """
408 self.event_id = c_ulong(self.event_id.value + 1)
409 self.board_times = self.board_times + 42
410
411 if self.event_id.value >= self.nevents:
412 raise StopIteration
413 else:
414 self._make_event_data()
415
416 return self.__dict__
417
418 def _make_event_data(self):
419 sample_times = self.time.cumsum() - time[0]
420
421 # random start cell
422 self.start_cells = np.ones( self.npix, np.int16 ) * np.random.randint(0,1024)
423
424 starttime = self.start_cells[0]
425
426 signal = self._std_sinus_simu(sample_times, starttime)
427
428 data = np.vstack( (signal,signal) )
429 for i in range(8):
430 data = np.vstack( (data,signal) )
431
432 self.data = data
433
434 def _std_sinus_simu(self, times, starttime):
435 period = 10 # in ns
436
437 # give a jitter on starttime
438 starttime = np.random.normal(startime, 0.05)
439
440 phase = 0.0
441 signal = 10 * np.sin(times * 2*np.pi/period + starttime + phase)
442
443 # add some noise
444 noise = np.random.normal(0.0, 0.5, signal.shape)
445 signal += noise
446 return signal
447
448 def info(self):
449 """ print run information
450
451 """
452
453 print 'data file: ', data_file_name
454 print 'calib file: ', calib_file_name
455 print 'calibration file'
456 print 'N baseline_mean: ', self.Nblm
457 print 'N gain mean: ', self.Ngm
458 print 'N TriggeroffsetMean: ', self.Ntom
459
460# -----------------------------------------------------------------------------
461import ctypes
462
463class SlowData( FactFits ):
464 """ -Fact SlowData File-
465
466 A Python wrapper for the fits-class implemented in factfits.h
467 provides easy access to the fits file meta data.
468
469 * dictionary of file metadata - self.meta
470 * dict of table metadata - self.columns
471 * variable table column access, thus possibly increased speed while looping
472 """
473 def __init__(self, path):
474 """ creates meta and columns dictionaries
475 """
476 self.path = path
477 self.__module__ = 'pyfact'
478 try:
479 FactFits.__init__(self,path)
480 except IOError:
481 print 'problem accessing data file: ', data_file_name
482 raise # stop ! no data
483
484 self.meta = self._make_meta_dict()
485 self.columns = self._make_columns_dict()
486
487 self._treat_meta_dict()
488
489
490 # list of columns, which are already registered
491 # see method register()
492 self._registered_cols = []
493 # dict of column data, this is used, in order to be able to remove
494 # the ctypes of
495 self._table_cols = {}
496
497 # I need to count the rows, since the normal loop mechanism seems not to work.
498 self._current_row = 0
499
500 self.stacked_cols = {}
501
502 def _make_meta_dict(self):
503 """ This method retrieves meta information about the fits file and
504 stores this information in a dict
505 return: dict
506 key: string - all capital letters
507 value: tuple( numerical value, string comment)
508 """
509 # intermediate variables for file metadata dict generation
510 keys=self.GetPy_KeyKeys()
511 values=self.GetPy_KeyValues()
512 comments=self.GetPy_KeyComments()
513 types=self.GetPy_KeyTypes()
514
515 if len(keys) != len(values):
516 raise TypeError('len(keys)',len(keys),' != len(values)', len(values))
517 if len(keys) != len(types):
518 raise TypeError('len(keys)',len(keys),' != len(types)', len(types))
519 if len(keys) != len(comments):
520 raise TypeError('len(keys)',len(keys),' != len(comments)', len(comments))
521
522 meta_dict = {}
523 for i in range(len(keys)):
524 type = types[i]
525 if type == 'I':
526 value = int(values[i])
527 elif type == 'F':
528 value = float(values[i])
529 elif type == 'B':
530 if values[i] == 'T':
531 value = True
532 elif values[i] == 'F':
533 value = False
534 else:
535 raise TypeError("meta-type is 'B', but meta-value is neither 'T' nor 'F'. meta-value:",values[i])
536 elif type == 'T':
537 value = values[i]
538 else:
539 raise TypeError("unknown meta-type: known meta types are: I,F,B and T. meta-type:",type)
540 meta_dict[keys[i]]=(value, comments[i])
541 return meta_dict
542
543
544 def _make_columns_dict(self):
545 """ This method retrieves information about the columns
546 stored inside the fits files internal binary table.
547 returns: dict
548 key: string column name -- all capital letters
549 values: tuple(
550 number of elements in table field - integer
551 size of element in bytes -- this is not really interesting for any user
552 might be ommited in future versions
553 type - a single character code -- should be translated into
554 a comrehensible word
555 unit - string like 'mV' or 'ADC count'
556 """
557 # intermediate variables for file table-metadata dict generation
558 keys=self.GetPy_ColumnKeys()
559 #offsets=self.GetPy_ColumnOffsets() #not needed on python level...
560 nums=self.GetPy_ColumnNums()
561 sizes=self.GetPy_ColumnSizes()
562 types=self.GetPy_ColumnTypes()
563 units=self.GetPy_ColumnUnits()
564
565 # zip the values
566 values = zip(nums,sizes,types,units)
567 # create the columns dictionary
568 columns = dict(zip(keys ,values))
569 return columns
570
571 def stack(self, on=True):
572 self.next()
573 for col in self._registered_cols:
574 if isinstance( self.dict[col], type(np.array('')) ):
575 self.stacked_cols[col] = self.dict[col]
576 else:
577# elif isinstance(self.dict[col], ctypes._SimpleCData):
578 self.stacked_cols[col] = np.array(self.dict[col])
579# else:
580# raise TypeError("I don't know how to stack "+col+". It is of type: "+str(type(self.dict[col])))
581
582 def register(self, col_name):
583 """ register for a column in the fits file
584
585 after the call, this SlowData object will have a new member variable
586 self.col_name, if col_name is a key in self.colums
587
588 the value will be updated after each call of next(), or while iterating over self.
589 NB: the initial value is zero(s)
590
591 *col_name* : name of a key in self.columns, or 'all' to choose all.
592 """
593 columns = self.columns
594 if col_name.lower() == 'all':
595 for col in columns:
596 self._register(col)
597 else:
598 #check if colname is in columns:
599 if col_name not in columns:
600 error_msg = 'colname:'+ col_name +' is not a column in the binary table.\n'
601 error_msg+= 'possible colnames are\n'
602 for key in columns:
603 error_msg += key+' '
604 raise KeyError(error_msg)
605 else:
606 self._register(col_name)
607
608 # 'private' method, do not use
609 def _register( self, colname):
610 columns = self.columns
611 local = None
612
613 number_of_elements = int(columns[colname][0])
614 size_of_elements_in_bytes = int(columns[colname][1])
615 ctypecode_of_elements = columns[colname][2]
616 physical_unit_of_elements = columns[colname][3]
617
618 # snippet from the C++ source code, or header file to be precise:
619 #case 'L': gLog << "bool(8)"; break;
620 #case 'B': gLog << "byte(8)"; break;
621 #case 'I': gLog << "short(16)"; break;
622 #case 'J': gLog << "int(32)"; break;
623 #case 'K': gLog << "int(64)"; break;
624 #case 'E': gLog << "float(32)"; break;
625 #case 'D': gLog << "double(64)"; break;
626
627
628
629 # the fields inside the columns can either contain single numbers,
630 # or whole arrays of numbers as well.
631 # we treat single elements differently...
632 if number_of_elements == 1:
633 # allocate some memory for a single number according to its type
634 if ctypecode_of_elements == 'J': # J is for a 4byte int, i.e. an unsigned long
635 local = ctypes.c_ulong()
636 un_c_type = long
637 elif ctypecode_of_elements == 'I': # I is for a 2byte int, i.e. an unsinged int
638 local = ctypes.c_ushort()
639 un_c_type = int
640 elif ctypecode_of_elements == 'B': # B is for a byte
641 local = ctypes.c_ubyte()
642 un_c_type = int
643 elif ctypecode_of_elements == 'D':
644 local = ctypes.c_double()
645 un_c_type = float
646 elif ctypecode_of_elements == 'E':
647 local = ctypes.c_float()
648 un_c_type = float
649 elif ctypecode_of_elements == 'A':
650 local = ctypes.c_uchar()
651 un_c_type = chr
652 elif ctypecode_of_elements == 'K':
653 local = ctypes.c_ulonglong()
654 un_c_type = long
655 else:
656 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
657 else:
658 if ctypecode_of_elements == 'B': # B is for a byte
659 nptype = np.int8
660 elif ctypecode_of_elements == 'A': # A is for a char .. but I don't know how to handle it
661 nptype = np.int8
662 elif ctypecode_of_elements == 'I': # I is for a 2byte int
663 nptype = np.int16
664 elif ctypecode_of_elements == 'J': # J is for a 4byte int
665 nptype = np.int32
666 elif ctypecode_of_elements == 'K': # B is for a byte
667 nptype = np.int64
668 elif ctypecode_of_elements == 'E': # B is for a byte
669 nptype = np.float32
670 elif ctypecode_of_elements == 'D': # B is for a byte
671 nptype = np.float64
672 else:
673 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
674 local = np.zeros( number_of_elements, nptype)
675
676 # Set the Pointer Address
677 self.SetPtrAddress(colname, local)
678 self._table_cols[colname] = local
679 if number_of_elements > 1:
680 self.__dict__[colname] = local
681 self.dict[colname] = local
682 else:
683 # remove any traces of ctypes:
684 self.__dict__[colname] = local.value
685 self.dict[colname] = local.value
686 self._registered_cols.append(colname)
687
688
689 def _treat_meta_dict(self):
690 """make 'interesting' meta information available like normal members.
691 non interesting are:
692 TFORM, TUNIT, and TTYPE
693 since these are available via the columns dict.
694 """
695
696 self.number_of_rows = self.meta['NAXIS2'][0]
697 self.number_of_columns = self.meta['TFIELDS'][0]
698
699 # there are some information in the meta dict, which are alsways there:
700 # there are regarded as not interesting:
701 uninteresting_meta = {}
702 uninteresting_meta['arraylike'] = {}
703 uninteresting = ['NAXIS', 'NAXIS1', 'NAXIS2',
704 'TFIELDS',
705 'XTENSION','EXTNAME','EXTREL',
706 'BITPIX', 'PCOUNT', 'GCOUNT',
707 'ORIGIN',
708 'PACKAGE', 'COMPILED', 'CREATOR',
709 'TELESCOP','TIMESYS','TIMEUNIT','VERSION']
710 for key in uninteresting:
711 if key in self.meta:
712 uninteresting_meta[key]=self.meta[key]
713 del self.meta[key]
714
715 # the table meta data contains
716
717
718 # shortcut to access the meta dict. But this needs to
719 # be cleaned up quickly!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
720 meta = self.meta
721
722 # loop over keys:
723 # * try to find array-like keys
724 arraylike = {}
725 singlelike = []
726 for key in self.meta:
727 stripped = key.rstrip('1234567890')
728 if stripped == key:
729 singlelike.append(key)
730 else:
731 if stripped not in arraylike:
732 arraylike[stripped] = 0
733 else:
734 arraylike[stripped] += 1
735 newmeta = {}
736 for key in singlelike:
737 newmeta[key.lower()] = meta[key]
738 for key in arraylike:
739 uninteresting_meta['arraylike'][key.lower()] = []
740 for i in range(arraylike[key]+1):
741 if key+str(i) in meta:
742 uninteresting_meta['arraylike'][key.lower()].append(meta[key+str(i)])
743 self.ui_meta = uninteresting_meta
744 # make newmeta self
745 for key in newmeta:
746 self.__dict__[key]=newmeta[key]
747
748 dict = self.__dict__.copy()
749 del dict['meta']
750 del dict['ui_meta']
751 self.dict = dict
752
753 def __iter__(self):
754 """ iterator """
755 return self
756
757 def next(self):
758 """ use to iterate over the file
759
760 do not forget to call register() before iterating over the file
761 call show() in order to find out, what parameters register() accepts.
762 or just call register('all') in case you are unsure.
763
764 returns self
765 """
766 # Here one might check, if looping makes any sense, and if not
767 # one could stop looping or so...
768 # like this:
769 #
770 # if len(self._registered_cols) == 0:
771 # print 'warning: looping without any registered columns'
772 if self._current_row < self.number_of_rows:
773 if self.GetNextRow() == False:
774 raise StopIteration
775 for col in self._registered_cols:
776 if isinstance(self._table_cols[col], ctypes._SimpleCData):
777 self.__dict__[col] = self._table_cols[col].value
778 self.dict[col] = self._table_cols[col].value
779
780 for col in self.stacked_cols:
781 if isinstance(self.dict[col], type(np.array(''))):
782 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],self.dict[col]) )
783 else:
784 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],np.array(self.dict[col])) )
785 self._current_row += 1
786 else:
787 raise StopIteration
788 return self
789
790 def show(self):
791 """
792 """
793 pprint.pprint(self.dict)
794
795
796
797
798class fnames( object ):
799 """ organize file names of a FACT data run
800
801 """
802
803 def __init__(self, specifier = ['012', '023', '2011', '11', '24'],
804 rpath = '/scratch_nfs/res/bsl/',
805 zipped = True):
806 """
807 specifier : list of strings defined as:
808 [ 'DRS calibration file', 'Data file', 'YYYY', 'MM', 'DD']
809
810 rpath : directory path for the results; YYYYMMDD will be appended to rpath
811 zipped : use zipped (True) or unzipped (Data)
812
813 """
814
815 self.specifier = specifier
816 self.rpath = rpath
817 self.zipped = zipped
818
819 self.make( self.specifier, self.rpath, self.zipped )
820
821
822 def make( self, specifier, rpath, zipped ):
823 """ create (make) the filenames
824
825 names : dictionary of filenames, tags { 'data', 'drscal', 'results' }
826 data : name of the data file
827 drscal : name of the drs calibration file
828 results : radikal of file name(s) for results (to be completed by suffixes)
829 """
830
831 self.specifier = specifier
832
833 if zipped:
834 dpath = '/data00/fact-construction/raw/'
835 ext = '.fits.gz'
836 else:
837 dpath = '/data03/fact-construction/raw/'
838 ext = '.fits'
839
840 year = specifier[2]
841 month = specifier[3]
842 day = specifier[4]
843
844 yyyymmdd = year + month + day
845 dfile = specifier[1]
846 cfile = specifier[0]
847
848 rpath = rpath + yyyymmdd + '/'
849 self.rpath = rpath
850 self.names = {}
851
852 tmp = dpath + year + '/' + month + '/' + day + '/' + yyyymmdd + '_'
853 self.names['data'] = tmp + dfile + ext
854 self.names['drscal'] = tmp + cfile + '.drs' + ext
855 self.names['results'] = rpath + yyyymmdd + '_' + dfile + '_' + cfile
856
857 self.data = self.names['data']
858 self.drscal = self.names['drscal']
859 self.results = self.names['results']
860
861 def info( self ):
862 """ print complete filenames
863
864 """
865
866 print 'file names:'
867 print 'data: ', self.names['data']
868 print 'drs-cal: ', self.names['drscal']
869 print 'results: ', self.names['results']
870
871# end of class definition: fnames( object )
872
873def _test_SlowData( filename ):
874 print '-'*70
875 print "opened :", filename, " as 'file'"
876 print
877 print '-'*70
878 print 'type file.show() to look at its contents'
879 print "type file.register( columnname ) or file.register('all') in order to register columns"
880 print
881 print " due column-registration you declare, that you would like to retrieve the contents of one of the columns"
882 print " after column-registration, the 'file' has new member variables, they are named like the columns"
883 print " PLEASE NOTE: immediatly after registration, the members exist, but they are empty."
884 print " the values are assigned only, when you call file.next() or when you loop over the 'file'"
885 print
886 print "in order to loop over it, just go like this:"
887 print "for row in file:"
888 print " print row.columnname_one, row.columnname_two"
889 print
890 print ""
891 print '-'*70
892
893
894
895def _test_iter( nevents ):
896 """ test for function __iter__ """
897
898 data_file_name = '/data00/fact-construction/raw/2011/11/24/20111124_117.fits.gz'
899 calib_file_name = '/data00/fact-construction/raw/2011/11/24/20111124_114.drs.fits.gz'
900# data_file_name = '/home/luster/win7/FACT/data/raw/20120114/20120114_028.fits.gz'
901# calib_file_name = '/home/luster/win7/FACT/data/raw/20120114/20120114_022.drs.fits.gz'
902 run = RawData( data_file_name, calib_file_name , return_dict=True)
903
904 for event in run:
905 print 'ev ', event['event_id'], 'data[0,0] = ', event['acal_data'][0,0], 'start_cell[0] = ', event['start_cells'][0], 'trigger type = ', event['trigger_type']
906 if run.event_id == nevents:
907 break
908
909if __name__ == '__main__':
910 """ tests """
911 import sys
912 if len(sys.argv) == 1:
913 print 'showing test of iterator of RawData class'
914 print 'in order to test the SlowData classe please use:', sys.argv[0], 'fits-file-name'
915 _test_iter(10)
916
917
918 else:
919 print 'showing test of SlowData class'
920 print 'in case you wanted to test the RawData class, please give no commandline arguments'
921 file = SlowData(sys.argv[1])
922 _test_SlowData(sys.argv[1])
Note: See TracBrowser for help on using the repository browser.