source: fact/tools/pyscripts/pyfact/pyfact.py@ 20115

Last change on this file since 20115 was 17910, checked in by kraehenb, 10 years ago
Added fact03.ethz.ch to libz-list.
  • Property svn:executable set to *
File size: 39.2 KB
Line 
1#!/usr/bin/python -tt
2#
3# Werner Lustermann, Dominik Neise
4# ETH Zurich, TU Dortmund
5#
6import sys
7from ctypes import *
8import numpy as np
9import pprint # for SlowData
10from scipy import signal
11
12# get the ROOT stuff + my shared libs
13import ROOT
14# factfits_h.so is made from factfits.h and is used to access the data
15# make sure the location of factfits_h.so is in LD_LIBRARY_PATH.
16# having it in PYTHONPATH is *not* sufficient
17hostname = ROOT.gSystem.HostName()
18libz_path_dict = {
19 # hostname : /path/to/libz.so
20 'isdc' : "/usr/lib64/libz.so",
21 'neiseLenovo' : "/usr/lib/libz.so",
22 'factcontrol' : "/usr/lib/libz.so",
23 "max-K50AB" : "/usr/lib/x86_64-linux-gnu/libz.so",
24 "watz" : "/usr/lib/x86_64-linux-gnu/libz.so",
25 "fact03" : "/usr/lib/x86_64-linux-gnu/libz.so",
26 "grolsch" : "/usr/lib/i386-linux-gnu/libz.so",
27}
28libz_loaded = False
29for my_hostname in libz_path_dict:
30 if my_hostname in hostname:
31 ROOT.gSystem.Load(libz_path_dict[my_hostname])
32 libz_loaded = True
33if not libz_loaded:
34 print """Warning - Warning - Warning - Warning - Warning - Warning - Warning
35 I most probably need to load libz.so but I don't know where it is.
36
37 Please edit pyfact.py around line 16-24 and insert your hostname and your
38 path to your libz.so
39 Sorry for the inconvenience.
40 """
41 sys.exit(-1)
42
43
44#NOTE: This part has to be adapted for gcc > 4.7, where -std=c++11 can/should(?) be used.
45root_make_string = ROOT.gSystem.GetMakeSharedLib()
46if not "-std=c++0x" in root_make_string:
47 root_make_string = root_make_string.replace('$Opt', '$Opt -std=c++0x -D HAVE_ZLIB')
48ROOT.gSystem.SetMakeSharedLib(root_make_string)
49
50ROOT.gROOT.ProcessLine(".L extern_Mars_mcore/izstream.h+O")
51ROOT.gROOT.ProcessLine(".L extern_Mars_mcore/fits.h+O")
52ROOT.gROOT.ProcessLine(".L extern_Mars_mcore/zfits.h+O")
53ROOT.gROOT.ProcessLine(".L extern_Mars_mcore/factfits.h+O")
54ROOT.gROOT.ProcessLine(".L calfactfits.h+O")
55
56ROOT.gInterpreter.GenerateDictionary("map<string,fits::Entry>","map;string;extern_Mars_mcore/fits.h")
57ROOT.gInterpreter.GenerateDictionary("pair<string,fits::Entry>","map;string;extern_Mars_mcore/fits.h")
58ROOT.gInterpreter.GenerateDictionary("map<string,fits::Table::Column>","map;string;extern_Mars_mcore/fits.h")
59ROOT.gInterpreter.GenerateDictionary("pair<string,fits::Table::Column>","map;string;extern_Mars_mcore/fits.h")
60
61#ROOT.gSystem.Load('my_string_h.so')
62ROOT.gSystem.Load('extern_Mars_mcore/fits_h.so')
63ROOT.gSystem.Load('extern_Mars_mcore/izstream_h.so')
64ROOT.gSystem.Load('extern_Mars_mcore/zfits_h.so')
65ROOT.gSystem.Load('extern_Mars_mcore/factfits_h.so')
66ROOT.gSystem.Load('calfactfits_h.so')
67from ROOT import *
68
69class RawDataFeeder( object ):
70 """ Wrapper class for RawData class
71 capable of iterating over multiple RawData Files
72 """
73
74 def __init__(self, filelist):
75 """ *filelist* list of files to iterate over
76 the list should contain tuples, or sublists of two filenames
77 the first should be a data file (\*.fits.gz)
78 the second should be an amplitude calibration file(\*.drs.fits.gz)
79 """
80
81 self.__module__ = 'pyfact'
82
83 # sanity check for input
84 if type(filelist) != type(list()):
85 raise TypeError('filelist should be a list')
86 for entry in filelist:
87 if len(entry) != 2:
88 raise TypeError('the entries of filelist should have length == 2')
89 for path in entry:
90 if type(path) != type(str()):
91 raise TypeError('the entries of filelist should be path, i.e. of type str()')
92 #todo check if 'path' is a valid path
93 # else: throw an Exception, or Warning?
94
95 self.filelist = filelist
96 self._current_RawData = RawData(filelist[0][0], filelist[0][1], return_dict=True)
97 del filelist[0]
98
99 def __iter__(self):
100 return self
101
102 def next():
103 """ Method being called by the iterator.
104 Since the RawData Objects are simply looped over, the event_id from the
105 RawData object will not be unique.
106 Each RawData obejct will start with event_id = 1 as usual.
107 """
108 try:
109 return self._current_RawData.next()
110 except StopIteration:
111 # current_RawData was completely processed
112 # delete it (I hope this calls the destructor of the fits file and/or closes it)
113 del self._current_RawData
114 # and remake it, if possible
115 if len(self.filelist) > 0:
116 self._current_RawData = RawData(filelist[0][0], filelist[0][1], return_dict=True)
117 del filelist[0]
118 else:
119 raise
120
121
122
123class RawData( object ):
124 """ raw data access and calibration
125
126 class is **iterable**
127
128 - open raw data file and drs calibration file
129 - performs amplitude calibration
130 - performs baseline substraction if wanted
131 - provides all data in an array:
132 row = number of pixel
133 col = length of region of interest
134
135 """
136
137
138 def __init__(self, data_file_name, calib_file_name,
139 baseline_file_name='',
140 return_dict = True,
141 use_CalFactFits = True,
142 do_calibration = True,
143 user_action_calib=lambda acal_data, data, blm, tom, gm, scells, nroi: None):
144 """ -constructor-
145
146 - open data file and calibration data file
147 - get basic information about the data in data_file_name
148 - allocate buffers for data access
149
150 *data_file_name* : fits or fits.gz file of the data including the path
151
152 *calib_file_name* : fits or fits.gz file containing DRS calibration data
153
154 *baseline_file_name* : npy file containing the baseline values
155
156 *return_dict* : this option will be removed in future releases.
157 formerly the next() method returned only a subset of (important) event information,
158 and it was not transparent how to retrieve the other (less important) information.
159 Nowadays next() returns self.__dict__ which contains everything we were able to find in the fits file.
160
161 *use_CalFactFits* : formerly the DRS amplitude calibration was
162 implemented in python. But for performance reasons this was now moved into
163 a C++ class called CalFactFits. For test purposes, this option can be set to
164 False, but this is not really maintained anymore. If DRS the DRS calibration algorithm is
165 beeing updated in C++ it may not be updated in the python implementation.
166
167 *do_calibration* : In case *use_CalFactFits* is False, one may choose
168 not to calibrate the data at all, thus safe quite some time.
169 This is imho only needed in case one is interesting in learning something about the
170 calibration algorithm itself.
171
172 *user_action_calib* : callback function, intended for tests of the DRS calibration algorithm.
173 but since this is not done in the Python regime anymore, this function is never called.
174 (depending on *use_CalFactFits* of course)
175 """
176 self.__module__='pyfact'
177 # manual implementation of default value, but I need to find out
178 # if the user of this class is aware of the new option
179 if return_dict == False:
180 print 'DEPRECATION WARNING:'
181 print 'you are using RawData in a way, which is nor supported anymore.'
182 print ' Please set: return_dict = True, in the __init__ call'
183 self.return_dict = return_dict
184 self.use_CalFactFits = use_CalFactFits
185
186 self.do_calibration = do_calibration
187
188 self.data_file_name = data_file_name
189 self.calib_file_name = calib_file_name
190 self.baseline_file_name = baseline_file_name
191
192 self.user_action_calib = user_action_calib
193
194 # baseline correction: True / False
195 if len(baseline_file_name) == 0:
196 self.correct_baseline = False
197 else:
198 self.correct_baseline = True
199
200
201 # access data file
202 if use_CalFactFits:
203 try:
204 data_file = CalFactFits(data_file_name, calib_file_name)
205 except IOError:
206 print 'problem accessing data file: ', data_file_name
207 raise # stop ! no data
208
209 #: either CalFactFits object or FactFits object, depending on *use_CalFactFits*
210 self.data_file = data_file
211 #: 1440x300 nparray containing the event data. pixel sorted according to CHID
212 self.data = np.empty( data_file.npix * data_file.nroi, np.float64)
213 data_file.SetNpcaldataPtr(self.data)
214 self.data = self.data.reshape( data_file.npix, data_file.nroi )
215 #: copy of data. here for historical reasons
216 self.acal_data = self.data
217 #: region of interest. (number of DRS slices read).
218 # for FACT data mostly 300. for special runs sometimes 1024.
219 self.nroi = data_file.nroi
220 #: number of Pixel in FACT. should be 1440
221 self.npix = data_file.npix
222 #: the total number of events in the data_file
223 self.nevents = data_file.nevents
224
225 # Data per event
226 #: starting at 1
227 self.event_id = None
228
229 #: data=4 ; the rest I don't know by heart .. should be documented here :-)
230 self.trigger_type = None
231 #self.start_cells = None
232 #self.board_times = None
233 #: slice where drs readout started for all DRS chips (160) .. but enlarged to the size of 1440 pixel. thus there are always 9 equal numbers inside.
234 self.start_cells = np.zeros( self.npix, np.int16 )
235 #: each FAD has an onboard clock running from startup time. Currently I don't know the time unit. However this is an array of 40 times, since we have 40 boards.
236 self.board_times = np.zeros( 40, np.int32 )
237 self._unixtime_tuple = np.zeros( 2, np.int32 )
238 self.unixtime = None
239
240 # data_file is a CalFactFits object
241 # data_file.datafile is one of the two FactFits objects hold by a CalFactFits.
242 # sorry for the strange naming ..
243 data_file.datafile.SetPtrAddress('StartCellData', self.start_cells)
244 data_file.datafile.SetPtrAddress('BoardTime', self.board_times)
245 data_file.datafile.SetPtrAddress('UnixTimeUTC', self._unixtime_tuple)
246
247
248 else:
249 try:
250 data_file = factfits(self.data_file_name)
251 except IOError:
252 print 'problem accessing data file: ', data_file_name
253 raise # stop ! no data
254
255 self.data_file = data_file
256
257 # get basic information about the data file
258 self.nroi = data_file.GetUInt('NROI')
259 self.npix = data_file.GetUInt('NPIX')
260 self.nevents = data_file.GetNumRows()
261
262 # allocate the data memories
263 self.event_id = c_ulong()
264 self.trigger_type = c_ushort()
265 self.data = np.zeros( self.npix * self.nroi, np.int16 ).reshape(self.npix ,self.nroi)
266 self.start_cells = np.zeros( self.npix, np.int16 )
267 self.board_times = np.zeros( 40, np.int32 )
268 self._unixtime_tuple = np.zeros(2, np.int32 )
269
270 # set the pointers to the data++
271 data_file.SetPtrAddress('EventNum', self.event_id)
272 data_file.SetPtrAddress('TriggerType', self.trigger_type)
273 data_file.SetPtrAddress('StartCellData', self.start_cells)
274 data_file.SetPtrAddress('Data', self.data)
275 data_file.SetPtrAddress('BoardTime', self.board_times)
276 data_file.SetPtrAddress('UnixTimeUTC', self._unixtime_tuple)
277
278 # open the calibration file
279 try:
280 calib_file = factfits(self.calib_file_name)
281 except IOError:
282 print 'problem accessing calibration file: ', calib_file_name
283 raise
284 #: drs calibration file
285 self.calib_file = calib_file
286
287 baseline_mean = calib_file.GetN('BaselineMean')
288 gain_mean = calib_file.GetN('GainMean')
289 trigger_offset_mean = calib_file.GetN('TriggerOffsetMean')
290
291 self.Nblm = baseline_mean / self.npix
292 self.Ngm = gain_mean / self.npix
293 self.Ntom = trigger_offset_mean / self.npix
294
295 self.blm = np.zeros(baseline_mean, np.float32).reshape(self.npix , self.Nblm)
296 self.gm = np.zeros(gain_mean, np.float32).reshape(self.npix , self.Ngm)
297 self.tom = np.zeros(trigger_offset_mean, np.float32).reshape(self.npix , self.Ntom)
298
299 calib_file.SetPtrAddress('BaselineMean', self.blm)
300 calib_file.SetPtrAddress('GainMean', self.gm)
301 calib_file.SetPtrAddress('TriggerOffsetMean', self.tom)
302 calib_file.GetRow(0)
303
304 # make calibration constants double, so we never need to roll
305 self.blm = np.hstack((self.blm, self.blm))
306 self.gm = np.hstack((self.gm, self.gm))
307 self.tom = np.hstack((self.tom, self.tom))
308
309 self.v_bsl = np.zeros(self.npix) # array of baseline values (all ZERO)
310
311 def __iter__(self):
312 """ iterator """
313 return self
314
315 def next(self):
316 """ used by __iter__
317
318 returns self.__dict__
319 """
320 if self.use_CalFactFits:
321 if self.data_file.GetCalEvent() == False:
322 raise StopIteration
323 else:
324 self.event_id = self.data_file.event_id
325 self.trigger_type = self.data_file.event_triggertype
326 #self.start_cells = self.data_file.event_offset
327 #self.board_times = self.data_file.event_boardtimes
328 #self.acal_data = self.data.copy().reshape(self.data_file.npix, self.data_file.nroi)
329
330 self.unixtime = self._unixtime_tuple[0] + self._unixtime_tuple[1]/1.e6
331
332 else:
333 if self.data_file.GetNextRow() == False:
334 raise StopIteration
335 else:
336 if self.do_calibration == True:
337 self.calibrate_drs_amplitude()
338
339 #print 'nevents = ', self.nevents, 'event_id = ', self.event_id.value
340 if self.return_dict:
341 return self.__dict__
342 else:
343 return self.acal_data, self.start_cells, self.trigger_type.value
344
345 def next_event(self):
346 """ ---- DEPRICATED ----
347
348 load the next event from disk and calibrate it
349 """
350 if self.use_CalFactFits:
351 self.data_file.GetCalEvent()
352 else:
353 self.data_file.GetNextRow()
354 self.calibrate_drs_amplitude()
355
356 def calibrate_drs_amplitude(self):
357 """ --- DEPRICATED ---
358
359 since the DRS calibration is done by the C++ class CalFactFits
360
361 perform the drs amplitude calibration of the event data
362 """
363 # shortcuts
364 blm = self.blm
365 gm = self.gm
366 tom = self.tom
367
368 to_mV = 2000./4096.
369 #: 2D array with amplitude calibrated dat in mV
370 acal_data = self.data * to_mV # convert ADC counts to mV
371
372
373 for pixel in range( self.npix ):
374 #shortcuts
375 sc = self.start_cells[pixel]
376 roi = self.nroi
377 # rotate the pixel baseline mean to the Data startCell
378 acal_data[pixel,:] -= blm[pixel,sc:sc+roi]
379 # the 'trigger offset mean' does not need to be rolled
380 # on the contrary, it seems there is an offset in the DRS data,
381 # which is related to its distance to the startCell, not to its
382 # distance to the beginning of the physical pipeline in the DRS chip
383 acal_data[pixel,:] -= tom[pixel,0:roi]
384 # rotate the pixel gain mean to the Data startCell
385 acal_data[pixel,:] /= gm[pixel,sc:sc+roi]
386
387
388 self.acal_data = acal_data * 1907.35
389
390 self.user_action_calib( self.acal_data,
391 np.reshape(self.data, (self.npix, self.nroi) ), blm, tom, gm, self.start_cells, self.nroi)
392
393
394 def baseline_read_values(self, file, bsl_hist='bsl_sum/hplt_mean'):
395 """
396 open ROOT file with baseline histogram and read baseline values
397
398 *file* : name of the root file
399
400 *bsl_hist* : path to the histogram containing the basline values
401 """
402
403 try:
404 f = TFile(file)
405 except:
406 print 'Baseline data file could not be read: ', file
407 return
408
409 h = f.Get(bsl_hist)
410
411 for i in range(self.npix):
412 self.v_bsl[i] = h.GetBinContent(i+1)
413
414 f.Close()
415
416 def baseline_correct(self):
417 """ subtract baseline from the data
418
419 DN 08.06.2011: I didn't use this function at all so far... don't know how well it works.
420 """
421
422 for pixel in range(self.npix):
423 self.acal_data[pixel,:] -= self.v_bsl[pixel]
424
425 def info(self):
426 """ print run information
427
428 not very well implemented ... we need more info here.
429 """
430 print 'data file: ', self.data_file_name
431 print 'calib file: ', self.calib_file_name
432 print '... we need more information printed here ... '
433
434# -----------------------------------------------------------------------------
435class RawDataFake( object ):
436 """ raw data FAKE access similar to real RawData access
437
438 DO NOT USE ... its not working
439 """
440
441
442 def __init__(self, data_file_name, calib_file_name,
443 user_action_calib=lambda acal_data, data, blm, tom, gm, scells, nroi: None,
444 baseline_file_name=''):
445 self.__module__='pyfact'
446
447 self.nroi = 300
448 self.npix = 9
449 self.nevents = 1000
450
451 self.simulator = None
452
453 self.time = np.ones(1024) * 0.5
454
455
456 self.event_id = c_ulong(0)
457 self.trigger_type = c_ushort(4)
458 self.data = np.zeros( self.npix * self.nroi, np.int16 ).reshape(self.npix ,self.nroi)
459 self.start_cells = np.zeros( self.npix, np.int16 )
460 self.board_times = np.zeros( 40, np.int32 )
461 def __iter__(self):
462 """ iterator """
463 return self
464
465 def next(self):
466 """ used by __iter__ """
467 self.event_id = c_ulong(self.event_id.value + 1)
468 self.board_times = self.board_times + 42
469
470 if self.event_id.value >= self.nevents:
471 raise StopIteration
472 else:
473 self._make_event_data()
474
475 return self.__dict__
476
477 def _make_event_data(self):
478 sample_times = self.time.cumsum() - time[0]
479
480 # random start cell
481 self.start_cells = np.ones( self.npix, np.int16 ) * np.random.randint(0,1024)
482
483 starttime = self.start_cells[0]
484
485 signal = self._std_sinus_simu(sample_times, starttime)
486
487 data = np.vstack( (signal,signal) )
488 for i in range(8):
489 data = np.vstack( (data,signal) )
490
491 self.data = data
492
493 def _std_sinus_simu(self, times, starttime):
494 period = 10 # in ns
495
496 # give a jitter on starttime
497 starttime = np.random.normal(startime, 0.05)
498
499 phase = 0.0
500 signal = 10 * np.sin(times * 2*np.pi/period + starttime + phase)
501
502 # add some noise
503 noise = np.random.normal(0.0, 0.5, signal.shape)
504 signal += noise
505 return signal
506
507 def info(self):
508 """ print run information
509
510 """
511
512 print 'data file: ', data_file_name
513 print 'calib file: ', calib_file_name
514 print 'calibration file'
515 print 'N baseline_mean: ', self.Nblm
516 print 'N gain mean: ', self.Ngm
517 print 'N TriggeroffsetMean: ', self.Ntom
518
519# -----------------------------------------------------------------------------
520import ctypes
521
522class SlowData( object ):
523 """ -Fact SlowData File-
524
525 A Python wrapper for the fits-class implemented in factfits.h
526 provides easy access to the fits file meta data.
527
528 * dictionary of file metadata - self.meta
529 * dict of table metadata - self.columns
530 * variable table column access, thus possibly increased speed while looping
531 """
532 def __del__(self):
533 del self.f
534
535 def __init__(self, path):
536 """ creates meta and columns dictionaries
537 """
538 import os
539
540 if not os.path.exists(path):
541 raise IOError(path+' was not found')
542 self.path = path
543 self.__module__ = 'pyfact'
544 try:
545 self.f = factfits(path)
546 except IOError:
547 print 'problem accessing data file: ', data_file_name
548 raise # stop ! no data
549
550 self.meta = self._make_meta_dict()
551 self.columns = self._make_columns_dict()
552
553 self._treat_meta_dict()
554
555
556 # list of columns, which are already registered
557 # see method register()
558 self._registered_cols = []
559 # dict of column data, this is used, in order to be able to remove
560 # the ctypes of
561 self._table_cols = {}
562
563 # I need to count the rows, since the normal loop mechanism seems not to work.
564 self._current_row = 0
565
566 self.stacked_cols = {}
567
568 def _make_meta_dict__old(self):
569 """ This method retrieves meta information about the fits file and
570 stores this information in a dict
571 return: dict
572 key: string - all capital letters
573 value: tuple( numerical value, string comment)
574 """
575 # abbreviation
576 f = self.f
577
578 # intermediate variables for file metadata dict generation
579
580 keys=f.GetPy_KeyKeys()
581 values=f.GetPy_KeyValues()
582 comments=f.GetPy_KeyComments()
583 types=f.GetPy_KeyTypes()
584
585 if len(keys) != len(values):
586 raise TypeError('len(keys)',len(keys),' != len(values)', len(values))
587 if len(keys) != len(types):
588 raise TypeError('len(keys)',len(keys),' != len(types)', len(types))
589 if len(keys) != len(comments):
590 raise TypeError('len(keys)',len(keys),' != len(comments)', len(comments))
591
592 meta_dict = {}
593 for i in range(len(keys)):
594 type = types[i]
595 if type == 'I':
596 value = int(values[i])
597 elif type == 'F':
598 value = float(values[i])
599 elif type == 'B':
600 if values[i] == 'T':
601 value = True
602 elif values[i] == 'F':
603 value = False
604 else:
605 raise TypeError("meta-type is 'B', but meta-value is neither 'T' nor 'F'. meta-value:",values[i])
606 elif type == 'T':
607 value = values[i]
608 else:
609 raise TypeError("unknown meta-type: known meta types are: I,F,B and T. meta-type:",type)
610 meta_dict[keys[i]]=(value, comments[i])
611 return meta_dict
612
613 def _make_meta_dict(self):
614 meta_dict = {}
615 for key,entry in self.f.GetKeys():
616 type = entry.type
617 fitsString = entry.fitsString # the original 80-char line from the FITS header
618 comment = entry.comment
619 value = entry.value
620
621 if type == 'I':
622 value = int(value)
623 elif type == 'F':
624 value = float(value)
625 elif type == 'B':
626 if value == 'T':
627 value = True
628 elif value == 'F':
629 value = False
630 else:
631 raise TypeError("meta-type is 'B', but meta-value is neither 'T' nor 'F'. meta-value:",value)
632 elif type == 'T':
633 value = value
634 else:
635 raise TypeError("unknown meta-type: known meta types are: I,F,B and T. meta-type:",type)
636 meta_dict[key]=(value, comment)
637 return meta_dict
638
639
640
641 def _make_columns_dict(self):
642 """ This method retrieves information about the columns
643 stored inside the fits files internal binary table.
644 returns: dict
645 key: string column name -- all capital letters
646 values: tuple(
647 number of elements in table field - integer
648 size of element in bytes -- this is not really interesting for any user
649 might be ommited in future versions
650 type - a single character code -- should be translated into
651 a comrehensible word
652 unit - string like 'mV' or 'ADC count'
653 """
654 ## abbreviation
655 #f = self.f
656 #
657 ## intermediate variables for file table-metadata dict generation
658 #keys=f.GetPy_ColumnKeys()
659 ##offsets=self.GetPy_ColumnOffsets() #not needed on python level...
660 #nums=f.GetPy_ColumnNums()
661 #sizes=f.GetPy_ColumnSizes()
662 #types=f.GetPy_ColumnTypes()
663 #units=f.GetPy_ColumnUnits()
664
665 ## zip the values
666 #values = zip(nums,sizes,types,units)
667 ## create the columns dictionary
668 #columns = dict(zip(keys ,values))
669
670
671 columns = {}
672 for key,col in self.f.GetColumns():
673 columns[key]=( col.num, col.size, col.type, col.unit)
674 return columns
675
676 def stack(self, on=True):
677 self.next()
678 for col in self._registered_cols:
679 if isinstance( self.dict[col], type(np.array('')) ):
680 self.stacked_cols[col] = self.dict[col]
681 else:
682# elif isinstance(self.dict[col], ctypes._SimpleCData):
683 self.stacked_cols[col] = np.array(self.dict[col])
684# else:
685# raise TypeError("I don't know how to stack "+col+". It is of type: "+str(type(self.dict[col])))
686
687 def register(self, col_name):
688 """ register for a column in the fits file
689
690 after the call, this SlowData object will have a new member variable
691 self.col_name, if col_name is a key in self.colums
692
693 the value will be updated after each call of next(), or while iterating over self.
694 NB: the initial value is zero(s)
695
696 *col_name* : name of a key in self.columns, or 'all' to choose all.
697 """
698 columns = self.columns
699 if col_name.lower() == 'all':
700 for col in columns:
701 self._register(col)
702 else:
703 #check if colname is in columns:
704 if col_name not in columns:
705 error_msg = 'colname:'+ col_name +' is not a column in the binary table.\n'
706 error_msg+= 'possible colnames are\n'
707 for key in columns:
708 error_msg += key+' '
709 raise KeyError(error_msg)
710 else:
711 self._register(col_name)
712
713 # 'private' method, do not use
714 def _register( self, colname):
715
716 columns = self.columns
717 f = self.f
718 local = None
719
720 number_of_elements = int(columns[colname][0])
721 size_of_elements_in_bytes = int(columns[colname][1])
722 ctypecode_of_elements = columns[colname][2]
723 physical_unit_of_elements = columns[colname][3]
724
725 # snippet from the C++ source code, or header file to be precise:
726 #case 'L': gLog << "bool(8)"; break;
727 #case 'B': gLog << "byte(8)"; break;
728 #case 'I': gLog << "short(16)"; break;
729 #case 'J': gLog << "int(32)"; break;
730 #case 'K': gLog << "int(64)"; break;
731 #case 'E': gLog << "float(32)"; break;
732 #case 'D': gLog << "double(64)"; break;
733
734
735
736 # the fields inside the columns can either contain single numbers,
737 # or whole arrays of numbers as well.
738 # we treat single elements differently...
739 if number_of_elements == 0:
740 return
741 if number_of_elements == 1:
742 # allocate some memory for a single number according to its type
743 if ctypecode_of_elements == 'J': # J is for a 4byte int, i.e. an unsigned long
744 local = ctypes.c_ulong()
745 un_c_type = long
746 elif ctypecode_of_elements == 'I': # I is for a 2byte int, i.e. an unsinged int
747 local = ctypes.c_ushort()
748 un_c_type = int
749 elif ctypecode_of_elements == 'B': # B is for a byte
750 local = ctypes.c_ubyte()
751 un_c_type = int
752 elif ctypecode_of_elements == 'D':
753 local = ctypes.c_double()
754 un_c_type = float
755 elif ctypecode_of_elements == 'E':
756 local = ctypes.c_float()
757 un_c_type = float
758 elif ctypecode_of_elements == 'A':
759 local = ctypes.c_uchar()
760 un_c_type = chr
761 elif ctypecode_of_elements == 'K':
762 local = ctypes.c_ulonglong()
763 un_c_type = long
764 else:
765 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
766 else:
767 if ctypecode_of_elements == 'B': # B is for a byte
768 nptype = np.int8
769 elif ctypecode_of_elements == 'A': # A is for a char .. but I don't know how to handle it
770 nptype = np.int8
771 elif ctypecode_of_elements == 'I': # I is for a 2byte int
772 nptype = np.int16
773 elif ctypecode_of_elements == 'J': # J is for a 4byte int
774 nptype = np.int32
775 elif ctypecode_of_elements == 'K': # B is for a byte
776 nptype = np.int64
777 elif ctypecode_of_elements == 'E': # B is for a byte
778 nptype = np.float32
779 elif ctypecode_of_elements == 'D': # B is for a byte
780 nptype = np.float64
781 else:
782 raise TypeError('unknown ctypecode_of_elements:',ctypecode_of_elements)
783 local = np.zeros( number_of_elements, nptype)
784
785 # Set the Pointer Address
786 try:
787 f.SetPtrAddress(colname, local)
788 except TypeError:
789 print 'something was wrong with SetPtrAddress()'
790 print 'Type of colname', type(colname)
791 print 'colname:', colname
792 print 'Type of local', type(local)
793 print 'length of local', len(local)
794 print 'local should be alle zeros, since "local = np.zeros( number_of_elements, nptype)" '
795 raise
796
797 self._table_cols[colname] = local
798 if number_of_elements > 1:
799 self.__dict__[colname] = local
800 self.dict[colname] = local
801 else:
802 # remove any traces of ctypes:
803 self.__dict__[colname] = local.value
804 self.dict[colname] = local.value
805 self._registered_cols.append(colname)
806
807
808 def _treat_meta_dict(self):
809 """make 'interesting' meta information available like normal members.
810 non interesting are:
811 TFORM, TUNIT, and TTYPE
812 since these are available via the columns dict.
813 """
814
815 self.number_of_rows = self.meta['NAXIS2'][0]
816 self.number_of_columns = self.meta['TFIELDS'][0]
817
818 # there are some information in the meta dict, which are alsways there:
819 # there are regarded as not interesting:
820 uninteresting_meta = {}
821 uninteresting_meta['arraylike'] = {}
822 uninteresting = ['NAXIS', 'NAXIS1', 'NAXIS2',
823 'TFIELDS',
824 'XTENSION','EXTNAME','EXTREL',
825 'BITPIX', 'PCOUNT', 'GCOUNT',
826 'ORIGIN',
827 'PACKAGE', 'COMPILED', 'CREATOR',
828 'TELESCOP','TIMESYS','TIMEUNIT','VERSION']
829 for key in uninteresting:
830 if key in self.meta:
831 uninteresting_meta[key]=self.meta[key]
832 del self.meta[key]
833
834 # the table meta data contains
835
836
837 # shortcut to access the meta dict. But this needs to
838 # be cleaned up quickly!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
839 meta = self.meta
840
841 # loop over keys:
842 # * try to find array-like keys
843 arraylike = {}
844 singlelike = []
845 for key in self.meta:
846 stripped = key.rstrip('1234567890')
847 if stripped == key:
848 singlelike.append(key)
849 else:
850 if stripped not in arraylike:
851 arraylike[stripped] = 0
852 else:
853 arraylike[stripped] += 1
854 newmeta = {}
855 for key in singlelike:
856 newmeta[key.lower()] = meta[key]
857 for key in arraylike:
858 uninteresting_meta['arraylike'][key.lower()] = []
859 for i in range(arraylike[key]+1):
860 if key+str(i) in meta:
861 uninteresting_meta['arraylike'][key.lower()].append(meta[key+str(i)])
862 self.ui_meta = uninteresting_meta
863 # make newmeta self
864 for key in newmeta:
865 self.__dict__[key]=newmeta[key]
866
867 dict = self.__dict__.copy()
868 del dict['meta']
869 del dict['ui_meta']
870 self.dict = dict
871
872 def __iter__(self):
873 """ iterator """
874 return self
875
876 def next(self):
877 """ use to iterate over the file
878
879 do not forget to call register() before iterating over the file
880 call show() in order to find out, what parameters register() accepts.
881 or just call register('all') in case you are unsure.
882
883 returns self
884 """
885 # abbreviaition
886 f = self.f
887
888 # Here one might check, if looping makes any sense, and if not
889 # one could stop looping or so...
890 # like this:
891 #
892 # if len(self._registered_cols) == 0:
893 # print 'warning: looping without any registered columns'
894 if self._current_row < self.number_of_rows:
895 if f.GetNextRow() == False:
896 raise StopIteration
897 for col in self._registered_cols:
898 if isinstance(self._table_cols[col], ctypes._SimpleCData):
899 self.__dict__[col] = self._table_cols[col].value
900 self.dict[col] = self._table_cols[col].value
901
902 for col in self.stacked_cols:
903 if isinstance(self.dict[col], type(np.array(''))):
904 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],self.dict[col]) )
905 else:
906 self.stacked_cols[col] = np.vstack( (self.stacked_cols[col],np.array(self.dict[col])) )
907 self._current_row += 1
908 else:
909 raise StopIteration
910 return self
911
912 def show(self):
913 """
914 """
915 pprint.pprint(self.dict)
916
917
918
919
920class fnames( object ):
921 """ organize file names of a FACT data run
922
923 """
924
925 def __init__(self, specifier = ['012', '023', '2011', '11', '24'],
926 rpath = '/scratch_nfs/res/bsl/',
927 zipped = True):
928 """
929 specifier : list of strings defined as:
930 [ 'DRS calibration file', 'Data file', 'YYYY', 'MM', 'DD']
931
932 rpath : directory path for the results; YYYYMMDD will be appended to rpath
933 zipped : use zipped (True) or unzipped (Data)
934
935 """
936
937 self.specifier = specifier
938 self.rpath = rpath
939 self.zipped = zipped
940
941 self.make( self.specifier, self.rpath, self.zipped )
942
943
944 def make( self, specifier, rpath, zipped ):
945 """ create (make) the filenames
946
947 names : dictionary of filenames, tags { 'data', 'drscal', 'results' }
948 data : name of the data file
949 drscal : name of the drs calibration file
950 results : radikal of file name(s) for results (to be completed by suffixes)
951 """
952
953 self.specifier = specifier
954
955 if zipped:
956 dpath = '/data00/fact-construction/raw/'
957 ext = '.fits.gz'
958 else:
959 dpath = '/data03/fact-construction/raw/'
960 ext = '.fits'
961
962 year = specifier[2]
963 month = specifier[3]
964 day = specifier[4]
965
966 yyyymmdd = year + month + day
967 dfile = specifier[1]
968 cfile = specifier[0]
969
970 rpath = rpath + yyyymmdd + '/'
971 self.rpath = rpath
972 self.names = {}
973
974 tmp = dpath + year + '/' + month + '/' + day + '/' + yyyymmdd + '_'
975 self.names['data'] = tmp + dfile + ext
976 self.names['drscal'] = tmp + cfile + '.drs' + ext
977 self.names['results'] = rpath + yyyymmdd + '_' + dfile + '_' + cfile
978
979 self.data = self.names['data']
980 self.drscal = self.names['drscal']
981 self.results = self.names['results']
982
983 def info( self ):
984 """ print complete filenames
985
986 """
987
988 print 'file names:'
989 print 'data: ', self.names['data']
990 print 'drs-cal: ', self.names['drscal']
991 print 'results: ', self.names['results']
992
993# end of class definition: fnames( object )
994
995def _test_SlowData( filename ):
996 print '-'*70
997 print "opened :", filename, " as 'file'"
998 print
999 print '-'*70
1000 print 'type file.show() to look at its contents'
1001 print "type file.register( columnname ) or file.register('all') in order to register columns"
1002 print
1003 print " due column-registration you declare, that you would like to retrieve the contents of one of the columns"
1004 print " after column-registration, the 'file' has new member variables, they are named like the columns"
1005 print " PLEASE NOTE: immediatly after registration, the members exist, but they are empty."
1006 print " the values are assigned only, when you call file.next() or when you loop over the 'file'"
1007 print
1008 print "in order to loop over it, just go like this:"
1009 print "for row in file:"
1010 print " print row.columnname_one, row.columnname_two"
1011 print
1012 print ""
1013 print '-'*70
1014
1015
1016
1017def _test_iter( nevents ):
1018 """ test for function __iter__ """
1019
1020 data_file_name = '/fact/raw/2011/11/24/20111124_117.fits.gz'
1021 calib_file_name = '/fact/raw/2011/11/24/20111124_114.drs.fits.gz'
1022 print 'the files for this test are:'
1023 print 'data file:', data_file_name
1024 print 'calib file:', calib_file_name
1025 run = RawData( data_file_name, calib_file_name , return_dict=True)
1026
1027 for event in run:
1028 print 'ev ', event['event_id'], 'data[0,0] = ', event['acal_data'][0,0], 'start_cell[0] = ', event['start_cells'][0], 'trigger type = ', event['trigger_type']
1029 if run.event_id == nevents:
1030 break
1031
1032if __name__ == '__main__':
1033 """ tests """
1034
1035 f = fits(sys.argv[1])
1036 test_m1 = ROOT.std.map(str,ROOT.fits.Entry)()
1037 test_m2 = ROOT.std.map(str,ROOT.fits.Table.Column)()
1038 print "len(test_m1)", len(test_m1)
1039 print "len(test_m2)", len(test_m2)
1040
1041 for k1 in f.GetKeys():
1042 pass
1043 print k1
1044 for k2 in f.GetColumns():
1045 pass
1046 print k2
1047
1048 sd = SlowData(sys.argv[1])
Note: See TracBrowser for help on using the repository browser.