1 | #!/usr/bin/python
|
---|
2 | #
|
---|
3 | # Werner Lustermann
|
---|
4 | # ETH Zurich
|
---|
5 | #
|
---|
6 | from ctypes import *
|
---|
7 | import numpy as np
|
---|
8 | from scipy import signal
|
---|
9 |
|
---|
10 | # get the ROOT stuff + my shared libs
|
---|
11 | from ROOT import gSystem
|
---|
12 | # fitslib.so is made from fits.h and is used to access the data
|
---|
13 | gSystem.Load('~/py/fitslib.so')
|
---|
14 | from ROOT import *
|
---|
15 |
|
---|
16 |
|
---|
17 | class RawData( object ):
|
---|
18 | """ raw data access and calibration
|
---|
19 |
|
---|
20 | - open raw data file and drs calibration file
|
---|
21 | - performs amplitude calibration
|
---|
22 | - performs baseline substraction if wanted
|
---|
23 | - provides all data in an array:
|
---|
24 | row = number of pixel
|
---|
25 | col = length of region of interest
|
---|
26 |
|
---|
27 | """
|
---|
28 |
|
---|
29 | def __init__(self, data_file_name,
|
---|
30 | calib_file_name, baseline_file_name=''):
|
---|
31 | """ initialize object
|
---|
32 |
|
---|
33 | open data file and calibration data file
|
---|
34 | get basic information about the data in data_file_name
|
---|
35 | allocate buffers for data access
|
---|
36 |
|
---|
37 | data_file_name : fits or fits.gz file of the data including the path
|
---|
38 | calib_file_name : fits or fits.gz file containing DRS calibration data
|
---|
39 | baseline_file_name : npy file containing the baseline values
|
---|
40 |
|
---|
41 | """
|
---|
42 |
|
---|
43 | self.data_file_name = data_file_name
|
---|
44 | self.calib_file_name = calib_file_name
|
---|
45 | self.baseline_file_name = baseline_file_name
|
---|
46 |
|
---|
47 | # baseline correction: True / False
|
---|
48 | if len(baseline_file_name) == 0:
|
---|
49 | self.correct_baseline = False
|
---|
50 | else:
|
---|
51 | self.correct_baseline = True
|
---|
52 |
|
---|
53 | # access data file
|
---|
54 | try:
|
---|
55 | data_file = fits(self.data_file_name)
|
---|
56 | except IOError:
|
---|
57 | print 'problem accessing data file: ', data_file_name
|
---|
58 | raise # stop ! no data
|
---|
59 | #: data file (fits object)
|
---|
60 | self.data_file = data_file
|
---|
61 |
|
---|
62 | # get basic information about the data file
|
---|
63 | #: region of interest (number of DRS slices read)
|
---|
64 | self.nroi = data_file.GetUInt('NROI')
|
---|
65 | #: number of pixels (should be 1440)
|
---|
66 | self.npix = data_file.GetUInt('NPIX')
|
---|
67 | #: number of events in the data run
|
---|
68 | self.nevents = data_file.GetNumRows()
|
---|
69 |
|
---|
70 | # allocate the data memories
|
---|
71 | self.event_id = c_ulong()
|
---|
72 | self.trigger_type = c_ushort()
|
---|
73 | #: 1D array with raw data
|
---|
74 | self.data = np.zeros( self.npix * self.nroi, np.int16 )
|
---|
75 | #: slice where drs readout started
|
---|
76 | self.start_cells = np.zeros( self.npix, np.int16 )
|
---|
77 |
|
---|
78 | # set the pointers to the data++
|
---|
79 | data_file.SetPtrAddress('Event ID', self.event_id)
|
---|
80 | data_file.SetPtrAddress('TriggerType', self.trigger_type)
|
---|
81 | data_file.SetPtrAddress('StartCellData', self.start_cells)
|
---|
82 | data_file.SetPtrAddress('Data', self.data)
|
---|
83 |
|
---|
84 | # open the calibration file
|
---|
85 | try:
|
---|
86 | calib_file = fits(self.calib_file_name)
|
---|
87 | except IOError:
|
---|
88 | print 'problem accessing calibration file: ', calib_file_name
|
---|
89 | raise
|
---|
90 | #: drs calibration file
|
---|
91 | self.calib_file = calib_file
|
---|
92 |
|
---|
93 | baseline_mean = calib_file.GetN('BaselineMean')
|
---|
94 | gain_mean = calib_file.GetN('GainMean')
|
---|
95 | trigger_offset_mean = calib_file.GetN('TriggerOffsetMean')
|
---|
96 |
|
---|
97 | self.blm = np.zeros(baseline_mean, np.float32)
|
---|
98 | self.gm = np.zeros(gain_mean, np.float32)
|
---|
99 | self.tom = np.zeros(trigger_offset_mean, np.float32)
|
---|
100 |
|
---|
101 | self.Nblm = baseline_mean / self.npix
|
---|
102 | self.Ngm = gain_mean / self.npix
|
---|
103 | self.Ntom = trigger_offset_mean / self.npix
|
---|
104 |
|
---|
105 | calib_file.SetPtrAddress('BaselineMean', self.blm)
|
---|
106 | calib_file.SetPtrAddress('GainMean', self.gm)
|
---|
107 | calib_file.SetPtrAddress('TriggerOffsetMean', self.tom)
|
---|
108 | calib_file.GetRow(0)
|
---|
109 |
|
---|
110 | self.v_bsl = np.zeros(self.npix) # array of baseline values (all ZERO)
|
---|
111 | self.data_saverage_out = None
|
---|
112 | self.maxPos = None
|
---|
113 | self.maxAmp = None
|
---|
114 |
|
---|
115 | def next_event(self):
|
---|
116 | """ load the next event from disk and calibrate it
|
---|
117 |
|
---|
118 | """
|
---|
119 |
|
---|
120 | self.data_file.GetNextRow()
|
---|
121 | self.calibrate_drs_amplitude()
|
---|
122 |
|
---|
123 | def calibrate_drs_amplitude(self):
|
---|
124 | """ perform the drs amplitude calibration of the event data
|
---|
125 |
|
---|
126 | """
|
---|
127 |
|
---|
128 | to_mV = 2000./4096.
|
---|
129 | #: 2D array with amplitude calibrated dat in mV
|
---|
130 | acal_data = self.data * to_mV # convert ADC counts to mV
|
---|
131 |
|
---|
132 | # make 2D arrays: row = pixel, col = drs_slice
|
---|
133 | acal_data = np.reshape(acal_data, (self.npix, self.nroi) )
|
---|
134 | blm = np.reshape(self.blm, (self.npix, 1024) )
|
---|
135 | tom = np.reshape(self.tom, (self.npix, 1024) )
|
---|
136 | gm = np.reshape(self.gm, (self.npix, 1024) )
|
---|
137 |
|
---|
138 | for pixel in range( self.npix ):
|
---|
139 | # rotate the pixel baseline mean to the Data startCell
|
---|
140 | blm_pixel = np.roll( blm[pixel,:], -self.start_cells[pixel] )
|
---|
141 | acal_data[pixel,:] -= blm_pixel[0:self.nroi]
|
---|
142 | acal_data[pixel,:] -= tom[pixel, 0:self.nroi]
|
---|
143 | acal_data[pixel,:] /= gm[pixel, 0:self.nroi]
|
---|
144 |
|
---|
145 | self.acal_data = acal_data * 1907.35
|
---|
146 |
|
---|
147 |
|
---|
148 | def filter_sliding_average(self, window_size=4):
|
---|
149 | """ sliding average filter
|
---|
150 |
|
---|
151 | using:
|
---|
152 | self.acal_data
|
---|
153 | filling array:
|
---|
154 | self.data_saverage_out
|
---|
155 |
|
---|
156 | """
|
---|
157 |
|
---|
158 | #scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
|
---|
159 | data_saverage_out = self.acal_data.copy()
|
---|
160 | b = np.ones( window_size )
|
---|
161 | a = np.zeros( window_size )
|
---|
162 | a[0] = len(b)
|
---|
163 | data_saverage_out[:,:] = signal.lfilter(b, a, data_saverage_out[:,:])
|
---|
164 |
|
---|
165 | #: data output of sliding average filter
|
---|
166 | self.data_saverage_out = data_saverage_out
|
---|
167 |
|
---|
168 |
|
---|
169 | def filter_CFD(self, length=10, ratio=0.75):
|
---|
170 | """ constant fraction discriminator (implemented as FIR)
|
---|
171 |
|
---|
172 | using:
|
---|
173 | self.data_saverage_out
|
---|
174 | filling array:
|
---|
175 | self.data_CFD_out
|
---|
176 |
|
---|
177 | """
|
---|
178 |
|
---|
179 | if self.data_saverage_out == None:
|
---|
180 | print """error pyfact.filter_CFD was called without
|
---|
181 | prior call to filter_sliding_average
|
---|
182 | variable self.data_saverage_out is needed
|
---|
183 | """
|
---|
184 |
|
---|
185 | data_CFD_out = self.data_saverage_out.copy()
|
---|
186 | b = np.zeros(length)
|
---|
187 | a = np.zeros(length)
|
---|
188 | b[0] = -1. * ratio
|
---|
189 | b[length-1] = 1.
|
---|
190 | a[0] = 1.
|
---|
191 | data_CFD_out[:,:] = signal.lfilter(b, a, data_CFD_out[:,:])
|
---|
192 |
|
---|
193 | #: data output of the constant fraction discriminator
|
---|
194 | self.data_CFD_out = data_CFD_out
|
---|
195 |
|
---|
196 | def find_peak(self, min=30, max=250):
|
---|
197 | """ find maximum in search window
|
---|
198 |
|
---|
199 | using:
|
---|
200 | self.data_saverage_out
|
---|
201 | filling arrays:
|
---|
202 | self.maxPos
|
---|
203 | self.maxAmp
|
---|
204 |
|
---|
205 | """
|
---|
206 |
|
---|
207 | if self.data_saverage_out == None:
|
---|
208 | print 'error pyfact.find_peakMax was called without prior call to filter_sliding_average'
|
---|
209 | print ' variable self.data_saverage_out is needed '
|
---|
210 | pass
|
---|
211 |
|
---|
212 | maxPos = np.argmax( self.data_saverage_out[:,min:max], 1)
|
---|
213 | maxAmp = np.max( self.data_saverage_out[:,min:max], 1)
|
---|
214 | self.maxPos = maxPos
|
---|
215 | self.maxAmp = maxAmp
|
---|
216 |
|
---|
217 | def sum_around_peak(self, left=13, right=23):
|
---|
218 | """ integrate signal in gate around Peak
|
---|
219 |
|
---|
220 | using:
|
---|
221 | self.maxPos
|
---|
222 | self.acal_data
|
---|
223 | filling array:
|
---|
224 | self.sums
|
---|
225 |
|
---|
226 | """
|
---|
227 |
|
---|
228 | if self.maxPos == None:
|
---|
229 | print 'error pyfact.sum_around_peak was called without prior call of find_peak'
|
---|
230 | print ' variable self.maxPos is needed'
|
---|
231 | pass
|
---|
232 |
|
---|
233 | # find left and right limit and sum the amplitudes in the range
|
---|
234 | sums = np.empty(self.npix)
|
---|
235 | for pixel in range(self.npix):
|
---|
236 | min = self.maxPos[pixel]-left
|
---|
237 | max = self.maxPos[pixel]+right
|
---|
238 | sums[pixel] = self.acal_data[pixel,min:max].sum()
|
---|
239 |
|
---|
240 | self.sums = sums
|
---|
241 |
|
---|
242 | def baseline_read_values(self, file, bsl_hist='bsl_sum/hplt_mean'):
|
---|
243 | """
|
---|
244 |
|
---|
245 | open ROOT file with baseline histogram and read baseline values
|
---|
246 | file name of the root file
|
---|
247 | bsl_hist path to the histogram containing the basline values
|
---|
248 |
|
---|
249 | """
|
---|
250 |
|
---|
251 | try:
|
---|
252 | f = TFile(file)
|
---|
253 | except:
|
---|
254 | print 'Baseline data file could not be read: ', file
|
---|
255 | return
|
---|
256 |
|
---|
257 | h = f.Get(bsl_hist)
|
---|
258 |
|
---|
259 | for i in range(self.npix):
|
---|
260 | self.v_bsl[i] = h.GetBinContent(i+1)
|
---|
261 |
|
---|
262 | f.Close()
|
---|
263 |
|
---|
264 | def baseline_correct(self):
|
---|
265 | """ subtract baseline from the data
|
---|
266 |
|
---|
267 | """
|
---|
268 |
|
---|
269 | for pixel in range(self.npix):
|
---|
270 | self.acal_data[pixel,:] -= self.v_bsl[pixel]
|
---|
271 |
|
---|
272 | def info(self):
|
---|
273 | """ print run information
|
---|
274 |
|
---|
275 | """
|
---|
276 |
|
---|
277 | print 'data file: ', data_file_name
|
---|
278 | print 'calib file: ', calib_file_name
|
---|
279 | print 'calibration file'
|
---|
280 | print 'N baseline_mean: ', self.Nblm
|
---|
281 | print 'N gain mean: ', self.Ngm
|
---|
282 | print 'N TriggeroffsetMean: ', self.Ntom
|
---|
283 |
|
---|
284 | # --------------------------------------------------------------------------------
|
---|
285 | class fnames( object ):
|
---|
286 | """ organize file names of a FACT data run
|
---|
287 |
|
---|
288 | """
|
---|
289 |
|
---|
290 | def __init__(self, specifier = ['012', '023', '2011', '11', '24'],
|
---|
291 | rpath = '/scratch_nfs/res/bsl/',
|
---|
292 | zipped = True):
|
---|
293 | """
|
---|
294 | specifier : list of strings defined as:
|
---|
295 | [ 'DRS calibration file', 'Data file', 'YYYY', 'MM', 'DD']
|
---|
296 |
|
---|
297 | rpath : directory path for the results; YYYYMMDD will be appended to rpath
|
---|
298 | zipped : use zipped (True) or unzipped (Data)
|
---|
299 |
|
---|
300 | """
|
---|
301 |
|
---|
302 | self.specifier = specifier
|
---|
303 | self.rpath = rpath
|
---|
304 | self.zipped = zipped
|
---|
305 |
|
---|
306 | self.make( self.specifier, self.rpath, self.zipped )
|
---|
307 |
|
---|
308 |
|
---|
309 | def make( self, specifier, rpath, zipped ):
|
---|
310 | """ create (make) the filenames
|
---|
311 |
|
---|
312 | names : dictionary of filenames, tags { 'data', 'drscal', 'results' }
|
---|
313 | data : name of the data file
|
---|
314 | drscal : name of the drs calibration file
|
---|
315 | results : radikal of file name(s) for results (to be completed by suffixes)
|
---|
316 | """
|
---|
317 |
|
---|
318 | self.specifier = specifier
|
---|
319 |
|
---|
320 | if zipped:
|
---|
321 | dpath = '/data00/fact-construction/raw/'
|
---|
322 | ext = '.fits.gz'
|
---|
323 | else:
|
---|
324 | dpath = '/data03/fact-construction/raw/'
|
---|
325 | ext = '.fits'
|
---|
326 |
|
---|
327 | year = specifier[2]
|
---|
328 | month = specifier[3]
|
---|
329 | day = specifier[4]
|
---|
330 |
|
---|
331 | yyyymmdd = year + month + day
|
---|
332 | dfile = specifier[1]
|
---|
333 | cfile = specifier[0]
|
---|
334 |
|
---|
335 | rpath = rpath + yyyymmdd + '/'
|
---|
336 | self.rpath = rpath
|
---|
337 | self.names = {}
|
---|
338 |
|
---|
339 | tmp = dpath + year + '/' + month + '/' + day + '/' + yyyymmdd + '_'
|
---|
340 | self.names['data'] = tmp + dfile + ext
|
---|
341 | self.names['drscal'] = tmp + cfile + '.drs' + ext
|
---|
342 | self.names['results'] = rpath + yyyymmdd + '_' + dfile + '_' + cfile
|
---|
343 |
|
---|
344 | self.data = self.names['data']
|
---|
345 | self.drscal = self.names['drscal']
|
---|
346 | self.results = self.names['results']
|
---|
347 |
|
---|
348 | def info( self ):
|
---|
349 | """ print complete filenames
|
---|
350 |
|
---|
351 | """
|
---|
352 |
|
---|
353 | print 'file names:'
|
---|
354 | print 'data: ', self.names['data']
|
---|
355 | print 'drs-cal: ', self.names['drscal']
|
---|
356 | print 'results: ', self.names['results']
|
---|
357 |
|
---|
358 | # end of class definition: fnames( object )
|
---|
359 |
|
---|
360 | if __name__ == '__main__':
|
---|
361 | """
|
---|
362 | create an instance
|
---|
363 | """
|
---|
364 | data_file_name = '/data03/fact-construction/raw/2011/11/24/20111124_121.fits'
|
---|
365 | calib_file_name = '/data03/fact-construction/raw/2011/11/24/20111124_111.drs.fits'
|
---|
366 | rd = rawdata( data_file_name, calib_file_name )
|
---|
367 | rd.info()
|
---|
368 | rd.next()
|
---|
369 |
|
---|
370 | # for i in range(10):
|
---|
371 | # df.GetNextRow()
|
---|
372 |
|
---|
373 | # print 'evNum: ', evNum.value
|
---|
374 | # print 'start_cells[0:9]: ', start_cells[0:9]
|
---|
375 | # print 'evData[0:9]: ', evData[0:9]
|
---|