source: fact/tools/pyscripts/sandbox/dneise/gapd_template_fit/gapdpulse.py@ 20115

Last change on this file since 20115 was 14253, checked in by neise, 12 years ago
the fit is nice3
  • Property svn:executable set to *
File size: 4.2 KB
Line 
1#!/usr/bin/python -itt
2
3import numpy as np
4
5from scipy import optimize
6from numpy import *
7
8class Parameter:
9 def __init__(self, value):
10 self.value = value
11
12 def set(self, value):
13 self.value = value
14
15 def __call__(self):
16 return self.value
17
18def fit(function, parameters, y, x = None):
19 def f(params):
20 i = 0
21 for p in parameters:
22 p.set(params[i])
23 i += 1
24 return y - function(x)
25
26 if x is None: x = arange(y.shape[0])
27 p = [param() for param in parameters]
28 optimize.leastsq(f, p)
29
30
31class gapdpulse( object ):
32
33 bsl = -1.0
34 height = 18.0
35 start = 50.
36 rising = 1.2
37 tau1 = 7.
38 tau2 = 25.
39 noise = 0.0001
40 sampling = False
41
42 def __call__(self, x):
43 if type(x) != type(np.empty(1)):
44 x = np.array(x)
45 val = np.zeros(x.shape)
46 zeros = np.zeros(x.shape)
47
48 #shortcuts
49 bsl = self.bsl()
50 height = self.height()
51 start = self.start()
52 rising = self.rising()
53 tau1 = self.tau1()
54 tau2 = self.tau2()
55
56 val += bsl
57
58
59
60 # this is not really the maximum, but about it.... so I call it max
61 max = start + rising * tau1
62
63 e1 = height * (1 - np.exp(-(x-start)/tau1 ) )
64 e2 = -1 * height * (1 - np.exp(-(x-max)/tau2 ) )
65 val += np.where( x>start , e1, zeros)
66 val += np.where( x>max , e2, zeros)
67
68 val += np.random.normal(0, self.noise, x.shape)
69
70 #sampling
71 self.presampling = val.copy()
72 if self.sampling == True:
73 val = np.round(val*2)/2.0
74 self.postsampling = val.copy()
75 return val
76
77
78
79
80
81
82
83# Target function, 6 parameters
84def fitfunc( p, x):
85
86 # give names to the parameters
87 bsl = p[0]
88 height = p[1]
89 start = p[2]
90 rising = p[3]
91 tau1 = p[4]
92 tau2 = p[5]
93
94 # these are just helper variables
95 max = start + rising * tau1
96 e1 = height * (1 - np.exp(-(x-start)/tau1 ) ) # the rising edge
97 e2 = -1 * height * (1 - np.exp(-(x-max)/tau2 ) )# the falling edge
98
99 y = bsl
100 if x > start:
101 y += e1
102 if x > max:
103 y += e2
104 return y
105
106def fitfunc2(p, x):
107 # give names to the parameters
108 bsl = p[0] # just the baseline
109 height = p[1] # this is not the pulse height, but the maximum of the discharging edge
110 # it *would* be the pulse height only in case the
111 # recharging process would set in later...
112
113 start = p[2] # start of avalanche aka start of discharge of diode capacitance
114 stop = p[3] # stop of avalanche, or start of recharging of diode
115 tau1 = p[4] # time constant of discharging process
116 tau2 = p[5] # time constant of recharging process
117
118 # these are just helper variables
119
120 e1 = height * (1 - np.exp(-(x-start)/tau1 ) )
121 e2 = -1 * height * (1 - np.exp(-(x-stop)/tau2 ) )
122 zeros = np.zeros(x.shape)
123
124 y = np.zeros(x.shape)
125 y += bsl
126 y += np.where( x>start , e1, zeros)
127 y += np.where( x>stop , e2, zeros)
128 return y
129
130
131
132# Distance to the Targetfunction
133def errfunc( p, x , y):
134 return fitfunc2(p, x) - y
135
136
137
138if __name__ == '__main__':
139 import matplotlib.pyplot as plt
140 plt.ion()
141 from gen_TH1D import SignalGeneratorCSV
142
143 g = SignalGeneratorCSV('EdgeOverlayTemplate_AllPixel_1440_0.csv')
144
145 x = np.linspace(0,300,300,False)
146
147 fig = plt.figure()
148 plt.grid(True)
149
150 plt.plot(x,g.csv_maxprob, label='max prob')
151
152 pnames = ['bsl', 'height', 'start','stop','tau1','tau2']
153
154 p0 = [-1., 10., 50., 70, 30., 30.] # Initial guess for the parameters
155
156 # plot function before fitting
157 #plt.plot( x, fitfunc2( p0, x) , '.:')
158
159 p1, success = optimize.leastsq(errfunc, p0[:], args=(x[0:300], g.csv_maxprob[0:300]))
160
161 # plot function after fitting
162 plt.plot( x, fitfunc2( p1, x) , '.:')
163 print 'Start values:'
164 for par,name in zip(p0,pnames):
165 print name, ':', par
166 print
167 print
168 print '------------------'
169 print 'Fit parameters'
170 for par,name in zip(p1,pnames):
171 print name, ':', par
172 print '------------------'
173
174 print 'Fit successfull?:',bool(success)
175
176
Note: See TracBrowser for help on using the repository browser.