source: fact/tools/pyscripts/sandbox/dneise/rdietlic/ftcal.py@ 14098

Last change on this file since 14098 was 13530, checked in by neise, 13 years ago
changed default filename and added check if file exists
File size: 6.9 KB
Line 
1#!/usr/bin/python
2#
3# Werner Lustermann
4# ETH Zurich
5#
6import pyfact
7from myhisto import *
8from hist import *
9import numpy as np
10import numpy.random as rnd
11from scipy import interpolate as ip
12from ROOT import *
13from time import time
14from optparse import OptionParser
15
16t_s = time()
17
18import os.path
19import sys
20#dfname = '/data03/fact-construction/raw/2011/11/24/20111124_121.fits'
21#calfname = '/data03/fact-construction/raw/2011/11/24/20111124_111.drs.fits'
22
23
24#dfname = '/data00/fact-construction/raw/2011/11/24/20111124_113.fits.gz'
25#calfname = '/data00/fact-construction/raw/2011/11/24/20111124_111.drs.fits.gz'
26
27dfname = '/data00/fact-construction/raw/2012/02/23/20120223_205.fits.gz'
28calfname = '/data00/fact-construction/raw/2012/02/23/20120223_202.drs.fits.gz'
29
30if not os.path.isfile(dfname):
31 print dfname, 'is not a file!!!!'
32 sys.exit(1)
33if not os.path.isfile(calfname):
34 print calfname, 'is not a file'
35 sys.exit(2)
36
37rd = pyfact.rawdata( dfname, calfname )
38
39fsampling = 2. # sampling frequency
40freq = 250. # testfrequency
41P_nom = 1000./freq # nominal Period due to testfrequency
42DAMPING = 0.02 # Damping applied to correction
43NChip = 1 # Number of Chips
44NEvents = 300
45
46
47parser = OptionParser()
48parser.add_option('-e', '--extended', action = 'store_true', dest='extend', default = False )
49(options, args) = parser.parse_args()
50
51save = "yes"
52
53if(options.extend):
54
55 NChip = int(raw_input("Wieviele Chips? ([1, ... , "+str(rd.NPIX/9)+"]): "))
56 NEventsp = int(raw_input("Wieviele Events? ([1, ... , "+str(rd.NEvents)+"]) "))
57 save = raw_input("Soll CellTime gespeichert werden? (yes/no) ")
58
59
60h = hist_list(tcalHistograms, NChip, "Chip")
61
62
63# Functions needed for calibration
64
65# find negative-going crossings of mean value
66def Crossing(Data, Mean, t_nom, Start, Chip):
67 TimeXing = np.zeros(rd.NROI)
68 MeanXing = np.zeros(rd.NROI)
69 NumXing = 0
70 CellTime = CellTimef(np.roll(t_nom, -Start))
71
72 for i in range(rd.NROI-1):
73 if ((Data[i] > Mean) & (Data[i+1] < Mean)):
74 MeanXing[NumXing] = i
75
76 FirstCell = CellTime[i]
77 SecondCell = CellTime[i+1]
78
79 TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/(Data[i]))
80 NumXing += 1
81
82 # calculate the frequency of the testwave
83 freqp = fsampling*NumXing*1000./1024
84 if(np.abs(freqp-freq) > 20):
85 print "This is not a timecalibration run!!"
86 raise SystemExit
87
88 return MeanXing, TimeXing, NumXing
89
90def CrossingOliver(Data, Mean, t_nom, Start, Chip):
91 TimeXing = np.zeros(lpipe)
92 MeanXing = np.zeros(lpipe)
93 NumXing = 0
94 CellTime = CellTimef(t_nom)
95
96
97 for i in range(lpipe-1):
98 if ((Data[i] > Mean) & (Data[i+1] < Mean)):
99 MeanXing[NumXing] = np.mod(i+Start, lpipe)
100
101 FirstCell = CellTime[np.mod(i+Start,lpipe)]
102 SecondCell = CellTime[np.mod(i+1+Start, lpipe)]
103
104 if(SecondCell < FirstCell): SecondCell =+ lpipe/fsampl
105
106 TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/(Data[i]))
107 NumXing += 1
108
109
110 return MeanXing, TimeXing, NumXing
111
112# Determine time between crossings and apply correction
113def Corr(MeanXing, NumXing, TimeXing, t_nom, Start, Chip):
114
115 # loop over mean crossings
116 for i in range(int(NumXing-1)):
117 I1 = MeanXing[i]
118 I2 = MeanXing[i+1]
119 Period = TimeXing[i+1] - TimeXing[i]
120
121
122 if(np.abs(1-Period/P_nom) > 0.2):
123 #print "Skipping zero crossing due to too large deviation of period."
124 h.list[Chip].dict["loleftout"].Fill(MeanXing[i])
125 #h.list[Chip].dict["leftout"].Fill(np.mod((MeanXing[i]+Start), rd.NROI))
126 continue
127
128 #h.list[Chip].dict["lomeanxing"].Fill(MeanXing[i])
129 h.list[Chip].dict["meanxing"].Fill(np.mod((MeanXing[i]+Start), rd.NROI))
130
131 # calculate the frequency of the testwave
132 freqp = 1000./Period
133 h.list[Chip].dict["freq"].Fill(freqp)
134
135 C = (P_nom-Period)*DAMPING
136 numnom = Period*fsampling
137 Correction = np.zeros(rd.NROI)
138 Correction[I1+1:I2+1] += C/numnom
139 Correction[:I1+1] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
140 Correction[I2+1:] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
141
142 Correction = np.roll(Correction, Start)
143 t_nom += Correction
144 #h.list[Chip].dict["lomeanxing"].Fill(MeanXing[-1])
145 h.list[Chip].dict["meanxing"].Fill(np.mod((MeanXing[-1]+Start), rd.NROI))
146
147 return t_nom
148
149def CorrOliver(MeanXing, NumXing, TimeXing, t_nom, Start, Chip):
150
151 CellTime = CellTimef(t_nom)
152 for i in range(int(NumXing-1)):
153 I1 = MeanXing[i]
154 I2 = MeanXing[i+1]
155 Period = TimeXing[i+1] - TimeXing[i]
156 if(Period<0): Period += rd.NROI/fsampl
157
158 if(np.abs(1-Period/P_nom) > 0.2):
159 #print "Skipping zero crossing due to too large deviation of period."
160 continue
161
162 Correction = (P_nom-Period)*DAMPING
163
164 # Positive correction from MeanXing[i] to MeanXing[i+1]
165 # and negative to all others
166 Time = 0
167 for j in range(rd.NROI):
168 diff = CellTime[j+1] - CellTime[j]
169 if ((I2>I1 and j>I1 and j<=I2) or (I2<I1 and (j<=I2 or j>I1))):
170 diff += Correction/np.mod(I2-I1+rd.NROI, rd.NROI)
171 else:
172 diff -= Correction/(rd.NROI-np.mod(I2-I1+rd.NROI, rd.NROI))
173 CellTime[j] = Time
174 Time += diff
175 CellTime[rd.NROI] = Time
176
177 print CellTime[-1]
178 t_nom = t_nomf(CellTime)
179
180 return t_nom
181
182
183
184# Summing up the nominal times for each cell to the total cell time.
185def CellTimef(t_nom):
186 CellTime = np.zeros(rd.NROI+1)
187 for i in range(rd.NROI):
188 CellTime[i+1] = CellTime[i] + t_nom[i]
189
190 return CellTime
191
192# getting t_nom from CellTime
193def t_nomf(CellTime):
194 t_nom = np.zeros(rd.NROI)
195 for i in range(rd.NROI):
196 t_nom[i] = CellTime[i+1]-CellTime[i]
197
198 return t_nom
199
200
201rd.next()
202NPIX = NChip*9
203NEvents = NEventsp
204
205# create array to put the calibrated times for each cell in
206t_nom = np.ones([NPIX, rd.NROI])/fsampling
207# loop over events
208for Event in range( NEvents ):
209 print "Event ", Event
210 Chip = 0
211
212 # loop over every 9th channel in Chip
213 for Pix in range(NPIX)[8::9]:
214 print "Pix ", Pix
215
216 # calculate t_nom for each pixel
217 MeanXing, TimeXing, NumXing = Crossing(rd.acalData[Pix], np.average(rd.acalData[Pix]), t_nom[Pix], rd.startCells[Pix], Chip)
218 h.list[Chip].dict["numxing"].Fill(NumXing)
219 #h.list[Chip].dict["start"].Fill(rd.startCells[Pix])
220 t_nom[Pix] = Corr(MeanXing, NumXing, TimeXing, t_nom[Pix], rd.startCells[Pix], Chip)
221
222 Chip += 1
223
224 rd.next()
225
226t_nom = t_nom[8::9]
227
228if(save == "yes"):
229 np.save(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
230 np.savetxt(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
231
232for Chip in range(NChip):
233 for i in range(rd.NROI):
234 h.list[Chip].dict["int_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][:i])-i*1/fsampling)
235 h.list[Chip].dict["diff_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][i] - 1/fsampling))
236
237pyfact.SaveHistograms(h.list, str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip)+".root", "RECREATE")
238
239
240t_f = time()
241
242
243
244print "time ellapsed = ", (t_f - t_s)/60., " min."
245print "Speichern = ", save
246print "NChip = ", NChip
247print "NEvents = ", NEventsp
248print "Histo saved as = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".root"
249if(save == "yes"):
250 print "CellTime saved as = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".npy"
251
Note: See TracBrowser for help on using the repository browser.