source: fact/tools/pyscripts/sandbox/dneise/rdietlic/ftcal2.py@ 14473

Last change on this file since 14473 was 13368, checked in by neise, 13 years ago
initial commit of my sandbox
File size: 3.9 KB
Line 
1#!/usr/bin/python
2#
3# Remo Dietlicher
4# ETH Zurich
5# Semesterarbeit
6#
7import pyfact
8from myhisto import *
9from hist import *
10import numpy as np
11import numpy.random as rnd
12from scipy import interpolate as ip
13from ROOT import *
14from time import time
15from optparse import OptionParser
16
17def ftcal(NChip, NEventsp, h,
18 dfname = '/data00/fact-construction/raw/2011/11/24/20111124_014.fits.gz',
19 calfname = '/data00/fact-construction/raw/2011/11/24/20111124_012.drs.fits.gz'):
20
21 rd = pyfact.rawdata( dfname, calfname )
22
23 fsampling = 1024./512. # sampling frequency
24 freq = 250. # testfrequency
25 P_nom = 1000./freq # nominal Period due to testfrequency
26 DAMPING = 0.02 # Damping applied to correction
27
28
29 # Functions needed for calibration
30 # find negative-going crossings of mean value
31 def Crossing(Data, Mean, t_nom, Start, Chip):
32 TimeXing = np.zeros(rd.NROI)
33 MeanXing = np.zeros(rd.NROI)
34 NumXing = 0
35 CellTime = CellTimef(np.roll(t_nom, -Start))
36
37 for i in range(rd.NROI-1):
38 if ((Data[i] > Mean) & (Data[i+1] < Mean)):
39 MeanXing[NumXing] = i
40
41 FirstCell = CellTime[i]
42 SecondCell = CellTime[i+1]
43
44 TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/(Data[i]))
45 NumXing += 1
46
47 # calculate the frequency of the testwave
48 freqp = fsampling*NumXing*1000./1024
49 if(np.abs(freqp-freq) > 20):
50 print "This is not a timecalibration run!!"
51 raise SystemExit
52
53 return MeanXing, TimeXing, NumXing
54
55 # Determine time between crossings and apply correction
56 def Corr(MeanXing, NumXing, TimeXing, t_nom, Start, Chip, Event):
57
58 Ctot = np.zeros(NumXing)
59
60 # loop over mean crossings
61 for i in range(int(NumXing-1)):
62 I1 = MeanXing[i]
63 I2 = MeanXing[i+1]
64 Period = TimeXing[i+1] - TimeXing[i]
65
66
67 if(np.abs(1-Period/P_nom) > 0.2):
68 continue
69
70
71 if(Event == NEvents-1):
72 h.list[Chip].dict["periods"].Fill(Period)
73 if(Event == 0):
74 h.list[Chip].dict["periods0"].Fill(Period)
75
76
77
78 # calculate the frequency of the testwave
79 freqp = 1000./Period
80
81 C = (P_nom-Period)*DAMPING
82 Ctot[i] = P_nom-Period
83
84
85 numnom = Period*fsampling
86 Correction = np.zeros(rd.NROI)
87 Correction[I1+1:I2+1] += C/numnom
88 Correction[:I1+1] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
89 Correction[I2+1:] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
90
91 Correction = np.roll(Correction, Start)
92 t_nom += Correction
93
94
95 if(Event > 200):
96 h.list[Chip].dict["perioddevproj"].Fill(np.average(Ctot))
97 h.list[Chip].dict["perioddev"].SetBinContent(Event+1, np.average(np.abs(Ctot)))
98
99 return t_nom
100
101
102 # Summing up the nominal times for each cell to the total cell time.
103 def CellTimef(t_nom):
104 CellTime = np.zeros(rd.NROI+1)
105 for i in range(rd.NROI):
106 CellTime[i+1] = CellTime[i] + t_nom[i]
107
108 return CellTime
109
110 # getting t_nom from CellTime
111 def t_nomf(CellTime):
112 t_nom = np.zeros(rd.NROI)
113 for i in range(rd.NROI):
114 t_nom[i] = CellTime[i+1]-CellTime[i]
115
116 return t_nom
117
118
119 rd.next()
120 NPIX = NChip*9
121 NEvents = NEventsp
122
123 # create array to put the calibrated times for each cell in
124 t_nom = np.ones([NPIX, rd.NROI])/fsampling
125 DataTot = np.zeros([NEvents, NChip, rd.NROI])
126
127 # loop over events
128 for Event in range( NEvents ):
129 print "Event ", Event
130 Chip = 0
131
132 # loop over every 9th channel in Chip
133 for Pix in range(NPIX)[8::9]:
134 print "Pix ", Pix
135
136 # calculate t_nom for each pixel
137 MeanXing, TimeXing, NumXing = Crossing(rd.acalData[Pix], np.average(rd.acalData[Pix]), t_nom[Pix], rd.startCells[Pix], Chip)
138 t_nom[Pix] = Corr(MeanXing, NumXing, TimeXing, t_nom[Pix], rd.startCells[Pix], Chip, Event)
139
140 DataTot[Event][Chip] = np.roll(rd.acalData[Pix], rd.startCells[Pix])
141
142 Chip += 1
143
144 rd.next()
145
146 CellTime = np.zeros([NPIX, rd.NROI+1])
147
148 DataMean = np.average(DataTot, 0)
149
150 for Pix in range(NPIX):
151 CellTime[Pix] = CellTimef(t_nom[Pix])
152
153 t_nom = t_nom[8::9]
154 CellTime = CellTime[8::9]
155
156
157 return CellTime, DataMean
158
Note: See TracBrowser for help on using the repository browser.