| 1 | # Programm zur Jitter-Bestimmung
|
|---|
| 2 | #
|
|---|
| 3 | #
|
|---|
| 4 | # Remo Dietlicher
|
|---|
| 5 | # ETH Zürich
|
|---|
| 6 | #
|
|---|
| 7 | #
|
|---|
| 8 |
|
|---|
| 9 |
|
|---|
| 10 | import pyfact
|
|---|
| 11 | from myhisto import *
|
|---|
| 12 | from hist import *
|
|---|
| 13 | import numpy as np
|
|---|
| 14 | import numpy.random as rnd
|
|---|
| 15 | from scipy import interpolate as ip
|
|---|
| 16 | from ROOT import *
|
|---|
| 17 | from time import time
|
|---|
| 18 | from optparse import OptionParser
|
|---|
| 19 |
|
|---|
| 20 | jitterSummary = jitterHistograms( "jitter" )
|
|---|
| 21 |
|
|---|
| 22 |
|
|---|
| 23 | Data0 = np.loadtxt("20120106T162310_ch0.txt")
|
|---|
| 24 |
|
|---|
| 25 | NEvents, NROI = np.shape(Data0)
|
|---|
| 26 |
|
|---|
| 27 | Start0 = np.loadtxt("20120106T162310_start_ch0.txt")
|
|---|
| 28 |
|
|---|
| 29 | Data8 = np.loadtxt("20120106T162310_ch8.txt")
|
|---|
| 30 |
|
|---|
| 31 | Start8 = np.loadtxt("20120106T162310_start_ch8.txt")
|
|---|
| 32 |
|
|---|
| 33 | for i in range(NROI):
|
|---|
| 34 | jitterSummary.dict["data0"].SetBinContent(i+1, Data0[10][i])
|
|---|
| 35 | jitterSummary.dict["data8"].SetBinContent(i+1, Data8[10][i])
|
|---|
| 36 |
|
|---|
| 37 | Thresh = 250
|
|---|
| 38 |
|
|---|
| 39 | #rCellTime = np.load("Remo_dat_1000x15123.npy")
|
|---|
| 40 | rCellTime = np.load("CellTimeOliver.npy")
|
|---|
| 41 |
|
|---|
| 42 |
|
|---|
| 43 | def Crossing(Data):
|
|---|
| 44 |
|
|---|
| 45 | TimeXing = "gugus"
|
|---|
| 46 | CellTime = np.roll(rCellTime, -int(Start0[Event][0]))
|
|---|
| 47 |
|
|---|
| 48 | for i in range(NROI-1):
|
|---|
| 49 |
|
|---|
| 50 | if((Data[i] < Thresh) & (Data[i+1] > Thresh) & (Data[np.mod(i+300, NROI)] > Thresh)):
|
|---|
| 51 |
|
|---|
| 52 | FirstCell = CellTime[i]
|
|---|
| 53 | SecondCell = CellTime[i+1]
|
|---|
| 54 |
|
|---|
| 55 | TimeXing = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Thresh/(Data[i]))
|
|---|
| 56 |
|
|---|
| 57 | return TimeXing
|
|---|
| 58 |
|
|---|
| 59 | Diff = np.zeros(NEvents)
|
|---|
| 60 |
|
|---|
| 61 | count = 0
|
|---|
| 62 |
|
|---|
| 63 | for Event in range(NEvents):
|
|---|
| 64 | print Event
|
|---|
| 65 |
|
|---|
| 66 | Time0 = Crossing(Data0[Event])
|
|---|
| 67 | Time8 = Crossing(Data8[Event])
|
|---|
| 68 |
|
|---|
| 69 | if((Time0 == "gugus") or (Time8 == "gugus")):
|
|---|
| 70 | count += 1
|
|---|
| 71 | continue
|
|---|
| 72 |
|
|---|
| 73 | Diff[Event] = Time0 - Time8
|
|---|
| 74 | jitterSummary.dict["diff"].Fill(Diff[Event])
|
|---|
| 75 |
|
|---|
| 76 | pyfact.SaveHistograms([jitterSummary], "Jitter_Histo_Oliver.root", "RECREATE")
|
|---|
| 77 |
|
|---|
| 78 | print "Number of skipped events: ", count
|
|---|
| 79 | print "Histo saved as = ", "Jitter_Histo.root"
|
|---|
| 80 |
|
|---|
| 81 |
|
|---|
| 82 |
|
|---|
| 83 |
|
|---|
| 84 |
|
|---|
| 85 |
|
|---|
| 86 |
|
|---|
| 87 |
|
|---|
| 88 |
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 |
|
|---|
| 93 |
|
|---|
| 94 |
|
|---|
| 95 |
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 |
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 |
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|
| 114 |
|
|---|