source: fact/tools/pyscripts/sandbox/dneise/rdietlic/pyfact.py@ 18123

Last change on this file since 18123 was 13531, checked in by neise, 13 years ago
changed path to so lib
  • Property svn:executable set to *
File size: 7.0 KB
Line 
1#!/usr/bin/python2.6
2#
3# Werner Lustermann
4# ETH Zurich
5#
6from ctypes import *
7
8# get the ROOT stuff + my shared libs
9from ROOT import gSystem
10gSystem.Load('pyfits_h.so')
11from ROOT import *
12
13import numpy as np
14
15
16class rawdata( object ):
17 """
18 raw data access and calibration
19 """
20 def __init__( self, dfname, calfname ):
21 """
22 open data file and calibration data file
23 get basic information about the data inf dfname
24 allocate buffers for data access
25
26 dfname - fits or fits.gz file containing the data including the path
27 calfname - fits or fits.gz file containing DRS calibration data
28 """
29 self.dfname = dfname
30 self.calfname = calfname
31
32 # access data file
33 try:
34 df = fits( self.dfname )
35 except IOError:
36 print 'problem accessing data file: ', dfname
37 raise # stop ! no data
38 self.df = df
39
40 # get basic information about the data file
41 self.NROI = df.GetUInt( 'NROI' ) # region of interest (length of DRS pipeline read out)
42 self.NPIX = df.GetUInt( 'NPIX' ) # number of pixels (should be 1440)
43 self.NEvents = df.GetNumRows() # find number of events
44 # allocate the data memories
45 self.evNum = c_ulong()
46 self.Data = np.zeros( self.NPIX * self.NROI, np.int16 )
47 self.startCells = np.zeros( self.NPIX, np.int16 )
48 # set the pointers to the data++
49 df.SetPtrAddress( 'EventNum', self.evNum )
50 df.SetPtrAddress( 'StartCellData', self.startCells ) # DRS readout start cell
51 df.SetPtrAddress( 'Data', self.Data ) # this is what you would expect
52 # df.GetNextRow() # access the first event
53
54 # access calibration file
55 try:
56 calf = fits( self.calfname )
57 except IOError:
58 print 'problem accessing calibration file: ', calfname
59 raise
60 self.calf = calf
61 #
62 BaselineMean = calf.GetN('BaselineMean')
63 GainMean = calf.GetN('GainMean')
64 TriggerOffsetMean = calf.GetN('TriggerOffsetMean')
65
66 self.blm = np.zeros( BaselineMean, np.float32 )
67 self.gm = np.zeros( GainMean, np.float32 )
68 self.tom = np.zeros( TriggerOffsetMean, np.float32 )
69
70 self.Nblm = BaselineMean / self.NPIX
71 self.Ngm = GainMean / self.NPIX
72 self.Ntom = TriggerOffsetMean / self.NPIX
73
74 calf.SetPtrAddress( 'BaselineMean', self.blm )
75 calf.SetPtrAddress( 'GainMean', self.gm )
76 calf.SetPtrAddress( 'TriggerOffsetMean', self.tom )
77 calf.GetRow(0)
78
79 self.v_bsl = np.zeros( self.NPIX ) # array with baseline values (all ZERO)
80
81 def next( self ):
82 """
83 load the next event from disk and calibrate it
84 """
85 self.df.GetNextRow()
86 self.calibrate_drsAmplitude()
87
88
89 def calibrate_drsAmplitude( self ):
90 """
91 perform amplitude calibration for the event
92 """
93 tomV = 2000./4096.
94 acalData = self.Data * tomV # convert into mV
95
96 # reshape arrays: row = pixel, col = drs_slice
97 acalData = np.reshape( acalData, (self.NPIX, self.NROI) )
98 blm = np.reshape( self.blm, (self.NPIX, self.NROI) )
99 tom = np.reshape( self.tom, (self.NPIX, self.NROI) )
100 gm = np.reshape( self.gm, (self.NPIX, self.NROI) )
101
102 # print 'acal Data ', acalData.shape
103 # print 'blm shape ', blm.shape
104 # print 'gm shape ', gm.shape
105
106 for pixel in range( self.NPIX ):
107 # rotate the pixel baseline mean to the Data startCell
108 blm_pixel = np.roll( blm[pixel,:], -self.startCells[pixel] )
109 acalData[pixel,:] -= blm_pixel[0:self.NROI]
110 acalData[pixel,:] -= tom[pixel, 0:self.NROI]
111 acalData[pixel,:] /= gm[pixel, 0:self.NROI]
112
113 self.acalData = acalData * 1907.35
114
115 # print 'acalData ', self.acalData[0:2,0:20]
116
117 def ReadBaseline( self, file, bsl_hist = 'bsl_sum/hplt_mean' ):
118 """
119 open ROOT file with baseline histogram and read baseline values
120 file name of the root file
121 bsl_hist path to the histogram containing the basline values
122 """
123 try:
124 f = TFile( file )
125 except:
126 print 'Baseline data file could not be read: ', file
127 return
128
129 h = f.Get( bsl_hist )
130
131 for i in range( self.NPIX ):
132 self.v_bsl[i] = h.GetBinContent( i+1 )
133
134 f.Close()
135
136
137 def CorrectBaseline( self ):
138 """
139 apply baseline correction
140 """
141 for pixel in range( self.NPIX ):
142 self.acalData[pixel,:] -= self.v_bsl[pixel]
143
144
145 def info( self ):
146 """
147 print information
148 """
149 print 'data file: ', dfname
150 print 'calib file: ', calfname
151 print '\ncalibration file'
152 print 'N BaselineMean: ', self.Nblm
153 print 'N GainMean: ', self.Ngm
154 print 'N TriggeroffsetMean: ', self.Ntom
155
156
157class histogramList( object ):
158
159 def __init__( self, name ):
160 """ set the name and create empty lists """
161 self.name = name # name of the list
162 self.list = [] # list of the histograms
163 self.dict = {} # dictionary of histograms
164 self.hList = TObjArray() # list a la ROOT of the histograms
165
166 def add( self, tag, h ):
167 self.list.append( h )
168 self.dict[tag] = h
169 self.hList.Add( h )
170
171
172class pixelHisto1d ( object ):
173
174 def __init__( self, name, title, Nbin, first, last, xtitle, ytitle, NPIX ):
175 """
176 book one dimensional histograms for each pixel
177 """
178 self.name = name
179
180 self.list = [ x for x in range( NPIX ) ]
181 self.hList = TObjArray()
182
183 for pixel in range( NPIX ):
184
185 hname = name + ' ' + str( pixel )
186 htitle = title + ' ' + str( pixel )
187 self.list[pixel] = TH1F( hname, htitle, Nbin, first, last )
188
189 self.list[pixel].GetXaxis().SetTitle( xtitle )
190 self.list[pixel].GetYaxis().SetTitle( ytitle )
191 self.hList.Add( self.list[pixel] )
192
193
194def SaveHistograms( histogramLists, fname = 'histo.root', opt = 'RECREATE' ):
195 """
196 Saves all histograms in all given histogram lists to a root file
197 Each histogram list is saved to a separate directory
198 """
199 rf = TFile( fname, opt)
200
201 for list in histogramLists:
202 rf.mkdir( list.name )
203 rf.cd( list.name )
204 list.hList.Write()
205
206 rf.Close()
207
208# simple test method
209if __name__ == '__main__':
210 """
211 create an instance
212 """
213 dfname = '/data03/fact-construction/raw/2011/11/24/20111124_121.fits'
214 calfname = '/data03/fact-construction/raw/2011/11/24/20111124_111.drs.fits'
215 rd = rawdata( dfname, calfname )
216 rd.info()
217 rd.next()
218
219# for i in range(10):
220# df.GetNextRow()
221
222# print 'evNum: ', evNum.value
223# print 'startCells[0:9]: ', startCells[0:9]
224# print 'evData[0:9]: ', evData[0:9]
Note: See TracBrowser for help on using the repository browser.