#!/usr/bin/python -tt # # Werner Lustermann # ETH Zurich # import numpy as np import fir_filter as fir class DRSSpikes(object): """ remove spikes (single or double false readings) from DRS4 data Strategy: * filter the data, removing the signal, thus spike(s) are clearly visible * search single and double spikes * replace the spike by a value derived from the neighbors """ def __init__(self, threshold=7., single_pattern=np.array( [-0.5, 1.0, -0.5]) , double_pattern=np.array([-1., 1., 1., -1.]), user_action=lambda DRSSpikes_instance: None, debug = False): """ initialize spike filter template_single: template of a single slice spike template_double: template of a two slice spike """ self.threshold = threshold self.single_pattern = single_pattern * threshold self.double_pattern = double_pattern * threshold self.remove_signal = fir.RemoveSignal() self.user_action = user_action self.debug = debug def __call__(self, data): self.row, self.col = data.shape indicator = self.remove_signal(data) a = indicator.flatten() singles = [] doubles = [] # a spike in the first or last channel is considered as a filter artefact candidates = np.where(a[1:-2] > self.threshold) # candidates = np.where(a[1:1022] > self.threshold) cc = candidates[0] #print 'cc: ', cc #: find single spikes p = self.single_pattern * np.sign( self.single_pattern ) for i, can in enumerate( zip(a[cc], a[cc+1], a[cc+2]) ): #print 'can : p', can, p can = can * np.sign(self.single_pattern) if np.all(can > p): singles.append(cc[i]) #: find double spikes p = self.double_pattern * np.sign( self.double_pattern ) for i, can in enumerate( zip(a[cc], a[cc+1], a[cc+2], a[cc+3]) ): #print 'data: ', [data[0,cc[i]+k] for k in range(3)] #print 'can : p', can, p can = can * np.sign(self.double_pattern) if np.all(can > p): doubles.append(cc[i]) if self.debug: print 'singles: ', singles print 'doubles: ', doubles # make relevant information a member, self.singles = singles self.doubles = doubles self.indicator = a self.candidates = cc self.user_action(self) data = self.remove_single_spikes(singles, data) data = self.remove_double_spikes(doubles, data) return data def remove_single_spikes(self, singles, data): data = data.flatten() for spike in singles: data[spike] = (data[spike-1] + data[spike+1]) / 2. return data.reshape(self.row, self.col) def remove_double_spikes(self, doubles, data): data = data.flatten() for spike in doubles: data[spike:spike+2] = (data[spike-1] + data[spike+2]) / 2. return data.reshape(self.row, self.col) def _test(): a = np.ones((3,12)) * 3. a[0,3] = 7. a[1,7] = 14. a[1,8] = 14. a[2,4] = 50. a[2,5] = 45. a[2,8] = 20. print a SpikeRemover = DRSSpikes(3., debug=True) print 'single spike pattern ', SpikeRemover.single_pattern print 'double spike pattern ', SpikeRemover.double_pattern afilt = SpikeRemover(a) print afilt if __name__ == '__main__': """ test the class """ _test()