1 | #!/usr/bin/python -itt
|
---|
2 |
|
---|
3 | import sys
|
---|
4 | import numpy as np
|
---|
5 |
|
---|
6 | import rlcompleter
|
---|
7 | import readline
|
---|
8 | readline.parse_and_bind('tab: complete')
|
---|
9 |
|
---|
10 | import matplotlib.pyplot as plt
|
---|
11 | from scipy.interpolate import InterpolatedUnivariateSpline
|
---|
12 |
|
---|
13 |
|
---|
14 | Wavelength_dependency_description_files = [
|
---|
15 | "030/Transmittance_1439Cones_FACT_bearbeitet.txt",
|
---|
16 | "030/fact-pde-1.4V.txt",
|
---|
17 | "030/MirrorReflectivity_Lustermann_FACT_bearbeitet.txt" ]
|
---|
18 |
|
---|
19 | angular_acceptance_files = [
|
---|
20 | "030/fact-cones-angular-acceptance.txt" ]
|
---|
21 |
|
---|
22 | def interpolate_from_files( filenames , debugging_graphics = False):
|
---|
23 |
|
---|
24 | if debugging_graphics:
|
---|
25 | plt.ion()
|
---|
26 | fig = plt.figure()
|
---|
27 |
|
---|
28 | splines = []
|
---|
29 | x_values = []
|
---|
30 |
|
---|
31 | for filename in filenames:
|
---|
32 | data = readfile( filename)
|
---|
33 | x_values += data[:,0].tolist()
|
---|
34 | spline = InterpolatedUnivariateSpline(data[:,0],data[:,1])
|
---|
35 | splines.append(spline)
|
---|
36 | if debugging_graphics:
|
---|
37 | plt.plot(data[:,0],data[:,1],'.',label=filename[4:14])
|
---|
38 | plt.plot(data[:,0],spline(data[:,0]),':',label=filename[4:14]+'_intpol')
|
---|
39 |
|
---|
40 |
|
---|
41 | x_values = np.array(sorted(list(set(x_values))))
|
---|
42 | y_values = np.ones( x_values.shape )
|
---|
43 | for spline in splines:
|
---|
44 | y_values *= spline( x_values )
|
---|
45 |
|
---|
46 | full_spline = InterpolatedUnivariateSpline(x_values,y_values)
|
---|
47 |
|
---|
48 | if debugging_graphics:
|
---|
49 | plt.plot(x_values,y_values, '.:',label="full_spline")
|
---|
50 | plt.legend()
|
---|
51 | plt.grid(True)
|
---|
52 |
|
---|
53 | return full_spline
|
---|
54 |
|
---|
55 |
|
---|
56 |
|
---|
57 | def readfile(filename):
|
---|
58 |
|
---|
59 | f = open(filename)
|
---|
60 | lines = []
|
---|
61 |
|
---|
62 | for index, line in enumerate(f):
|
---|
63 | line = line.split()
|
---|
64 | if len(line) == 0:
|
---|
65 | continue
|
---|
66 | if '#' in line[0]:
|
---|
67 | continue
|
---|
68 | line = map(float, line)
|
---|
69 |
|
---|
70 | #print index, line
|
---|
71 |
|
---|
72 | lines.append(line)
|
---|
73 |
|
---|
74 | data = np.array(lines)
|
---|
75 | return data
|
---|
76 |
|
---|
77 | def test( filename ):
|
---|
78 | data = readfile(filename)
|
---|
79 |
|
---|
80 | x = data[:,0]
|
---|
81 | y = data[:,1]
|
---|
82 |
|
---|
83 | plt.ion()
|
---|
84 | fig = plt.figure()
|
---|
85 | plt.plot(x,y, '.',label="original data")
|
---|
86 |
|
---|
87 |
|
---|
88 | spline = InterpolatedUnivariateSpline(x,y)
|
---|
89 | xx = np.linspace( x[0], x[-1], len(x)*10)
|
---|
90 |
|
---|
91 | plt.plot(xx,spline(xx), ':', label="spline interpolation")
|
---|
92 |
|
---|
93 |
|
---|
94 | if __name__ == '__main__':
|
---|
95 | if len(sys.argv) > 1:
|
---|
96 | print ('trying to interpolate %s' % (sys.argv[1],))
|
---|
97 | test(sys.argv[1])
|
---|
98 | else:
|
---|
99 | wavelength_efficiency = interpolate_from_files(
|
---|
100 | Wavelength_dependency_description_files , True)
|
---|
101 | angular_acceptance = interpolate_from_files( angular_acceptance_files, True )
|
---|
102 |
|
---|