source: fact/tools/pyscripts/simulation/old_and_tests/reflector_old.py@ 14963

Last change on this file since 14963 was 14805, checked in by neise, 12 years ago
initial commit
  • Property svn:executable set to *
File size: 24.6 KB
Line 
1#!/usr/bin/python -itt
2
3import struct
4import sys
5import numpy as np
6from pprint import pprint
7import rlcompleter
8import readline
9readline.parse_and_bind('tab: complete')
10from ROOT import *
11import readcorsika
12import matplotlib.pyplot as plt
13
14
15def length( v ):
16 return np.sqrt(np.dot(x,x))
17
18def matrix_times_vector( m , v):
19 vout = v.copy()
20 for index,line in enumerate(m):
21 vout[index] = np.dot(line,v)
22
23 return vout
24
25def make_rotation_matrix( nn, a ):
26 R = np.zeros( (3,3) )
27 R[0,0] = nn[0]*nn[0] * (1-np.cos(a)) + np.cos(a)
28 R[1,0] = nn[0]*nn[1] * (1-np.cos(a)) + nn[2]*np.sin(a)
29 R[2,0] = nn[0]*nn[2] * (1-np.cos(a)) - nn[1]*np.sin(a)
30
31 R[0,1] = nn[0]*nn[1] * (1-np.cos(a)) - nn[2]*np.sin(a)
32 R[1,1] = nn[1]*nn[1] * (1-np.cos(a)) + np.cos(a)
33 R[2,1] = nn[1]*nn[2] * (1-np.cos(a)) + nn[0]*np.sin(a)
34
35 R[0,2] = nn[0]*nn[2] * (1-np.cos(a)) + nn[1]*np.sin(a)
36 R[1,2] = nn[1]*nn[2] * (1-np.cos(a)) - nn[0]*np.sin(a)
37 R[2,2] = nn[2]*nn[2] * (1-np.cos(a)) + np.cos(a)
38
39 return R
40
41class Thing( object ):
42 """ Thing is just a container for the postion and the direction
43 of something.
44 A Thing can be a particle, or photon or something like that
45 Or it can be a plane, like a mirror-plane or a focal-plane.
46 Then the *dir* vector is the normal vector of the plane, and
47 *pos* is one (possibly important) point inside the plane.
48 """
49 def __init__(self, pos, dir):
50 self.pos = pos
51 self.dir = dir
52
53 def turn(self, axis, angle):
54 """ axis might not be normalized
55 and angle might be in degree
56 """
57 if length(axis) != 1.:
58 axis /= length(axis)
59
60 angle = angle / 180. *np.pi
61
62
63
64 R = make_rotation_matrix( turning_axis, angle )
65 self.pos = matrix_times_vector( R, self.pos)
66 self.dir = matrix_times_vector( R, self.dir)
67
68
69 def _old_turn( self, theta, phi):
70 theta = theta/180.*np.pi
71 phi = phi/180.*np.pi
72
73 x= self.pos[0]
74 y= self.pos[1]
75 z= self.pos[2]
76
77 vx= self.dir[0]
78 vy= self.dir[1]
79 vz= self.dir[2]
80
81 #print vx,vy,vz
82
83 #transform into spehrical coordinates
84 print x,y,z
85 r = length(self.pos)
86 p = np.arctan2(y,x)
87 t = np.arccos(z/r)
88 print r,t,p
89
90 v = length(self.dir)
91 vp = np.arctan2(vy,vx)
92 vt = np.arccos(vz/v)
93
94 #print v,vt,vp
95
96 # actual turning takes place
97 t += theta
98 p += phi
99
100 vt += theta
101 vp += phi
102
103 #print v,vt,vp
104
105 #back transform
106
107 x = r * np.sin(t) * np.cos(p)
108 y = r * np.sin(t) * np.sin(p)
109 z = r * np.cos(t)
110
111 vx = v * np.sin(vt) * np.cos(vp)
112 vy = v * np.sin(vt) * np.sin(vp)
113 vz = v * np.cos(vt)
114
115 #print vx,vy,vz
116
117 # set internal vars
118 self.pos = np.array([x,y,z])
119 self.dir = np.array([vx,vy,vz])
120
121
122 def __repr__( self ):
123 return "%s(%r)" % (self.__class__, self.__dict__)
124
125class Mirror( Thing ):
126 def __init__(self, index, pos, normal_vector, focal_length, hex_size ):
127 super(Mirror,self).__init__(pos, normal_vector)
128 self.index = index
129 self.focal_length = focal_length
130 self.hex_size = hex_size
131
132 def __repr__( self ):
133 return "%s(%r)" % (self.__class__, self.__dict__)
134
135
136
137
138
139
140def read_reflector_definition_file( filename ):
141 """
142 """
143 mirrors = []
144
145 f = open( filename )
146 for index, line in enumerate(f):
147 if line[0] == '#':
148 continue
149 line = line.split()
150 if len(line) < 8:
151 continue
152 #print line
153
154 # first 3 colums in the file are x,y,z coordinates of the center
155 # of this mirror in cm, I guess
156 pos = np.array(map(float, line[0:3]))
157
158 # the next 3 elements are the elements of the normal vector
159 # should be normalized already, so the unit is of no importance.
160 normal_vector = np.array(map(float,line[3:6]))
161
162 # focal length of this mirror in mm
163 focal_length = float(line[6])
164
165 # size of the hexagonal shaped facette mirror, measured as the radius
166 # of the hexagons *inner* circle.
167 hex_size = float(line[8])
168 mirror = Mirror( index, pos, normal_vector, focal_length, hex_size )
169
170 mirrors.append(mirror)
171
172 return mirrors
173
174
175def reflect_photon( photon, mirrors):
176 """ finds out:
177 which mirror is hit by photon
178 and where
179 and in which angle relative to mirror
180 """
181
182 # the line defined by the photon is used to find the intersection point
183 # with the plane of each facette mirror. Then I check,
184 # if the intersection point lies within the limits of the facette mirrors
185 # hexagonal boundaries.
186 # If this is the case I have found the mirror, which is hit, and
187 # can calculate:
188 # the distance of the intersection point from the center of the facette mirror
189 # and the angle relative to the mirror (normal or plane not sure yet)
190
191 for mirror in mirrors:
192 #facette mirror plane, defined as n . x = d1 . n
193 n = mirror.dir
194 d1 = mirror.pos
195
196 # line of photon defined as r = lambda * v + d2
197 v = photon.dir
198 d2 = photon.pos
199
200 # the intersection coordinates are found by solving
201 # n . (lambda * v + d2) - d1 . n == 0, for lambda=lambda_0
202 # and then the intersection is: i = lambda_0 * v + d2
203 #
204 # putting int in another form:
205 # solve:
206 # lambda * n.v + n.d2 - n.d1 == 0
207 # or
208 # lambda_0 = n.(d1-d2) / n.v
209
210 # FIXME: if one of the two dot-products is very small,
211 # we shuold take special care maybe
212 # if n.(d1-d2) is very small, this means that the starting point of
213 # the photon is already nearly in the plane, so lambda_0 is expected to
214 # be very small ... erm .. maybe this is actually not a special case
215 # but very good.
216 # of n.v is very small, this means the patch of the photon is nearly
217 # parallel to the plane, so the error ob lambda_0 might be very large.
218 # in addition, this might just tell us, that the mirror is hit under
219 # strange circumstances ... so its not a good candidate and we can already go on.
220 lambda_0 = (np.dot(n,(d1-d2)) / np.dot(n,v))
221
222 #intersection between line and plane
223 i = lambda_0 * v + d2
224
225 # I want the distance beween i and d1 so I can already from the distance find
226 # out if this is our candidate.
227 distance = np.sqrt(((i-d1)*(i-d1)).sum())
228
229 #print "photon pos:", d2, "\t dir:", v/length(v)
230 #print "mirror pos:", d1, "\t dir:", n/length(n)
231
232 #print "lambda_0", lambda_0
233 #print "intersection :", i
234 #print "distance:",distance
235
236 if distance <= mirror.hex_size/2.:
237 break
238 else:
239 mirror = None
240
241 if not mirror is None:
242 photon.mirror_index = mirror.index
243 photon.mirror_intersection = i
244 photon.mirror_center_distance = distance
245 #print "mirror found:", mirror.index ,
246 #print "distance", distance
247 # now I have to find out, if the photon is not only in the
248 # right distance but actually has hit the mirror.
249 # this I do like this
250 # i-d1 is a vector in the mirror plane pointing from d1 to the intersection point i.
251 # if I know turn the entire mirror plane so it lies withing the x-y-plane
252 # by applying a simple turning-matrix, then each vector inside the plane with turn into
253 # a nice x,x vector.
254 # now I assume, that the hexagon is "pointing" lets say to into y direction
255 # so I can e.g. say:
256 # x has to be between -30.3 and +30.3 and y has to be
257 # between 35 - m * |x| and -35 + m * |x| ... pretty simple.
258 # maybe one can leave the turning aside, but I like that I can imagine it very nicely
259 #
260 #
261 # I don't do this yet .. since I don't know by heart how a turning matrix looks :-)
262 # so I just simulate round mirrors
263 ######################################################################
264
265
266 # next step, since I know the intersection point, is the new direction.
267 # So I need the normal of the mirror in the intersection point.
268 # since the normal of every mirror is alway pointing to the camera center
269 # this is not difficult.
270
271 normal_at_intersection = (mirror_alignmen_point.pos - i) / length(mirror_alignmen_point.pos - i)
272 #print "normal_at_intersection",normal_at_intersection
273
274 angle = np.arccos(np.dot( v, normal_at_intersection) / (length(v) * length(normal_at_intersection)))
275 photon.angle_to_mirror_normal = angle
276 #print "angle:", angle/np.pi*180., "deg"
277
278
279 # okay, now I have the intersection *i*,
280 # the old direction of the photon *v*
281 # and the normalvector at the intersection.
282 ######################################################################
283 ######################################################################
284 # I do this now differently.
285 # I will mirror the "point" at the tip of *v* at the line created by
286 # the normalvector at the intersection and the intersection.
287 # this will gibe me a mirrored_point *mp* and the vector from *i* to *mp*
288 # is the *new_direction* it should even be normalized.
289
290 # 1. step: create plane through the "tip" of *v* and the normal_at_intersection.
291 # 2. step: find crossingpoint on line through *i* and the normal_at_intersection,
292 # 3. step: vector from "tip" of *v* to crossingpoint times 2 points to
293 # the "tip" of *mirrored_v*
294
295 # plane: n_plane_3 . r = p_plane_3 . n_plane_3
296 # p_plane_3 = i+v
297 # n_plane_3 = normal_at_intersection
298
299 # line: r = lambda_3 * v_line_3 + p_line_3
300 # p_line_3 = i
301 # v_line_3 = normal_at_intersection
302
303 # create crossing: n_plane_3 . (lambda_3 * v_line_3 + p_line_3) = p_plane_3 . n_plane_3
304 # <=> lambda_3 = (p_plane_3 - p_line_3 ).n_plane_3 / n_plane_3 . v_line_3
305 # <=> lambda_3 = (i+v - i).normal_at_intersection / normal_at_intersection . normal_at_intersection
306 # <=> lambda_3 = v.normal_at_intersection
307
308 lambda_3 = np.dot(v, normal_at_intersection)
309 #print "lambda_3", lambda_3
310 crossing_point_3 = lambda_3 * normal_at_intersection + i
311 #print "crossing_point_3", crossing_point_3
312
313 from_tip_of_v_to_crossing_point_3 = crossing_point_3 - (i+v)
314
315 tip_of_mirrored_v = i+v+ 2*from_tip_of_v_to_crossing_point_3
316
317 new_direction = tip_of_mirrored_v - i
318
319 #print "new_direction",new_direction
320 #print "old direction", v
321 photon.new_direction = new_direction
322 ######################################################################
323 ######################################################################
324 """
325 # both directions form a plane, and when I turn the old *v* by
326 # twice the angle between *v* and *normal_at_intersection*
327 # inside this plane then I get the new direction of the photon.
328
329 # so lets first get the normal of the reflection plane
330 normal_of_reflection_plane =np.cross( v, normal_at_intersection)
331
332 print length(normal_of_reflection_plane), "should be one"
333 print length(v), "should be one"
334 print length(normal_at_intersection), "should be one"
335 print np.dot(v, normal_at_intersection), "should *NOT* be zero"
336 print np.dot(v, normal_of_reflection_plane), "should be zero"
337 print np.dot(normal_at_intersection, normal_of_reflection_plane), "should be zero"
338
339 angle = np.arccos(np.dot( v, normal_at_intersection) / (length(v) * length(normal_at_intersection)))
340 photon.angle_to_mirror_normal = angle
341 print "angle:", angle/np.pi*180., "deg"
342
343 # the rotation matrix for the rotation of *v* around normal_of_reflection_plane is
344 R = make_rotation_matrix( normal_of_reflection_plane, 2*angle )
345
346 print "R"
347 pprint(R)
348
349 new_direction = matrix_times_vector( R, v)
350 photon.new_direction = new_direction
351
352 print "old direction", v, length(v)
353 print "new direction", new_direction, length(new_direction)
354 print "mirror center", mirror.pos
355 print "interception point", i
356 print "center of focal plane", focal_plane.pos
357 """
358
359 # new the photon has a new direction *new_direction* and is starting
360 # from the intersection point *i*
361 # now I want to find out where there focal plane is hit.
362 # So I have to repeat the stuff from up there
363
364 #print "np.dot(focal_plane.dir,new_direction))", np.dot(focal_plane.dir,new_direction)
365
366 lambda_1 = (np.dot(focal_plane.dir ,(focal_plane.pos - i)) / np.dot(focal_plane.dir,new_direction))
367
368 #print "lambda_1", lambda_1
369 focal_plane_spot = lambda_1 * new_direction + i
370 #print "focal_plane_spot",focal_plane_spot
371 photon.hit = True
372 photon.focal_plane_pos = focal_plane_spot - focal_plane.pos
373
374 #print "distance from focal plane center=", length(focal_plane_spot-focal_plane.pos)
375 else:
376 photon.hit = False
377
378
379 return photon
380
381
382
383def reflect_photon_old( photon, mirrors):
384 """ finds out:
385 which mirror is hit by photon
386 and where
387 and in which angle relative to mirror
388 """
389
390 # the line defined by the photon is used to find the intersection point
391 # with the plane of each facette mirror. Then I check,
392 # if the intersection point lies within the limits of the facette mirrors
393 # hexagonal boundaries.
394 # If this is the case I have found the mirror, which is hit, and
395 # can calculate:
396 # the distance of the intersection point from the center of the facette mirror
397 # and the angle relative to the mirror (normal or plane not sure yet)
398
399 for mirror in mirrors:
400 #facette mirror plane, defined as n . x = d1 . n
401 n = mirror.dir
402 d1 = mirror.pos
403
404 # line of photon defined as r = lambda * v + d2
405 v = photon.dir
406 d2 = photon.pos
407
408 # the intersection coordinates are found by solving
409 # n . (lambda * v + d2) - d1 . n == 0, for lambda=lambda_0
410 # and then the intersection is: i = lambda_0 * v + d2
411 #
412 # putting int in another form:
413 # solve:
414 # lambda * n.v + n.d2 - n.d1 == 0
415 # or
416 # lambda_0 = n.(d1-d2) / n.v
417
418 # FIXME: if one of the two dot-products is very small,
419 # we shuold take special care maybe
420 # if n.(d1-d2) is very small, this means that the starting point of
421 # the photon is already nearly in the plane, so lambda_0 is expected to
422 # be very small ... erm .. maybe this is actually not a special case
423 # but very good.
424 # of n.v is very small, this means the patch of the photon is nearly
425 # parallel to the plane, so the error ob lambda_0 might be very large.
426 # in addition, this might just tell us, that the mirror is hit under
427 # strange circumstances ... so its not a good candidate and we can already go on.
428 lambda_0 = (np.dot(n,(d1-d2)) / np.dot(n,v))
429
430 #intersection between line and plane
431 i = lambda_0 * v + d2
432
433 # I want the distance beween i and d1 so I can already from the distance find
434 # out if this is our candidate.
435 distance = np.sqrt(((i-d1)*(i-d1)).sum())
436
437 #print "photon pos:", d2, "\t dir:", v/length(v)
438 #print "mirror pos:", d1, "\t dir:", n/length(n)
439
440 #print "lambda_0", lambda_0
441 #print "intersection :", i
442 #print "distance:",distance
443
444 if distance <= mirror.hex_size/2.:
445 break
446 else:
447 mirror = None
448
449 if not mirror is None:
450 photon.mirror_index = mirror.index
451 photon.mirror_intersection = i
452 photon.mirror_center_distance = distance
453 #print "mirror found:", mirror.index ,
454 #print "distance", distance
455 # now I have to find out, if the photon is not only in the
456 # right distance but actually has hit the mirror.
457 # this I do like this
458 # i-d1 is a vector in the mirror plane pointing from d1 to the intersection point i.
459 # if I know turn the entire mirror plane so it lies withing the x-y-plane
460 # by applying a simple turning-matrix, then each vector inside the plane with turn into
461 # a nice x,x vector.
462 # now I assume, that the hexagon is "pointing" lets say to into y direction
463 # so I can e.g. say:
464 # x has to be between -30.3 and +30.3 and y has to be
465 # between 35 - m * |x| and -35 + m * |x| ... pretty simple.
466 # maybe one can leave the turning aside, but I like that I can imagine it very nicely
467 #
468 #
469 # I don't do this yet .. since I don't know by heart how a turning matrix looks :-)
470 # so I just simulate round mirrors
471 ######################################################################
472
473
474 # next step, since I know the intersection point, is the new direction.
475 # So I need the normal of the mirror in the intersection point.
476 # since the normal of every mirror is alway pointing to the camera center
477 # this is not difficult.
478
479 normal_at_intersection = (mirror_alignmen_point.pos - i) / length(mirror_alignmen_point.pos - i)
480
481 # okay, now I have the intersection *i*,
482 # the old direction of the photon *v*
483 # and the normalvector at the intersection.
484 # both directions form a plane, and when I turn the old *v* by
485 # twice the angle between *v* and *normal_at_intersection*
486 # inside this plane then I get the new direction of the photon.
487
488 # so lets first get the normal of the reflection plane
489 normal_of_reflection_plane =np.cross( v, normal_at_intersection)
490
491 #print length(normal_of_reflection_plane)
492 #print length(v)
493 #print length(normal_at_intersection)
494 #print np.dot(v, normal_at_intersection)
495 #print np.dot(v, normal_of_reflection_plane)
496 #print np.dot(normal_at_intersection, normal_of_reflection_plane)
497
498 angle = np.arccos(np.dot( v, normal_at_intersection) / (length(v) * length(normal_at_intersection)))
499 photon.angle_to_mirror_normal = angle
500 #print "angle:", angle/np.pi*180., "deg"
501
502 # the rotation matrix for the rotation of *v* around normal_of_reflection_plane is
503 R = make_rotation_matrix( normal_of_reflection_plane, 2*angle )
504
505
506 new_direction = matrix_times_vector( R, v)
507 photon.new_direction = new_direction
508
509 #print "old direction", v, length(v)
510 #print "new direction", new_direction, length(new_direction)
511 #print "mirror center", mirror.pos
512 #print "interception point", i
513 #print "center of focal plane", focal_plane.pos
514
515
516 # new the photon has a new direction *new_direction* and is starting
517 # from the intersection point *i*
518 # now I want to find out where there focal plane is hit.
519 # So I have to repeat the stuff from up there
520
521 lambda_1 = (np.dot(focal_plane.dir ,(focal_plane.pos - i)) / np.dot(focal_plane.dir,new_direction))
522 #print "lambda_1", lambda_1
523 focal_plane_spot = lambda_1 * new_direction + i
524 photon.hit = True
525 photon.focal_plane_pos = focal_plane_spot - focal_plane.pos
526
527 #print "distance from focal plane center=", length(focal_plane_spot-focal_plane.pos)
528 else:
529 photon.hit = False
530
531
532 return photon
533
534class Photon( Thing ):
535 """ a photon has not only the direction and position, which a Thing has.
536 but it also has a wavelength and a "time" and a "mother_particle_id"
537
538 the photon constructor understands the 10-element 1D-np.array
539 which is stored inside a run.event.photons 2D-np.array
540 """
541 def __init__(self, photon_definition_array ):
542 """ the *photon_definition_array* pda contains:
543 pda[0] - encoded info
544 pda[1:3] - x,y position in cm
545 pda[3:5] - u,v cosines to x,y axis --> so called direction cosines
546 pda[5] - time since first interaction [ns]
547 pda[6] - height of production in cm
548 pda[7] - j ??
549 pda[8] - imov ??
550 pda[9] - wavelength [nm]
551 """
552 pda = photon_definition_array
553 pos = np.array([pda[1],pda[2],0.])
554 dir = np.array([pda[3],pda[4], np.sqrt(1-pda[3]**2-pda[4]**2) ])
555 super(Photon,self).__init__(pos, dir)
556
557 self.wavelength = pda[9]
558 self.time = pda[5]
559
560 def __repr__( self ):
561 return "%s(%r)" % (self.__class__, self.__dict__)
562
563
564if __name__ == '__main__':
565 mirrors = read_reflector_definition_file( "030/fact-reflector.txt" )
566
567
568 focal_plane = Thing( pos=np.array([0.,0.,978.132/2.]), # center of focal_plane
569 dir=np.array([0., 0., 1.]) ) # direction of view
570 focal_plane.size = 20 # diameter in cm
571
572
573 mirror_alignmen_point = Thing( pos=np.array([0.,0.,978.132]), # center of focal_plane
574 dir=np.array([0., 0., 1.]) ) # direction of view
575
576
577
578 # turn the telescope
579 turning_axis = np.array([1,0,0])
580 angle = -3
581
582 for mirror in mirrors:
583 mirror.turn( turning_axis, angle)
584
585 focal_plane.turn( turning_axis, angle)
586 mirror_alignmen_point.turn( turning_axis, angle)
587
588
589 turning_axis = np.array([0,1,0])
590 angle = 30
591
592 for mirror in mirrors:
593 mirror.turn( turning_axis, angle)
594
595 focal_plane.turn( turning_axis, angle)
596 mirror_alignmen_point.turn( turning_axis, angle)
597
598
599
600
601 run = readcorsika.read_corsika_file("cer")
602
603 li=[]
604 event_counter = 0
605 for event in run.events:
606 print event_counter
607 event_counter += 1
608 event.photons_who_hit = []
609 for photon in event.photons:
610 # photon is a 1D-nd.array with 10 elements
611 # make Photon instance from this horrible array
612 photon[1:3] -= np.array(event.info_dict['core_loc'])
613 photon = Photon(photon)
614
615 photon = reflect_photon( photon, mirrors )
616
617 if photon.hit:
618 li.append( photon.angle_to_mirror_normal / np.pi * 180.)
619 event.photons_who_hit.append(photon)
620
621 if event_counter > 100:
622 break
623
624 #plt.ion()
625 #fig1 = plt.figure()
626 #fig2 = plt.figure()
627
628 #plt.hist( np.array(li) , bins=100)
629 plt.hold(False)
630
631
632 g = TGraph2D()
633 h = TH2F("h","title",120,-60,60,120,-60,60)
634 c = 0
635 for ev in run.events:
636
637 ground_dirs = []
638 focal_positions = []
639 if not hasattr(ev, "photons_who_hit"):
640 continue
641 for ph in ev.photons_who_hit:
642 #mi = ph.mirror_intersection
643 new = Thing( pos=ph.focal_plane_pos, dir = ph.new_direction)
644 new.turn( np.array([0,1,0]), -30 )
645 mi = new.pos
646 #print mi
647 h.Fill(mi[0], mi[1])
648 g.SetPoint( c, mi[0], mi[1], mi[2])
649 c += 1
650 ground_dirs.append(ph.dir)
651 focal_positions.append(new.pos)
652
653 ground_dirs = np.array(ground_dirs)
654 focal_positions = np.array(focal_positions)
655 #print ground_dirs.shape, focal_positions.shape
656 #plt.figure(fig1.number)
657 #plt.plot( ground_dirs[:,0], ground_dirs[:,1], '.')
658 #plt.title("ground directions")
659 #plt.figure(fig2.number)
660 #plt.plot( focal_positions[:,0], focal_positions[:,1], '.')
661 #plt.title("focal positions")
662
663
664 #raw_input()
665
666 g.SetMarkerStyle(20)
667 #g.Draw("pcol")
668 h.Draw("colz")
669
670
671
672
673"""
674 for m in mirrors:
675 mi = m.pos
676 #mi = ph.focal_plane_pos
677 g.SetPoint( c, mi[0], mi[1], mi[2])
678 c += 1
679"""
680
681
682
683
684
685
686
Note: See TracBrowser for help on using the repository browser.