1 | #!/usr/bin/python -itt
|
---|
2 |
|
---|
3 | import struct
|
---|
4 | import sys
|
---|
5 | import numpy as np
|
---|
6 | from pprint import pprint
|
---|
7 | import rlcompleter
|
---|
8 | import readline
|
---|
9 | readline.parse_and_bind('tab: complete')
|
---|
10 | from ROOT import *
|
---|
11 | import readcorsika
|
---|
12 | import matplotlib.pyplot as plt
|
---|
13 |
|
---|
14 | def dot( v1, v2):
|
---|
15 | return (v1*v2).sum()
|
---|
16 |
|
---|
17 | def length( v ):
|
---|
18 | return np.sqrt((v**2).sum())
|
---|
19 |
|
---|
20 | def cross(v1 , v2, normalize=True):
|
---|
21 | vout = np.zeros( v1.shape )
|
---|
22 |
|
---|
23 | vout[0] = v1[1]*v2[2] - v1[2]*v2[1]
|
---|
24 | vout[1] = -(v1[0]*v2[2] - v1[2]*v2[0])
|
---|
25 | vout[2] = v1[0]*v2[1] - v1[1]*v2[0]
|
---|
26 |
|
---|
27 | if normalize:
|
---|
28 | vout /= length(vout)
|
---|
29 |
|
---|
30 | return vout
|
---|
31 |
|
---|
32 | def matrix_times_vector( m , v):
|
---|
33 | vout = v.copy()
|
---|
34 | for index,line in enumerate(m):
|
---|
35 | vout[index] = dot(line,v)
|
---|
36 |
|
---|
37 | return vout
|
---|
38 |
|
---|
39 | def make_rotation_matrix( nn, a ):
|
---|
40 | R = np.zeros( (3,3) )
|
---|
41 | R[0,0] = nn[0]*nn[0] * (1-np.cos(a)) + np.cos(a)
|
---|
42 | R[1,0] = nn[0]*nn[1] * (1-np.cos(a)) + nn[2]*np.sin(a)
|
---|
43 | R[2,0] = nn[0]*nn[2] * (1-np.cos(a)) - nn[1]*np.sin(a)
|
---|
44 |
|
---|
45 | R[0,1] = nn[0]*nn[1] * (1-np.cos(a)) - nn[2]*np.sin(a)
|
---|
46 | R[1,1] = nn[1]*nn[1] * (1-np.cos(a)) + np.cos(a)
|
---|
47 | R[2,1] = nn[1]*nn[2] * (1-np.cos(a)) + nn[0]*np.sin(a)
|
---|
48 |
|
---|
49 | R[0,2] = nn[0]*nn[2] * (1-np.cos(a)) + nn[1]*np.sin(a)
|
---|
50 | R[1,2] = nn[1]*nn[2] * (1-np.cos(a)) - nn[0]*np.sin(a)
|
---|
51 | R[2,2] = nn[2]*nn[2] * (1-np.cos(a)) + np.cos(a)
|
---|
52 |
|
---|
53 | return R
|
---|
54 |
|
---|
55 | class Thing( object ):
|
---|
56 | """ Thing is just a container for the postion and the direction
|
---|
57 | of something.
|
---|
58 | A Thing can be a particle, or photon or something like that
|
---|
59 | Or it can be a plane, like a mirror-plane or a focal-plane.
|
---|
60 | Then the *dir* vector is the normal vector of the plane, and
|
---|
61 | *pos* is one (possibly important) point inside the plane.
|
---|
62 | """
|
---|
63 | def __init__(self, pos, dir):
|
---|
64 | self.pos = pos
|
---|
65 | self.dir = dir
|
---|
66 |
|
---|
67 | def turn(self, axis, angle):
|
---|
68 | """ axis might not be normalized
|
---|
69 | and angle might be in degree
|
---|
70 | """
|
---|
71 | if length(axis) != 1.:
|
---|
72 | axis /= length(axis)
|
---|
73 |
|
---|
74 | angle = angle / 180. *np.pi
|
---|
75 |
|
---|
76 |
|
---|
77 |
|
---|
78 | R = make_rotation_matrix( turning_axis, angle )
|
---|
79 | self.pos = matrix_times_vector( R, self.pos)
|
---|
80 | self.dir = matrix_times_vector( R, self.dir)
|
---|
81 |
|
---|
82 |
|
---|
83 | def _old_turn( self, theta, phi):
|
---|
84 | theta = theta/180.*np.pi
|
---|
85 | phi = phi/180.*np.pi
|
---|
86 |
|
---|
87 | x= self.pos[0]
|
---|
88 | y= self.pos[1]
|
---|
89 | z= self.pos[2]
|
---|
90 |
|
---|
91 | vx= self.dir[0]
|
---|
92 | vy= self.dir[1]
|
---|
93 | vz= self.dir[2]
|
---|
94 |
|
---|
95 | #print vx,vy,vz
|
---|
96 |
|
---|
97 | #transform into spehrical coordinates
|
---|
98 | print x,y,z
|
---|
99 | r = length(self.pos)
|
---|
100 | p = np.arctan2(y,x)
|
---|
101 | t = np.arccos(z/r)
|
---|
102 | print r,t,p
|
---|
103 |
|
---|
104 | v = length(self.dir)
|
---|
105 | vp = np.arctan2(vy,vx)
|
---|
106 | vt = np.arccos(vz/v)
|
---|
107 |
|
---|
108 | #print v,vt,vp
|
---|
109 |
|
---|
110 | # actual turning takes place
|
---|
111 | t += theta
|
---|
112 | p += phi
|
---|
113 |
|
---|
114 | vt += theta
|
---|
115 | vp += phi
|
---|
116 |
|
---|
117 | #print v,vt,vp
|
---|
118 |
|
---|
119 | #back transform
|
---|
120 |
|
---|
121 | x = r * np.sin(t) * np.cos(p)
|
---|
122 | y = r * np.sin(t) * np.sin(p)
|
---|
123 | z = r * np.cos(t)
|
---|
124 |
|
---|
125 | vx = v * np.sin(vt) * np.cos(vp)
|
---|
126 | vy = v * np.sin(vt) * np.sin(vp)
|
---|
127 | vz = v * np.cos(vt)
|
---|
128 |
|
---|
129 | #print vx,vy,vz
|
---|
130 |
|
---|
131 | # set internal vars
|
---|
132 | self.pos = np.array([x,y,z])
|
---|
133 | self.dir = np.array([vx,vy,vz])
|
---|
134 |
|
---|
135 |
|
---|
136 | def __repr__( self ):
|
---|
137 | return "%s(%r)" % (self.__class__, self.__dict__)
|
---|
138 |
|
---|
139 | class Mirror( Thing ):
|
---|
140 | def __init__(self, index, pos, normal_vector, focal_length, hex_size ):
|
---|
141 | super(Mirror,self).__init__(pos, normal_vector)
|
---|
142 | self.index = index
|
---|
143 | self.focal_length = focal_length
|
---|
144 | self.hex_size = hex_size
|
---|
145 |
|
---|
146 | def __repr__( self ):
|
---|
147 | return "%s(%r)" % (self.__class__, self.__dict__)
|
---|
148 |
|
---|
149 |
|
---|
150 |
|
---|
151 |
|
---|
152 |
|
---|
153 |
|
---|
154 | def read_reflector_definition_file( filename ):
|
---|
155 | """
|
---|
156 | """
|
---|
157 | mirrors = []
|
---|
158 |
|
---|
159 | f = open( filename )
|
---|
160 | for index, line in enumerate(f):
|
---|
161 | if line[0] == '#':
|
---|
162 | continue
|
---|
163 | line = line.split()
|
---|
164 | if len(line) < 8:
|
---|
165 | continue
|
---|
166 | #print line
|
---|
167 |
|
---|
168 | # first 3 colums in the file are x,y,z coordinates of the center
|
---|
169 | # of this mirror in cm, I guess
|
---|
170 | pos = np.array(map(float, line[0:3]))
|
---|
171 |
|
---|
172 | # the next 3 elements are the elements of the normal vector
|
---|
173 | # should be normalized already, so the unit is of no importance.
|
---|
174 | normal_vector = np.array(map(float,line[3:6]))
|
---|
175 |
|
---|
176 | # focal length of this mirror in mm
|
---|
177 | focal_length = float(line[6])
|
---|
178 |
|
---|
179 | # size of the hexagonal shaped facette mirror, measured as the radius
|
---|
180 | # of the hexagons *inner* circle.
|
---|
181 | hex_size = float(line[8])
|
---|
182 | mirror = Mirror( index, pos, normal_vector, focal_length, hex_size )
|
---|
183 |
|
---|
184 | mirrors.append(mirror)
|
---|
185 |
|
---|
186 | return mirrors
|
---|
187 |
|
---|
188 |
|
---|
189 |
|
---|
190 |
|
---|
191 | def reflect_photon( photon, mirrors):
|
---|
192 | """ finds out:
|
---|
193 | which mirror is hit by photon
|
---|
194 | and where
|
---|
195 | and in which angle relative to mirror
|
---|
196 | """
|
---|
197 |
|
---|
198 | # the line defined by the photon is used to find the intersection point
|
---|
199 | # with the plane of each facette mirror. Then I check,
|
---|
200 | # if the intersection point lies within the limits of the facette mirrors
|
---|
201 | # hexagonal boundaries.
|
---|
202 | # If this is the case I have found the mirror, which is hit, and
|
---|
203 | # can calculate:
|
---|
204 | # the distance of the intersection point from the center of the facette mirror
|
---|
205 | # and the angle relative to the mirror (normal or plane not sure yet)
|
---|
206 |
|
---|
207 | for mirror in mirrors:
|
---|
208 | #facette mirror plane, defined as n . x = d1 . n
|
---|
209 | n = mirror.dir
|
---|
210 | d1 = mirror.pos
|
---|
211 |
|
---|
212 | # line of photon defined as r = lambda * v + d2
|
---|
213 | v = photon.dir
|
---|
214 | d2 = photon.pos
|
---|
215 |
|
---|
216 | # the intersection coordinates are found by solving
|
---|
217 | # n . (lambda * v + d2) - d1 . n == 0, for lambda=lambda_0
|
---|
218 | # and then the intersection is: i = lambda_0 * v + d2
|
---|
219 | #
|
---|
220 | # putting int in another form:
|
---|
221 | # solve:
|
---|
222 | # lambda * n.v + n.d2 - n.d1 == 0
|
---|
223 | # or
|
---|
224 | # lambda_0 = n.(d1-d2) / n.v
|
---|
225 |
|
---|
226 | # FIXME: if one of the two dot-products is very small,
|
---|
227 | # we shuold take special care maybe
|
---|
228 | # if n.(d1-d2) is very small, this means that the starting point of
|
---|
229 | # the photon is already nearly in the plane, so lambda_0 is expected to
|
---|
230 | # be very small ... erm .. maybe this is actually not a special case
|
---|
231 | # but very good.
|
---|
232 | # of n.v is very small, this means the patch of the photon is nearly
|
---|
233 | # parallel to the plane, so the error ob lambda_0 might be very large.
|
---|
234 | # in addition, this might just tell us, that the mirror is hit under
|
---|
235 | # strange circumstances ... so its not a good candidate and we can already go on.
|
---|
236 | lambda_0 = (dot(n,(d1-d2)) / dot(n,v))
|
---|
237 |
|
---|
238 | #intersection between line and plane
|
---|
239 | i = lambda_0 * v + d2
|
---|
240 |
|
---|
241 | # I want the distance beween i and d1 so I can already from the distance find
|
---|
242 | # out if this is our candidate.
|
---|
243 | distance = np.sqrt(((i-d1)*(i-d1)).sum())
|
---|
244 |
|
---|
245 | #print "photon pos:", d2, "\t dir:", v/length(v)
|
---|
246 | #print "mirror pos:", d1, "\t dir:", n/length(n)
|
---|
247 |
|
---|
248 | #print "lambda_0", lambda_0
|
---|
249 | #print "intersection :", i
|
---|
250 | #print "distance:",distance
|
---|
251 |
|
---|
252 | if distance <= mirror.hex_size/2.:
|
---|
253 | break
|
---|
254 | else:
|
---|
255 | mirror = None
|
---|
256 |
|
---|
257 | if not mirror is None:
|
---|
258 | photon.mirror_index = mirror.index
|
---|
259 | photon.mirror_intersection = i
|
---|
260 | photon.mirror_center_distance = distance
|
---|
261 | #print "mirror found:", mirror.index ,
|
---|
262 | #print "distance", distance
|
---|
263 | # now I have to find out, if the photon is not only in the
|
---|
264 | # right distance but actually has hit the mirror.
|
---|
265 | # this I do like this
|
---|
266 | # i-d1 is a vector in the mirror plane pointing from d1 to the intersection point i.
|
---|
267 | # if I know turn the entire mirror plane so it lies withing the x-y-plane
|
---|
268 | # by applying a simple turning-matrix, then each vector inside the plane with turn into
|
---|
269 | # a nice x,x vector.
|
---|
270 | # now I assume, that the hexagon is "pointing" lets say to into y direction
|
---|
271 | # so I can e.g. say:
|
---|
272 | # x has to be between -30.3 and +30.3 and y has to be
|
---|
273 | # between 35 - m * |x| and -35 + m * |x| ... pretty simple.
|
---|
274 | # maybe one can leave the turning aside, but I like that I can imagine it very nicely
|
---|
275 | #
|
---|
276 | #
|
---|
277 | # I don't do this yet .. since I don't know by heart how a turning matrix looks :-)
|
---|
278 | # so I just simulate round mirrors
|
---|
279 | ######################################################################
|
---|
280 |
|
---|
281 |
|
---|
282 | # next step, since I know the intersection point, is the new direction.
|
---|
283 | # So I need the normal of the mirror in the intersection point.
|
---|
284 | # since the normal of every mirror is alway pointing to the camera center
|
---|
285 | # this is not difficult.
|
---|
286 |
|
---|
287 | normal_at_intersection = (mirror_alignmen_point.pos - i) / length(mirror_alignmen_point.pos - i)
|
---|
288 | #print "normal_at_intersection",normal_at_intersection
|
---|
289 |
|
---|
290 | angle = np.arccos(dot( v, normal_at_intersection) / (length(v) * length(normal_at_intersection)))
|
---|
291 | photon.angle_to_mirror_normal = angle
|
---|
292 | #print "angle:", angle/np.pi*180., "deg"
|
---|
293 |
|
---|
294 |
|
---|
295 | # okay, now I have the intersection *i*,
|
---|
296 | # the old direction of the photon *v*
|
---|
297 | # and the normalvector at the intersection.
|
---|
298 | ######################################################################
|
---|
299 | ######################################################################
|
---|
300 | # I do this now differently.
|
---|
301 | # I will mirror the "point" at the tip of *v* at the line created by
|
---|
302 | # the normalvector at the intersection and the intersection.
|
---|
303 | # this will gibe me a mirrored_point *mp* and the vector from *i* to *mp*
|
---|
304 | # is the *new_direction* it should even be normalized.
|
---|
305 |
|
---|
306 | # 1. step: create plane through the "tip" of *v* and the normal_at_intersection.
|
---|
307 | # 2. step: find crossingpoint on line through *i* and the normal_at_intersection,
|
---|
308 | # 3. step: vector from "tip" of *v* to crossingpoint times 2 points to
|
---|
309 | # the "tip" of *mirrored_v*
|
---|
310 |
|
---|
311 | # plane: n_plane_3 . r = p_plane_3 . n_plane_3
|
---|
312 | # p_plane_3 = i+v
|
---|
313 | # n_plane_3 = normal_at_intersection
|
---|
314 |
|
---|
315 | # line: r = lambda_3 * v_line_3 + p_line_3
|
---|
316 | # p_line_3 = i
|
---|
317 | # v_line_3 = normal_at_intersection
|
---|
318 |
|
---|
319 | # create crossing: n_plane_3 . (lambda_3 * v_line_3 + p_line_3) = p_plane_3 . n_plane_3
|
---|
320 | # <=> lambda_3 = (p_plane_3 - p_line_3 ).n_plane_3 / n_plane_3 . v_line_3
|
---|
321 | # <=> lambda_3 = (i+v - i).normal_at_intersection / normal_at_intersection . normal_at_intersection
|
---|
322 | # <=> lambda_3 = v.normal_at_intersection
|
---|
323 |
|
---|
324 | lambda_3 = dot(v, normal_at_intersection)
|
---|
325 | #print "lambda_3", lambda_3
|
---|
326 | crossing_point_3 = lambda_3 * normal_at_intersection + i
|
---|
327 | #print "crossing_point_3", crossing_point_3
|
---|
328 |
|
---|
329 | from_tip_of_v_to_crossing_point_3 = crossing_point_3 - (i+v)
|
---|
330 |
|
---|
331 | tip_of_mirrored_v = i+v+ 2*from_tip_of_v_to_crossing_point_3
|
---|
332 |
|
---|
333 | new_direction = tip_of_mirrored_v - i
|
---|
334 |
|
---|
335 | #print "new_direction",new_direction
|
---|
336 | #print "old direction", v
|
---|
337 | photon.new_direction = new_direction
|
---|
338 | ######################################################################
|
---|
339 | ######################################################################
|
---|
340 | """
|
---|
341 | # both directions form a plane, and when I turn the old *v* by
|
---|
342 | # twice the angle between *v* and *normal_at_intersection*
|
---|
343 | # inside this plane then I get the new direction of the photon.
|
---|
344 |
|
---|
345 | # so lets first get the normal of the reflection plane
|
---|
346 | normal_of_reflection_plane =cross( v, normal_at_intersection)
|
---|
347 |
|
---|
348 | print length(normal_of_reflection_plane), "should be one"
|
---|
349 | print length(v), "should be one"
|
---|
350 | print length(normal_at_intersection), "should be one"
|
---|
351 | print dot(v, normal_at_intersection), "should *NOT* be zero"
|
---|
352 | print dot(v, normal_of_reflection_plane), "should be zero"
|
---|
353 | print dot(normal_at_intersection, normal_of_reflection_plane), "should be zero"
|
---|
354 |
|
---|
355 | angle = np.arccos(dot( v, normal_at_intersection) / (length(v) * length(normal_at_intersection)))
|
---|
356 | photon.angle_to_mirror_normal = angle
|
---|
357 | print "angle:", angle/np.pi*180., "deg"
|
---|
358 |
|
---|
359 | # the rotation matrix for the rotation of *v* around normal_of_reflection_plane is
|
---|
360 | R = make_rotation_matrix( normal_of_reflection_plane, 2*angle )
|
---|
361 |
|
---|
362 | print "R"
|
---|
363 | pprint(R)
|
---|
364 |
|
---|
365 | new_direction = matrix_times_vector( R, v)
|
---|
366 | photon.new_direction = new_direction
|
---|
367 |
|
---|
368 | print "old direction", v, length(v)
|
---|
369 | print "new direction", new_direction, length(new_direction)
|
---|
370 | print "mirror center", mirror.pos
|
---|
371 | print "interception point", i
|
---|
372 | print "center of focal plane", focal_plane.pos
|
---|
373 | """
|
---|
374 |
|
---|
375 | # new the photon has a new direction *new_direction* and is starting
|
---|
376 | # from the intersection point *i*
|
---|
377 | # now I want to find out where there focal plane is hit.
|
---|
378 | # So I have to repeat the stuff from up there
|
---|
379 |
|
---|
380 | #print "dot(focal_plane.dir,new_direction))", dot(focal_plane.dir,new_direction)
|
---|
381 |
|
---|
382 | lambda_1 = (dot(focal_plane.dir ,(focal_plane.pos - i)) / dot(focal_plane.dir,new_direction))
|
---|
383 |
|
---|
384 | #print "lambda_1", lambda_1
|
---|
385 | focal_plane_spot = lambda_1 * new_direction + i
|
---|
386 | #print "focal_plane_spot",focal_plane_spot
|
---|
387 | photon.hit = True
|
---|
388 | photon.focal_plane_pos = focal_plane_spot - focal_plane.pos
|
---|
389 |
|
---|
390 | #print "distance from focal plane center=", length(focal_plane_spot-focal_plane.pos)
|
---|
391 | else:
|
---|
392 | photon.hit = False
|
---|
393 |
|
---|
394 |
|
---|
395 | return photon
|
---|
396 |
|
---|
397 | class Photon( Thing ):
|
---|
398 | """ a photon has not only the direction and position, which a Thing has.
|
---|
399 | but it also has a wavelength and a "time" and a "mother_particle_id"
|
---|
400 |
|
---|
401 | the photon constructor understands the 10-element 1D-np.array
|
---|
402 | which is stored inside a run.event.photons 2D-np.array
|
---|
403 | """
|
---|
404 | def __init__(self, photon_definition_array ):
|
---|
405 | """ the *photon_definition_array* pda contains:
|
---|
406 | pda[0] - encoded info
|
---|
407 | pda[1:3] - x,y position in cm
|
---|
408 | pda[3:5] - u,v cosines to x,y axis --> so called direction cosines
|
---|
409 | pda[5] - time since first interaction [ns]
|
---|
410 | pda[6] - height of production in cm
|
---|
411 | pda[7] - j ??
|
---|
412 | pda[8] - imov ??
|
---|
413 | pda[9] - wavelength [nm]
|
---|
414 | """
|
---|
415 | pda = photon_definition_array
|
---|
416 | pos = np.array([pda[1],pda[2],0.])
|
---|
417 | dir = np.array([pda[3],pda[4], np.sqrt(1-pda[3]**2-pda[4]**2) ])
|
---|
418 | super(Photon,self).__init__(pos, dir)
|
---|
419 |
|
---|
420 | self.wavelength = pda[9]
|
---|
421 | self.time = pda[5]
|
---|
422 |
|
---|
423 | def __repr__( self ):
|
---|
424 | return "%s(%r)" % (self.__class__, self.__dict__)
|
---|
425 |
|
---|
426 |
|
---|
427 | if __name__ == '__main__':
|
---|
428 | mirrors = read_reflector_definition_file( "030/reflector_test_ray.py" )
|
---|
429 |
|
---|
430 |
|
---|
431 | focal_plane = Thing( pos=np.array([0.,0.,978.132/2.]), # center of focal_plane
|
---|
432 | dir=np.array([0., 0., 1.]) ) # direction of view
|
---|
433 | focal_plane.size = 20 # diameter in cm
|
---|
434 |
|
---|
435 |
|
---|
436 | mirror_alignmen_point = Thing( pos=np.array([0.,0.,978.132]), # center of focal_plane
|
---|
437 | dir=np.array([0., 0., 1.]) ) # direction of view
|
---|
438 |
|
---|
439 |
|
---|
440 |
|
---|
441 | # turn the telescope
|
---|
442 |
|
---|
443 | turning_axis = np.array([-1,0,0])
|
---|
444 | angle = 30.
|
---|
445 |
|
---|
446 | for mirror in mirrors:
|
---|
447 | mirror.turn( turning_axis, angle)
|
---|
448 |
|
---|
449 | focal_plane.turn( turning_axis, angle)
|
---|
450 | mirror_alignmen_point.turn( turning_axis, angle)
|
---|
451 |
|
---|
452 |
|
---|
453 | #run = readcorsika.read_corsika_file("cer")
|
---|
454 |
|
---|
455 | li=[]
|
---|
456 |
|
---|
457 | photons_who_hit = []
|
---|
458 | for photon_index in range(2000):
|
---|
459 | if photon_index % 10 == 0:
|
---|
460 | print photon_index
|
---|
461 |
|
---|
462 | # make test photon directly from up to down
|
---|
463 | p = 87.5 + (photon_index/2000.*5.)
|
---|
464 | p = p/180.*np.pi
|
---|
465 |
|
---|
466 | t = 27.5 + (photon_index/2000.*5.)
|
---|
467 | t = t/180.*np.pi
|
---|
468 | dir = np.array([np.sin(t)*np.cos(p),np.sin(t)*np.sin(p),np.cos(t)])
|
---|
469 |
|
---|
470 |
|
---|
471 | pos = (np.random.rand(3)-0.5)*450
|
---|
472 | pos[2] = 0.
|
---|
473 | photon = Thing( pos=pos, dir=dir)
|
---|
474 |
|
---|
475 | photon = reflect_photon( photon, mirrors )
|
---|
476 |
|
---|
477 | if photon.hit:
|
---|
478 | li.append( photon.angle_to_mirror_normal / np.pi * 180.)
|
---|
479 | photons_who_hit.append(photon)
|
---|
480 |
|
---|
481 |
|
---|
482 | #plt.ion()
|
---|
483 | #fig1 = plt.figure()
|
---|
484 | #fig2 = plt.figure()
|
---|
485 |
|
---|
486 | #plt.hist( np.array(li) , bins=100)
|
---|
487 | plt.hold(False)
|
---|
488 |
|
---|
489 |
|
---|
490 | g = TGraph2D()
|
---|
491 | h = TH2F("h","title",100,-100.5,99.5,100,-100.5,99.5)
|
---|
492 | c1 = TCanvas("c1","c1 title",0,0,400,400)
|
---|
493 | c2 = TCanvas("c2","c2 title",0,400,400,400)
|
---|
494 |
|
---|
495 | c = 0
|
---|
496 | ground_dirs = []
|
---|
497 | focal_positions = []
|
---|
498 | print len(photons_who_hit)
|
---|
499 | for ph in photons_who_hit:
|
---|
500 | mi = ph.mirror_intersection
|
---|
501 | #new = Thing( pos=ph.focal_plane_pos, dir = ph.new_direction)
|
---|
502 | #new.turn( np.array([0,1,0]), 0 )
|
---|
503 | fpp = ph.focal_plane_pos
|
---|
504 | #print mi
|
---|
505 | h.Fill(fpp[0], fpp[1])
|
---|
506 | g.SetPoint( c, mi[0], mi[1], mi[2])
|
---|
507 | c += 1
|
---|
508 | #ground_dirs.append(ph.dir)
|
---|
509 | #focal_positions.append(new.pos)
|
---|
510 |
|
---|
511 | #ground_dirs = np.array(ground_dirs)
|
---|
512 | #focal_positions = np.array(focal_positions)
|
---|
513 | #print ground_dirs.shape, focal_positions.shape
|
---|
514 | #plt.figure(fig1.number)
|
---|
515 | #plt.plot( ground_dirs[:,0], ground_dirs[:,1], '.')
|
---|
516 | #plt.title("ground directions")
|
---|
517 | #plt.figure(fig2.number)
|
---|
518 | #plt.plot( focal_positions[:,0], focal_positions[:,1], '.')
|
---|
519 | #plt.title("focal positions")
|
---|
520 |
|
---|
521 |
|
---|
522 | #raw_input()
|
---|
523 |
|
---|
524 | g.SetMarkerStyle(20)
|
---|
525 | c1.cd()
|
---|
526 | g.Draw("pcol")
|
---|
527 | c1.Update()
|
---|
528 |
|
---|
529 | c2.cd()
|
---|
530 | h.Draw("colz")
|
---|
531 | c2.Update()
|
---|
532 |
|
---|
533 |
|
---|
534 |
|
---|
535 |
|
---|
536 | """
|
---|
537 | for m in mirrors:
|
---|
538 | mi = m.pos
|
---|
539 | #mi = ph.focal_plane_pos
|
---|
540 | g.SetPoint( c, mi[0], mi[1], mi[2])
|
---|
541 | c += 1
|
---|
542 | """
|
---|
543 |
|
---|
544 |
|
---|
545 |
|
---|
546 |
|
---|
547 |
|
---|
548 |
|
---|
549 |
|
---|