1 | #include <TROOT.h>
|
---|
2 | #include <TCanvas.h>
|
---|
3 | #include <TProfile.h>
|
---|
4 | #include <TTimer.h>
|
---|
5 | #include <TH1F.h>
|
---|
6 | #include <TH2F.h>
|
---|
7 | #include <Getline.h>
|
---|
8 | #include <TLine.h>
|
---|
9 | #include <TMath.h>
|
---|
10 | #include <TFile.h>
|
---|
11 |
|
---|
12 | #include <stdio.h>
|
---|
13 | #include <stdint.h>
|
---|
14 | #include <cstdio>
|
---|
15 |
|
---|
16 | #include "fits.h"
|
---|
17 | //#include "TPKplotevent.c"
|
---|
18 | //#include "FOpenDataFile.c"
|
---|
19 | #include "FOpenCalibFile.c"
|
---|
20 |
|
---|
21 | #include "zerosearch.C"
|
---|
22 |
|
---|
23 | #define NPIX 1440
|
---|
24 | #define NCELL 1024
|
---|
25 |
|
---|
26 | // data access and treatment
|
---|
27 | #define FAD_MAX_SAMPLES 1024
|
---|
28 |
|
---|
29 | vector<int16_t> data;
|
---|
30 | vector<int16_t> data_offset;
|
---|
31 |
|
---|
32 | unsigned int data_num;
|
---|
33 |
|
---|
34 | size_t data_n;
|
---|
35 | UInt_t data_px;
|
---|
36 | UInt_t data_roi;
|
---|
37 | int NEvents;
|
---|
38 |
|
---|
39 | size_t drs_n;
|
---|
40 | vector<float> drs_basemean;
|
---|
41 | vector<float> drs_gainmean;
|
---|
42 | vector<float> drs_triggeroffsetmean;
|
---|
43 |
|
---|
44 | int FOpenDataFile( fits & );
|
---|
45 |
|
---|
46 |
|
---|
47 | vector<float> Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude
|
---|
48 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors
|
---|
49 | vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors
|
---|
50 | vector<float> Vcorr(FAD_MAX_SAMPLES); // corrected Values
|
---|
51 | vector<float> Vdiff(FAD_MAX_SAMPLES); // numerical derivative
|
---|
52 |
|
---|
53 | vector<float> Vslide(FAD_MAX_SAMPLES); // sliding average result
|
---|
54 | vector<float> Vcfd(FAD_MAX_SAMPLES); // CDF result
|
---|
55 | vector<float> Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average
|
---|
56 |
|
---|
57 | #include "factfir.C"
|
---|
58 |
|
---|
59 | float getValue( int, int );
|
---|
60 | void computeN1mean( int );
|
---|
61 | void removeSpikes( int );
|
---|
62 |
|
---|
63 | // histograms
|
---|
64 | const int Ntypes = 7;
|
---|
65 | const unsigned int // arranged by Dominik
|
---|
66 | tAmeas = 0,
|
---|
67 | tN1mean = 1,
|
---|
68 | tVcorr = 2,
|
---|
69 | tVtest = 3,
|
---|
70 | tVslide = 4,
|
---|
71 | tVcfd = 5,
|
---|
72 | tVcfd2 = 6;
|
---|
73 |
|
---|
74 | TH1F* h;
|
---|
75 | TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts
|
---|
76 | // x = pixel id, y = DRS cell id
|
---|
77 | TH2F hPixelCellData(
|
---|
78 | "PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.);
|
---|
79 | TH1F *hBaseline[ NPIX ]; // histograms for baseline extraction
|
---|
80 | TH1F *hMeanBsl, *hpltMeanBsl;
|
---|
81 | TH1F *hRmsBsl, *hpltRmsBsl;
|
---|
82 | TObjArray hList;
|
---|
83 | TObjArray hListBaseline;
|
---|
84 |
|
---|
85 | void BookHistos( int );
|
---|
86 | void SaveHistograms( char * );
|
---|
87 |
|
---|
88 | // Create a canvas
|
---|
89 | TCanvas* CW;
|
---|
90 | TCanvas* cFilter;
|
---|
91 |
|
---|
92 | int spikeDebug = 0;
|
---|
93 | int searchSinglesPeaks = 0;
|
---|
94 |
|
---|
95 |
|
---|
96 | int fbsl(
|
---|
97 | char *datafilename = "../raw/20110916_025.fits",
|
---|
98 | const char *drsfilename = "../raw/20110916_024.drs.fits",
|
---|
99 | int pixelnr = 0,
|
---|
100 | int firstevent = 0,
|
---|
101 | int nevents = -1 ){
|
---|
102 | // read and analyze FACT raw data
|
---|
103 |
|
---|
104 | // sliding window filter settings
|
---|
105 | int k_slide = 16;
|
---|
106 | vector<double> a_slide(k_slide, 1);
|
---|
107 | double b_slide = k_slide;
|
---|
108 |
|
---|
109 | // CFD filter settings
|
---|
110 | int k_cfd = 10;
|
---|
111 | vector<double> a_cfd(k_cfd, 0);
|
---|
112 | double b_cfd = 1.;
|
---|
113 | a_cfd[0]=0.75;
|
---|
114 | a_cfd[k_cfd-1]=-1.;
|
---|
115 |
|
---|
116 | // 2nd slinding window filter
|
---|
117 | int ks2 = 16;
|
---|
118 | vector<double> as2(ks2, 1);
|
---|
119 | double bs2 = ks2;
|
---|
120 | gROOT->SetStyle("Plain");
|
---|
121 |
|
---|
122 | //-------------------------------------------
|
---|
123 | // Open the file
|
---|
124 | //-------------------------------------------
|
---|
125 | fits datafile( datafilename );
|
---|
126 | if (!datafile) {
|
---|
127 | printf( "Could not open the file: %s\n", datafilename );
|
---|
128 | return 1;
|
---|
129 | }
|
---|
130 |
|
---|
131 | // access data
|
---|
132 | NEvents = FOpenDataFile( datafile );
|
---|
133 |
|
---|
134 | printf("number of events in file: %d\n", NEvents);
|
---|
135 |
|
---|
136 | // compare the number of events in the data file with the nevents the
|
---|
137 | // the user would like to read. nevents = -1 means: read all
|
---|
138 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents;
|
---|
139 |
|
---|
140 |
|
---|
141 | // FILE *pedFile;
|
---|
142 | // pedFile = fopen("t.txt","u");
|
---|
143 | // fprintf(pedFile,"# Pedestal Data");
|
---|
144 | // fclose( pedFile );
|
---|
145 | //-------------------------------------------
|
---|
146 | //Get the DRS calibration
|
---|
147 | //-------------------------------------------
|
---|
148 |
|
---|
149 | FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n);
|
---|
150 |
|
---|
151 |
|
---|
152 | //Check the sizes of the data columns
|
---|
153 | if(drs_n!=data_n)
|
---|
154 | {
|
---|
155 | cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl;
|
---|
156 | return 1;
|
---|
157 | }
|
---|
158 | // Book the histograms
|
---|
159 | printf("call BookHistos\n");
|
---|
160 | BookHistos( data_roi );
|
---|
161 | printf("returned from BookHistos\n");
|
---|
162 | // Loop over events
|
---|
163 | cout << "--------------------- Data --------------------" << endl;
|
---|
164 |
|
---|
165 | float value;
|
---|
166 |
|
---|
167 | // loop over events
|
---|
168 | // for ( int ev = firstevent; ev < nevents; ev++) {
|
---|
169 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) {
|
---|
170 |
|
---|
171 | datafile.GetRow( ev );
|
---|
172 |
|
---|
173 | if ( ev % 100 == 0 ){
|
---|
174 | cout << "Event number: " << data_num << endl;
|
---|
175 | }
|
---|
176 |
|
---|
177 | // loop over pixel
|
---|
178 | for ( int pix = 0; pix < 1440; pix++ ){
|
---|
179 |
|
---|
180 | // hStartCell->Fill( pix, data_offset[pix] );
|
---|
181 |
|
---|
182 | // loop over DRS slices
|
---|
183 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
---|
184 |
|
---|
185 | Ameas[ sl ] = getValue(sl, pix);
|
---|
186 |
|
---|
187 | }
|
---|
188 | // printf("Ameas[100] = %f\n", Ameas[100] );
|
---|
189 |
|
---|
190 | computeN1mean( data_roi ); // prepare spike removal
|
---|
191 | removeSpikes( data_roi ); // output in Vcorr
|
---|
192 |
|
---|
193 | // filter Vcorr with sliding average using FIR filter function
|
---|
194 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide);
|
---|
195 |
|
---|
196 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
---|
197 | // hPixelCellData.Fill( sl, Vcorr[sl] );
|
---|
198 | hBaseline[pix]->Fill( Vslide[sl] ) ;
|
---|
199 | }
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | for (int pix = 0; pix < NPIX; pix++) {
|
---|
204 | //printf("Maximum bin pix[%d] %f\n", pix ,hBaseline[pix]->GetMaximumBin() );
|
---|
205 |
|
---|
206 | float vmaxprob = hBaseline[pix]->GetXaxis()->GetBinCenter(
|
---|
207 | hBaseline[pix]->GetMaximumBin() );
|
---|
208 | hMeanBsl->Fill( vmaxprob );
|
---|
209 | hpltMeanBsl->SetBinContent(pix+1, vmaxprob );
|
---|
210 |
|
---|
211 | hRmsBsl->Fill(hBaseline[pix]->GetRMS() );
|
---|
212 | hpltRmsBsl->SetBinContent( pix+1, hBaseline[pix]->GetRMS() );
|
---|
213 | }
|
---|
214 |
|
---|
215 | SaveHistograms( datafilename );
|
---|
216 |
|
---|
217 | TCanvas * cMeanBsl = new TCanvas();
|
---|
218 | cMeanBsl->cd();
|
---|
219 | hMeanBsl->Draw();
|
---|
220 | //canv_mean->Modified();
|
---|
221 | cMeanBsl->Update();
|
---|
222 |
|
---|
223 | TCanvas * cRmsBsl = new TCanvas();
|
---|
224 | cRmsBsl->cd();
|
---|
225 | hRmsBsl->Draw();
|
---|
226 | //canv_rms->Modified();
|
---|
227 | cMeanBsl->Update();
|
---|
228 |
|
---|
229 | return( 0 );
|
---|
230 | }
|
---|
231 |
|
---|
232 | void removeSpikes(int Samples){
|
---|
233 |
|
---|
234 | const float fract = 0.8;
|
---|
235 | float x, xp, xpp, x3p;
|
---|
236 |
|
---|
237 | // assume that there are no spikes
|
---|
238 | for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i];
|
---|
239 |
|
---|
240 | // find the spike and replace it by mean value of neighbors
|
---|
241 | for ( int i = 2; i < Samples-2 ; i++) {
|
---|
242 |
|
---|
243 | x = Ameas[i] - N1mean[i];
|
---|
244 |
|
---|
245 | if ( x < -5. ){ // a spike candidate
|
---|
246 | // check consistency with a single channel spike
|
---|
247 | xp = Ameas[i+1] - N1mean[i+1];
|
---|
248 | xpp = Ameas[i+2] - N1mean[i+2];
|
---|
249 |
|
---|
250 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){
|
---|
251 | // printf("double spike candidate\n");
|
---|
252 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.;
|
---|
253 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.;
|
---|
254 | i = i + 3;
|
---|
255 | }
|
---|
256 | else{
|
---|
257 |
|
---|
258 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){
|
---|
259 | Vcorr[i+1] = N1mean[i+1];
|
---|
260 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]);
|
---|
261 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.);
|
---|
262 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.);
|
---|
263 | i = i + 2;//do not care about the next sample it was the spike
|
---|
264 | }
|
---|
265 | // treatment for the end of the pipeline must be added !!!
|
---|
266 | }
|
---|
267 | }
|
---|
268 | else{
|
---|
269 | // do nothing
|
---|
270 | }
|
---|
271 | } // end of spike search and correction
|
---|
272 | }
|
---|
273 |
|
---|
274 | void computeN1mean( int Samples ){
|
---|
275 | // compute the mean of the left and right neighbors of a channel
|
---|
276 |
|
---|
277 | for( int i = 2; i < Samples - 2; i++){
|
---|
278 | /* if (i == 0){ // use right sample es mean
|
---|
279 | N1mean[i] = Ameas[i+1];
|
---|
280 | }
|
---|
281 | else if ( i == Samples-1 ){ //use left sample as mean
|
---|
282 | N1mean[i] = Ameas[i-1];
|
---|
283 | }
|
---|
284 | else{
|
---|
285 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
---|
286 | }
|
---|
287 | */
|
---|
288 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
---|
289 | }
|
---|
290 | } // end of computeN1mean computation
|
---|
291 |
|
---|
292 | float getValue( int slice, int pixel ){
|
---|
293 |
|
---|
294 | const float dconv = 2000/4096.0;
|
---|
295 |
|
---|
296 | float vraw, vcal;
|
---|
297 |
|
---|
298 | unsigned int pixel_pt;
|
---|
299 | unsigned int slice_pt;
|
---|
300 | unsigned int cal_pt;
|
---|
301 | unsigned int drs_cal_offset;
|
---|
302 |
|
---|
303 | // printf("pixel = %d, slice = %d\n", slice, pixel);
|
---|
304 |
|
---|
305 | pixel_pt = pixel * data_roi;
|
---|
306 | slice_pt = pixel_pt + slice;
|
---|
307 | drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi;
|
---|
308 | cal_pt = pixel_pt + drs_cal_offset;
|
---|
309 |
|
---|
310 | vraw = data[ slice_pt ] * dconv;
|
---|
311 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35;
|
---|
312 |
|
---|
313 | return( vcal );
|
---|
314 | }
|
---|
315 |
|
---|
316 | void BookHistos( int Samples ){
|
---|
317 | // booking and parameter settings for all histos
|
---|
318 |
|
---|
319 | // histograms for baseline extraction
|
---|
320 | char hName[500];
|
---|
321 | char hTitle[500];
|
---|
322 |
|
---|
323 | TH1F *h;
|
---|
324 |
|
---|
325 | printf("inside BookHistos\n");
|
---|
326 |
|
---|
327 | for( int i = 0; i < NPIX; i++ ) {
|
---|
328 |
|
---|
329 | // printf("call sprintf [%d]\n", i );
|
---|
330 | sprintf(&hTitle[0],"all events all slices of pixel %d", i);
|
---|
331 | sprintf(&hName[0],"base%d", i);
|
---|
332 | // printf("call sprintf [%d] done\n", i );
|
---|
333 |
|
---|
334 | h = new TH1F( hName, hTitle, 400, -99.5 ,100.5 );
|
---|
335 |
|
---|
336 | // printf("histo booked\n");
|
---|
337 | h->GetXaxis()->SetTitle( "Sample value (mV)" );
|
---|
338 | h->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
---|
339 | // printf("histo title set\n");
|
---|
340 | hListBaseline.Add( h );
|
---|
341 | // printf("histo added to List\n");
|
---|
342 | hBaseline[i] = h;
|
---|
343 | // printf("histo assigned to array\n");
|
---|
344 | }
|
---|
345 |
|
---|
346 | printf("made HBaseline * 1440\n");
|
---|
347 |
|
---|
348 | hMeanBsl = new TH1F("histo_mean","Value of maximal probability",400,-99.5,100.5);
|
---|
349 | hMeanBsl->GetXaxis()->SetTitle( "max value (mV)" );
|
---|
350 | hMeanBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
---|
351 | hList.Add( hMeanBsl );
|
---|
352 |
|
---|
353 | hpltMeanBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5);
|
---|
354 | hpltMeanBsl->GetXaxis()->SetTitle( "pixel" );
|
---|
355 | hpltMeanBsl->GetYaxis()->SetTitle( "max value in mV" );
|
---|
356 | hList.Add( hpltMeanBsl );
|
---|
357 |
|
---|
358 | hRmsBsl = new TH1F("histo_rms","RMS in mV",2000,-99.5,100.5);
|
---|
359 | hRmsBsl->GetXaxis()->SetTitle( "RMS (mV)" );
|
---|
360 | hRmsBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
---|
361 | hList.Add( hRmsBsl );
|
---|
362 |
|
---|
363 | hpltRmsBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5);
|
---|
364 | hpltRmsBsl->GetXaxis()->SetTitle( "pixel" );
|
---|
365 | hpltRmsBsl->GetYaxis()->SetTitle( "RMS in mV" );
|
---|
366 | hList.Add( hpltRmsBsl );
|
---|
367 | }
|
---|
368 |
|
---|
369 |
|
---|
370 | void SaveHistograms( char * loc_fname ){
|
---|
371 |
|
---|
372 | TString fName; // name of the histogram file
|
---|
373 |
|
---|
374 | /* create the filename for the histogram file */
|
---|
375 | fName = loc_fname; // use the name of the tree file
|
---|
376 | fName.Remove(fName.Length() - 5); // remove the extension .root
|
---|
377 | fName += "_histo.root"; // add the new extension
|
---|
378 |
|
---|
379 | TFile tf( fName, "RECREATE"); // create the histogram file (replace if already existing)
|
---|
380 |
|
---|
381 | hList.Write(); // write the major histograms into the top level directory
|
---|
382 | tf.mkdir("BaselineHisto"); tf.cd("BaselineHisto"); // go to new subdirectory
|
---|
383 | hListBaseline.Write(); // write histos into subdirectory
|
---|
384 |
|
---|
385 | tf.Close(); // close the file
|
---|
386 |
|
---|
387 | } // end of function: void ana::SaveHistograms( void )
|
---|
388 |
|
---|
389 | int FOpenDataFile(fits &datafile){
|
---|
390 |
|
---|
391 | /* cout << "-------------------- Data Header -------------------" << endl;
|
---|
392 | datafile.PrintKeys();
|
---|
393 | cout << "------------------- Data Columns -------------------" << endl;
|
---|
394 | datafile.PrintColumns();
|
---|
395 | */
|
---|
396 |
|
---|
397 | //Get the size of the data column
|
---|
398 | data_roi = datafile.GetUInt("NROI"); // Value from header
|
---|
399 | data_px = datafile.GetUInt("NPIX");
|
---|
400 | data_n = datafile.GetN("Data"); //Size of column "Data" = #Pixel x ROI
|
---|
401 |
|
---|
402 | //Set the sizes of the data vectors
|
---|
403 | data.resize(data_n,0);
|
---|
404 | data_offset.resize(data_px,0);
|
---|
405 |
|
---|
406 | //Link the data to variables
|
---|
407 | datafile.SetRefAddress("EventNum", data_num);
|
---|
408 | datafile.SetVecAddress("Data", data);
|
---|
409 | datafile.SetVecAddress("StartCellData", data_offset);
|
---|
410 | datafile.GetRow(0);
|
---|
411 |
|
---|
412 | cout << "Opening data file successful..." << endl;
|
---|
413 |
|
---|
414 | return datafile.GetNumRows() ;
|
---|
415 | }
|
---|
416 |
|
---|