| 1 | #include <TROOT.h>
|
|---|
| 2 | #include <TCanvas.h>
|
|---|
| 3 | #include <TProfile.h>
|
|---|
| 4 | #include <TTimer.h>
|
|---|
| 5 | #include <TH1F.h>
|
|---|
| 6 | #include <TH2F.h>
|
|---|
| 7 | #include <Getline.h>
|
|---|
| 8 | #include <TLine.h>
|
|---|
| 9 | #include <TMath.h>
|
|---|
| 10 | #include <TFile.h>
|
|---|
| 11 |
|
|---|
| 12 | #include <stdio.h>
|
|---|
| 13 | #include <stdint.h>
|
|---|
| 14 | #include <cstdio>
|
|---|
| 15 |
|
|---|
| 16 | #include "fits.h"
|
|---|
| 17 | //#include "TPKplotevent.c"
|
|---|
| 18 | //#include "FOpenDataFile.c"
|
|---|
| 19 | #include "FOpenCalibFile.c"
|
|---|
| 20 |
|
|---|
| 21 | #include "zerosearch.C"
|
|---|
| 22 |
|
|---|
| 23 | #define NPIX 1440
|
|---|
| 24 | #define NCELL 1024
|
|---|
| 25 |
|
|---|
| 26 | // data access and treatment
|
|---|
| 27 | #define FAD_MAX_SAMPLES 1024
|
|---|
| 28 |
|
|---|
| 29 | vector<int16_t> data;
|
|---|
| 30 | vector<int16_t> data_offset;
|
|---|
| 31 |
|
|---|
| 32 | unsigned int data_num;
|
|---|
| 33 |
|
|---|
| 34 | size_t data_n;
|
|---|
| 35 | UInt_t data_px;
|
|---|
| 36 | UInt_t data_roi;
|
|---|
| 37 | int NEvents;
|
|---|
| 38 |
|
|---|
| 39 | size_t drs_n;
|
|---|
| 40 | vector<float> drs_basemean;
|
|---|
| 41 | vector<float> drs_gainmean;
|
|---|
| 42 | vector<float> drs_triggeroffsetmean;
|
|---|
| 43 |
|
|---|
| 44 | int FOpenDataFile( fits & );
|
|---|
| 45 |
|
|---|
| 46 |
|
|---|
| 47 | vector<float> Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude
|
|---|
| 48 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors
|
|---|
| 49 | vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors
|
|---|
| 50 | vector<float> Vcorr(FAD_MAX_SAMPLES); // corrected Values
|
|---|
| 51 | vector<float> Vdiff(FAD_MAX_SAMPLES); // numerical derivative
|
|---|
| 52 |
|
|---|
| 53 | vector<float> Vslide(FAD_MAX_SAMPLES); // sliding average result
|
|---|
| 54 | vector<float> Vcfd(FAD_MAX_SAMPLES); // CDF result
|
|---|
| 55 | vector<float> Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average
|
|---|
| 56 |
|
|---|
| 57 | #include "factfir.C"
|
|---|
| 58 |
|
|---|
| 59 | float getValue( int, int );
|
|---|
| 60 | void computeN1mean( int );
|
|---|
| 61 | void removeSpikes( int );
|
|---|
| 62 |
|
|---|
| 63 | // histograms
|
|---|
| 64 | const int Ntypes = 7;
|
|---|
| 65 | const unsigned int // arranged by Dominik
|
|---|
| 66 | tAmeas = 0,
|
|---|
| 67 | tN1mean = 1,
|
|---|
| 68 | tVcorr = 2,
|
|---|
| 69 | tVtest = 3,
|
|---|
| 70 | tVslide = 4,
|
|---|
| 71 | tVcfd = 5,
|
|---|
| 72 | tVcfd2 = 6;
|
|---|
| 73 |
|
|---|
| 74 | TH1F* h;
|
|---|
| 75 | TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts
|
|---|
| 76 | // x = pixel id, y = DRS cell id
|
|---|
| 77 | TH2F hPixelCellData(
|
|---|
| 78 | "PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.);
|
|---|
| 79 | TH1F *hBaseline[ NPIX ]; // histograms for baseline extraction
|
|---|
| 80 | TH1F *hMeanBsl, *hpltMeanBsl;
|
|---|
| 81 | TH1F *hRmsBsl, *hpltRmsBsl;
|
|---|
| 82 | TObjArray hList;
|
|---|
| 83 | TObjArray hListBaseline;
|
|---|
| 84 |
|
|---|
| 85 | void BookHistos( int );
|
|---|
| 86 | void SaveHistograms( char * );
|
|---|
| 87 |
|
|---|
| 88 | // Create a canvas
|
|---|
| 89 | TCanvas* CW;
|
|---|
| 90 | TCanvas* cFilter;
|
|---|
| 91 |
|
|---|
| 92 | int spikeDebug = 0;
|
|---|
| 93 | int searchSinglesPeaks = 0;
|
|---|
| 94 |
|
|---|
| 95 |
|
|---|
| 96 | int fbsl(
|
|---|
| 97 | char *datafilename = "../raw/20110916_025.fits",
|
|---|
| 98 | const char *drsfilename = "../raw/20110916_024.drs.fits",
|
|---|
| 99 | int pixelnr = 0,
|
|---|
| 100 | int firstevent = 0,
|
|---|
| 101 | int nevents = -1 ){
|
|---|
| 102 | // read and analyze FACT raw data
|
|---|
| 103 |
|
|---|
| 104 | // sliding window filter settings
|
|---|
| 105 | int k_slide = 16;
|
|---|
| 106 | vector<double> a_slide(k_slide, 1);
|
|---|
| 107 | double b_slide = k_slide;
|
|---|
| 108 |
|
|---|
| 109 | // CFD filter settings
|
|---|
| 110 | int k_cfd = 10;
|
|---|
| 111 | vector<double> a_cfd(k_cfd, 0);
|
|---|
| 112 | double b_cfd = 1.;
|
|---|
| 113 | a_cfd[0]=0.75;
|
|---|
| 114 | a_cfd[k_cfd-1]=-1.;
|
|---|
| 115 |
|
|---|
| 116 | // 2nd slinding window filter
|
|---|
| 117 | int ks2 = 16;
|
|---|
| 118 | vector<double> as2(ks2, 1);
|
|---|
| 119 | double bs2 = ks2;
|
|---|
| 120 | gROOT->SetStyle("Plain");
|
|---|
| 121 |
|
|---|
| 122 | //-------------------------------------------
|
|---|
| 123 | // Open the file
|
|---|
| 124 | //-------------------------------------------
|
|---|
| 125 | fits datafile( datafilename );
|
|---|
| 126 | if (!datafile) {
|
|---|
| 127 | printf( "Could not open the file: %s\n", datafilename );
|
|---|
| 128 | return 1;
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | // access data
|
|---|
| 132 | NEvents = FOpenDataFile( datafile );
|
|---|
| 133 |
|
|---|
| 134 | printf("number of events in file: %d\n", NEvents);
|
|---|
| 135 |
|
|---|
| 136 | // compare the number of events in the data file with the nevents the
|
|---|
| 137 | // the user would like to read. nevents = -1 means: read all
|
|---|
| 138 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents;
|
|---|
| 139 |
|
|---|
| 140 |
|
|---|
| 141 | // FILE *pedFile;
|
|---|
| 142 | // pedFile = fopen("t.txt","u");
|
|---|
| 143 | // fprintf(pedFile,"# Pedestal Data");
|
|---|
| 144 | // fclose( pedFile );
|
|---|
| 145 | //-------------------------------------------
|
|---|
| 146 | //Get the DRS calibration
|
|---|
| 147 | //-------------------------------------------
|
|---|
| 148 |
|
|---|
| 149 | FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n);
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | //Check the sizes of the data columns
|
|---|
| 153 | if(drs_n!=data_n)
|
|---|
| 154 | {
|
|---|
| 155 | cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl;
|
|---|
| 156 | return 1;
|
|---|
| 157 | }
|
|---|
| 158 | // Book the histograms
|
|---|
| 159 | printf("call BookHistos\n");
|
|---|
| 160 | BookHistos( data_roi );
|
|---|
| 161 | printf("returned from BookHistos\n");
|
|---|
| 162 | // Loop over events
|
|---|
| 163 | cout << "--------------------- Data --------------------" << endl;
|
|---|
| 164 |
|
|---|
| 165 | float value;
|
|---|
| 166 |
|
|---|
| 167 | // loop over events
|
|---|
| 168 | // for ( int ev = firstevent; ev < nevents; ev++) {
|
|---|
| 169 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) {
|
|---|
| 170 |
|
|---|
| 171 | datafile.GetRow( ev );
|
|---|
| 172 |
|
|---|
| 173 | if ( ev % 100 == 0 ){
|
|---|
| 174 | cout << "Event number: " << data_num << endl;
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | // loop over pixel
|
|---|
| 178 | for ( int pix = 0; pix < 1440; pix++ ){
|
|---|
| 179 |
|
|---|
| 180 | // hStartCell->Fill( pix, data_offset[pix] );
|
|---|
| 181 |
|
|---|
| 182 | // loop over DRS slices
|
|---|
| 183 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
|---|
| 184 |
|
|---|
| 185 | Ameas[ sl ] = getValue(sl, pix);
|
|---|
| 186 |
|
|---|
| 187 | }
|
|---|
| 188 | // printf("Ameas[100] = %f\n", Ameas[100] );
|
|---|
| 189 |
|
|---|
| 190 | computeN1mean( data_roi ); // prepare spike removal
|
|---|
| 191 | removeSpikes( data_roi ); // output in Vcorr
|
|---|
| 192 |
|
|---|
| 193 | // filter Vcorr with sliding average using FIR filter function
|
|---|
| 194 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide);
|
|---|
| 195 |
|
|---|
| 196 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
|---|
| 197 | // hPixelCellData.Fill( sl, Vcorr[sl] );
|
|---|
| 198 | hBaseline[pix]->Fill( Vslide[sl] ) ;
|
|---|
| 199 | }
|
|---|
| 200 | }
|
|---|
| 201 | }
|
|---|
| 202 |
|
|---|
| 203 | for (int pix = 0; pix < NPIX; pix++) {
|
|---|
| 204 | //printf("Maximum bin pix[%d] %f\n", pix ,hBaseline[pix]->GetMaximumBin() );
|
|---|
| 205 |
|
|---|
| 206 | float vmaxprob = hBaseline[pix]->GetXaxis()->GetBinCenter(
|
|---|
| 207 | hBaseline[pix]->GetMaximumBin() );
|
|---|
| 208 | hMeanBsl->Fill( vmaxprob );
|
|---|
| 209 | hpltMeanBsl->SetBinContent(pix+1, vmaxprob );
|
|---|
| 210 |
|
|---|
| 211 | hRmsBsl->Fill(hBaseline[pix]->GetRMS() );
|
|---|
| 212 | hpltRmsBsl->SetBinContent( pix+1, hBaseline[pix]->GetRMS() );
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | SaveHistograms( datafilename );
|
|---|
| 216 |
|
|---|
| 217 | TCanvas * cMeanBsl = new TCanvas();
|
|---|
| 218 | cMeanBsl->cd();
|
|---|
| 219 | hMeanBsl->Draw();
|
|---|
| 220 | //canv_mean->Modified();
|
|---|
| 221 | cMeanBsl->Update();
|
|---|
| 222 |
|
|---|
| 223 | TCanvas * cRmsBsl = new TCanvas();
|
|---|
| 224 | cRmsBsl->cd();
|
|---|
| 225 | hRmsBsl->Draw();
|
|---|
| 226 | //canv_rms->Modified();
|
|---|
| 227 | cMeanBsl->Update();
|
|---|
| 228 |
|
|---|
| 229 | return( 0 );
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | void removeSpikes(int Samples){
|
|---|
| 233 |
|
|---|
| 234 | const float fract = 0.8;
|
|---|
| 235 | float x, xp, xpp, x3p;
|
|---|
| 236 |
|
|---|
| 237 | // assume that there are no spikes
|
|---|
| 238 | for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i];
|
|---|
| 239 |
|
|---|
| 240 | // find the spike and replace it by mean value of neighbors
|
|---|
| 241 | for ( int i = 2; i < Samples-2 ; i++) {
|
|---|
| 242 |
|
|---|
| 243 | x = Ameas[i] - N1mean[i];
|
|---|
| 244 |
|
|---|
| 245 | if ( x < -5. ){ // a spike candidate
|
|---|
| 246 | // check consistency with a single channel spike
|
|---|
| 247 | xp = Ameas[i+1] - N1mean[i+1];
|
|---|
| 248 | xpp = Ameas[i+2] - N1mean[i+2];
|
|---|
| 249 |
|
|---|
| 250 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){
|
|---|
| 251 | // printf("double spike candidate\n");
|
|---|
| 252 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 253 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 254 | i = i + 3;
|
|---|
| 255 | }
|
|---|
| 256 | else{
|
|---|
| 257 |
|
|---|
| 258 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){
|
|---|
| 259 | Vcorr[i+1] = N1mean[i+1];
|
|---|
| 260 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]);
|
|---|
| 261 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.);
|
|---|
| 262 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.);
|
|---|
| 263 | i = i + 2;//do not care about the next sample it was the spike
|
|---|
| 264 | }
|
|---|
| 265 | // treatment for the end of the pipeline must be added !!!
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 | else{
|
|---|
| 269 | // do nothing
|
|---|
| 270 | }
|
|---|
| 271 | } // end of spike search and correction
|
|---|
| 272 | }
|
|---|
| 273 |
|
|---|
| 274 | void computeN1mean( int Samples ){
|
|---|
| 275 | // compute the mean of the left and right neighbors of a channel
|
|---|
| 276 |
|
|---|
| 277 | for( int i = 2; i < Samples - 2; i++){
|
|---|
| 278 | /* if (i == 0){ // use right sample es mean
|
|---|
| 279 | N1mean[i] = Ameas[i+1];
|
|---|
| 280 | }
|
|---|
| 281 | else if ( i == Samples-1 ){ //use left sample as mean
|
|---|
| 282 | N1mean[i] = Ameas[i-1];
|
|---|
| 283 | }
|
|---|
| 284 | else{
|
|---|
| 285 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 286 | }
|
|---|
| 287 | */
|
|---|
| 288 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 289 | }
|
|---|
| 290 | } // end of computeN1mean computation
|
|---|
| 291 |
|
|---|
| 292 | float getValue( int slice, int pixel ){
|
|---|
| 293 |
|
|---|
| 294 | const float dconv = 2000/4096.0;
|
|---|
| 295 |
|
|---|
| 296 | float vraw, vcal;
|
|---|
| 297 |
|
|---|
| 298 | unsigned int pixel_pt;
|
|---|
| 299 | unsigned int slice_pt;
|
|---|
| 300 | unsigned int cal_pt;
|
|---|
| 301 | unsigned int drs_cal_offset;
|
|---|
| 302 |
|
|---|
| 303 | // printf("pixel = %d, slice = %d\n", slice, pixel);
|
|---|
| 304 |
|
|---|
| 305 | pixel_pt = pixel * data_roi;
|
|---|
| 306 | slice_pt = pixel_pt + slice;
|
|---|
| 307 | drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi;
|
|---|
| 308 | cal_pt = pixel_pt + drs_cal_offset;
|
|---|
| 309 |
|
|---|
| 310 | vraw = data[ slice_pt ] * dconv;
|
|---|
| 311 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35;
|
|---|
| 312 |
|
|---|
| 313 | return( vcal );
|
|---|
| 314 | }
|
|---|
| 315 |
|
|---|
| 316 | void BookHistos( int Samples ){
|
|---|
| 317 | // booking and parameter settings for all histos
|
|---|
| 318 |
|
|---|
| 319 | // histograms for baseline extraction
|
|---|
| 320 | char hName[500];
|
|---|
| 321 | char hTitle[500];
|
|---|
| 322 |
|
|---|
| 323 | TH1F *h;
|
|---|
| 324 |
|
|---|
| 325 | printf("inside BookHistos\n");
|
|---|
| 326 |
|
|---|
| 327 | for( int i = 0; i < NPIX; i++ ) {
|
|---|
| 328 |
|
|---|
| 329 | // printf("call sprintf [%d]\n", i );
|
|---|
| 330 | sprintf(&hTitle[0],"all events all slices of pixel %d", i);
|
|---|
| 331 | sprintf(&hName[0],"base%d", i);
|
|---|
| 332 | // printf("call sprintf [%d] done\n", i );
|
|---|
| 333 |
|
|---|
| 334 | h = new TH1F( hName, hTitle, 400, -99.5 ,100.5 );
|
|---|
| 335 |
|
|---|
| 336 | // printf("histo booked\n");
|
|---|
| 337 | h->GetXaxis()->SetTitle( "Sample value (mV)" );
|
|---|
| 338 | h->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 339 | // printf("histo title set\n");
|
|---|
| 340 | hListBaseline.Add( h );
|
|---|
| 341 | // printf("histo added to List\n");
|
|---|
| 342 | hBaseline[i] = h;
|
|---|
| 343 | // printf("histo assigned to array\n");
|
|---|
| 344 | }
|
|---|
| 345 |
|
|---|
| 346 | printf("made HBaseline * 1440\n");
|
|---|
| 347 |
|
|---|
| 348 | hMeanBsl = new TH1F("histo_mean","Value of maximal probability",400,-99.5,100.5);
|
|---|
| 349 | hMeanBsl->GetXaxis()->SetTitle( "max value (mV)" );
|
|---|
| 350 | hMeanBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 351 | hList.Add( hMeanBsl );
|
|---|
| 352 |
|
|---|
| 353 | hpltMeanBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5);
|
|---|
| 354 | hpltMeanBsl->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 355 | hpltMeanBsl->GetYaxis()->SetTitle( "max value in mV" );
|
|---|
| 356 | hList.Add( hpltMeanBsl );
|
|---|
| 357 |
|
|---|
| 358 | hRmsBsl = new TH1F("histo_rms","RMS in mV",2000,-99.5,100.5);
|
|---|
| 359 | hRmsBsl->GetXaxis()->SetTitle( "RMS (mV)" );
|
|---|
| 360 | hRmsBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 361 | hList.Add( hRmsBsl );
|
|---|
| 362 |
|
|---|
| 363 | hpltRmsBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5);
|
|---|
| 364 | hpltRmsBsl->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 365 | hpltRmsBsl->GetYaxis()->SetTitle( "RMS in mV" );
|
|---|
| 366 | hList.Add( hpltRmsBsl );
|
|---|
| 367 | }
|
|---|
| 368 |
|
|---|
| 369 |
|
|---|
| 370 | void SaveHistograms( char * loc_fname ){
|
|---|
| 371 |
|
|---|
| 372 | TString fName; // name of the histogram file
|
|---|
| 373 |
|
|---|
| 374 | /* create the filename for the histogram file */
|
|---|
| 375 | fName = loc_fname; // use the name of the tree file
|
|---|
| 376 | fName.Remove(fName.Length() - 5); // remove the extension .root
|
|---|
| 377 | fName += "_histo.root"; // add the new extension
|
|---|
| 378 |
|
|---|
| 379 | TFile tf( fName, "RECREATE"); // create the histogram file (replace if already existing)
|
|---|
| 380 |
|
|---|
| 381 | hList.Write(); // write the major histograms into the top level directory
|
|---|
| 382 | tf.mkdir("BaselineHisto"); tf.cd("BaselineHisto"); // go to new subdirectory
|
|---|
| 383 | hListBaseline.Write(); // write histos into subdirectory
|
|---|
| 384 |
|
|---|
| 385 | tf.Close(); // close the file
|
|---|
| 386 |
|
|---|
| 387 | } // end of function: void ana::SaveHistograms( void )
|
|---|
| 388 |
|
|---|
| 389 | int FOpenDataFile(fits &datafile){
|
|---|
| 390 |
|
|---|
| 391 | /* cout << "-------------------- Data Header -------------------" << endl;
|
|---|
| 392 | datafile.PrintKeys();
|
|---|
| 393 | cout << "------------------- Data Columns -------------------" << endl;
|
|---|
| 394 | datafile.PrintColumns();
|
|---|
| 395 | */
|
|---|
| 396 |
|
|---|
| 397 | //Get the size of the data column
|
|---|
| 398 | data_roi = datafile.GetUInt("NROI"); // Value from header
|
|---|
| 399 | data_px = datafile.GetUInt("NPIX");
|
|---|
| 400 | data_n = datafile.GetN("Data"); //Size of column "Data" = #Pixel x ROI
|
|---|
| 401 |
|
|---|
| 402 | //Set the sizes of the data vectors
|
|---|
| 403 | data.resize(data_n,0);
|
|---|
| 404 | data_offset.resize(data_px,0);
|
|---|
| 405 |
|
|---|
| 406 | //Link the data to variables
|
|---|
| 407 | datafile.SetRefAddress("EventNum", data_num);
|
|---|
| 408 | datafile.SetVecAddress("Data", data);
|
|---|
| 409 | datafile.SetVecAddress("StartCellData", data_offset);
|
|---|
| 410 | datafile.GetRow(0);
|
|---|
| 411 |
|
|---|
| 412 | cout << "Opening data file successful..." << endl;
|
|---|
| 413 |
|
|---|
| 414 | return datafile.GetNumRows() ;
|
|---|
| 415 | }
|
|---|
| 416 |
|
|---|