| 1 | #include <TROOT.h> | 
|---|
| 2 | #include <TCanvas.h> | 
|---|
| 3 | #include <TProfile.h> | 
|---|
| 4 | #include <TTimer.h> | 
|---|
| 5 | #include <TH1F.h> | 
|---|
| 6 | #include <TH2F.h> | 
|---|
| 7 | #include <Getline.h> | 
|---|
| 8 | #include <TLine.h> | 
|---|
| 9 | #include <TMath.h> | 
|---|
| 10 | #include <TFile.h> | 
|---|
| 11 |  | 
|---|
| 12 | #include <stdio.h> | 
|---|
| 13 | #include <stdint.h> | 
|---|
| 14 | #include <cstdio> | 
|---|
| 15 |  | 
|---|
| 16 | #include "fits.h" | 
|---|
| 17 | //#include "TPKplotevent.c" | 
|---|
| 18 | //#include "FOpenDataFile.c" | 
|---|
| 19 | #include "FOpenCalibFile.c" | 
|---|
| 20 |  | 
|---|
| 21 | #include "zerosearch.C" | 
|---|
| 22 |  | 
|---|
| 23 | #define NPIX  1440 | 
|---|
| 24 | #define NCELL 1024 | 
|---|
| 25 |  | 
|---|
| 26 | // data access and treatment | 
|---|
| 27 | #define FAD_MAX_SAMPLES 1024 | 
|---|
| 28 |  | 
|---|
| 29 | vector<int16_t> data; | 
|---|
| 30 | vector<int16_t> data_offset; | 
|---|
| 31 |  | 
|---|
| 32 | unsigned int data_num; | 
|---|
| 33 |  | 
|---|
| 34 | size_t data_n; | 
|---|
| 35 | UInt_t data_px; | 
|---|
| 36 | UInt_t data_roi; | 
|---|
| 37 | int NEvents; | 
|---|
| 38 | int NBSLeve = 1000; | 
|---|
| 39 |  | 
|---|
| 40 | size_t drs_n; | 
|---|
| 41 | vector<float> drs_basemean; | 
|---|
| 42 | vector<float> drs_gainmean; | 
|---|
| 43 | vector<float> drs_triggeroffsetmean; | 
|---|
| 44 |  | 
|---|
| 45 | int FOpenDataFile( fits & ); | 
|---|
| 46 |  | 
|---|
| 47 |  | 
|---|
| 48 | vector<float> Ameas(FAD_MAX_SAMPLES);  // copy of the data (measured amplitude | 
|---|
| 49 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors | 
|---|
| 50 | vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors | 
|---|
| 51 | vector<float> Vcorr(FAD_MAX_SAMPLES);  // corrected Values | 
|---|
| 52 | vector<float> Vdiff(FAD_MAX_SAMPLES);  // numerical derivative | 
|---|
| 53 |  | 
|---|
| 54 | vector<float> Vslide(FAD_MAX_SAMPLES);  // sliding average result | 
|---|
| 55 | vector<float> Vcfd(FAD_MAX_SAMPLES);    // CDF result | 
|---|
| 56 | vector<float> Vcfd2(FAD_MAX_SAMPLES);    // CDF result + 2nd sliding average | 
|---|
| 57 |  | 
|---|
| 58 | #include "factfir.C" | 
|---|
| 59 |  | 
|---|
| 60 | float getValue( int, int ); | 
|---|
| 61 | void  computeN1mean( int ); | 
|---|
| 62 | void  removeSpikes( int ); | 
|---|
| 63 |  | 
|---|
| 64 | // histograms | 
|---|
| 65 | const int Ntypes = 7; | 
|---|
| 66 | const unsigned int  // arranged by Dominik | 
|---|
| 67 | tAmeas  = 0, | 
|---|
| 68 | tN1mean = 1, | 
|---|
| 69 | tVcorr  = 2, | 
|---|
| 70 | tVtest  = 3, | 
|---|
| 71 | tVslide = 4, | 
|---|
| 72 | tVcfd   = 5, | 
|---|
| 73 | tVcfd2  = 6; | 
|---|
| 74 |  | 
|---|
| 75 | TH1F* h; | 
|---|
| 76 | TH2F* hStartCell;   // id of the DRS physical pipeline cell where readout starts | 
|---|
| 77 | // x = pixel id, y = DRS cell id | 
|---|
| 78 | TH2F hPixelCellData( | 
|---|
| 79 | "PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.); | 
|---|
| 80 | TH1F *hBaseline[ NPIX ]; // histograms for baseline extraction | 
|---|
| 81 | TH1F *hMeanBsl, *hpltMeanBsl; | 
|---|
| 82 | TH1F *hRmsBsl, *hpltRmsBsl; | 
|---|
| 83 | TObjArray hList; | 
|---|
| 84 | TObjArray hListBaseline; | 
|---|
| 85 |  | 
|---|
| 86 | void BookHistos( int ); | 
|---|
| 87 | void SaveHistograms( char * ); | 
|---|
| 88 |  | 
|---|
| 89 | // Create a canvas | 
|---|
| 90 | TCanvas* CW; | 
|---|
| 91 | TCanvas* cFilter; | 
|---|
| 92 |  | 
|---|
| 93 | int spikeDebug = 0; | 
|---|
| 94 | int searchSinglesPeaks = 0; | 
|---|
| 95 |  | 
|---|
| 96 |  | 
|---|
| 97 | int fbsl( | 
|---|
| 98 | char *datafilename              = "../raw/20110916_025.fits", | 
|---|
| 99 | const char *drsfilename = "../raw/20110916_024.drs.fits", | 
|---|
| 100 | int pixelnr                     = 0, | 
|---|
| 101 | int firstevent                  = 0, | 
|---|
| 102 | int nevents                     = -1 ){ | 
|---|
| 103 | // read and analyze FACT raw data | 
|---|
| 104 |  | 
|---|
| 105 | // sliding window filter settings | 
|---|
| 106 | int k_slide = 16; | 
|---|
| 107 | vector<double> a_slide(k_slide, 1); | 
|---|
| 108 | double b_slide = k_slide; | 
|---|
| 109 |  | 
|---|
| 110 | // CFD filter settings | 
|---|
| 111 | int k_cfd = 10; | 
|---|
| 112 | vector<double> a_cfd(k_cfd, 0); | 
|---|
| 113 | double b_cfd = 1.; | 
|---|
| 114 | a_cfd[0]=0.75; | 
|---|
| 115 | a_cfd[k_cfd-1]=-1.; | 
|---|
| 116 |  | 
|---|
| 117 | // 2nd slinding window filter | 
|---|
| 118 | int ks2 = 16; | 
|---|
| 119 | vector<double> as2(ks2, 1); | 
|---|
| 120 | double bs2 = ks2; | 
|---|
| 121 | gROOT->SetStyle("Plain"); | 
|---|
| 122 |  | 
|---|
| 123 | //------------------------------------------- | 
|---|
| 124 | // Open the file | 
|---|
| 125 | //------------------------------------------- | 
|---|
| 126 | fits datafile( datafilename ); | 
|---|
| 127 | if (!datafile) { | 
|---|
| 128 | printf( "Could not open the file: %s\n", datafilename ); | 
|---|
| 129 | return 1; | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | // access data | 
|---|
| 133 | NEvents = FOpenDataFile( datafile ); | 
|---|
| 134 |  | 
|---|
| 135 | printf("number of events in file: %d\n", NEvents); | 
|---|
| 136 |  | 
|---|
| 137 | // compare the number of events in the data file with the nevents the | 
|---|
| 138 | // the user would like to read. nevents = -1 means: read all | 
|---|
| 139 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents; | 
|---|
| 140 |  | 
|---|
| 141 |  | 
|---|
| 142 | //  FILE *pedFile; | 
|---|
| 143 | // pedFile = fopen("t.txt","u"); | 
|---|
| 144 | // fprintf(pedFile,"# Pedestal Data"); | 
|---|
| 145 | // fclose( pedFile ); | 
|---|
| 146 | //------------------------------------------- | 
|---|
| 147 | //Get the DRS calibration | 
|---|
| 148 | //------------------------------------------- | 
|---|
| 149 |  | 
|---|
| 150 | FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n); | 
|---|
| 151 |  | 
|---|
| 152 |  | 
|---|
| 153 | //Check the sizes of the data columns | 
|---|
| 154 | if(drs_n!=data_n) | 
|---|
| 155 | { | 
|---|
| 156 | cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl; | 
|---|
| 157 | return 1; | 
|---|
| 158 | } | 
|---|
| 159 | // Book the histograms | 
|---|
| 160 | // printf("call BookHistos\n"); | 
|---|
| 161 | BookHistos( data_roi ); | 
|---|
| 162 | // printf("returned from BookHistos\n"); | 
|---|
| 163 | // Loop over events | 
|---|
| 164 | cout << "--------------------- Data --------------------" << endl; | 
|---|
| 165 |  | 
|---|
| 166 | float value; | 
|---|
| 167 |  | 
|---|
| 168 | // loop over events | 
|---|
| 169 | //    for ( int ev = firstevent; ev < nevents; ev++) { | 
|---|
| 170 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) { | 
|---|
| 171 |  | 
|---|
| 172 | datafile.GetRow( ev ); | 
|---|
| 173 |  | 
|---|
| 174 | if ( ev % 100 == 0 ){ | 
|---|
| 175 | cout << "Event number: " << data_num << endl; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | // loop over pixel | 
|---|
| 179 | for ( int pix = 0; pix < 1440; pix++ ){ | 
|---|
| 180 |  | 
|---|
| 181 | // hStartCell->Fill( pix, data_offset[pix] ); | 
|---|
| 182 |  | 
|---|
| 183 | // loop over DRS slices | 
|---|
| 184 | for ( unsigned int sl = 0; sl < data_roi; sl++){ | 
|---|
| 185 |  | 
|---|
| 186 | Ameas[ sl ] = getValue(sl, pix); | 
|---|
| 187 |  | 
|---|
| 188 | } | 
|---|
| 189 | // printf("Ameas[100] = %f\n", Ameas[100] ); | 
|---|
| 190 |  | 
|---|
| 191 | computeN1mean( data_roi ); // prepare spike removal | 
|---|
| 192 | removeSpikes( data_roi );  // output in Vcorr | 
|---|
| 193 |  | 
|---|
| 194 | // filter Vcorr with sliding average using FIR filter function | 
|---|
| 195 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide); | 
|---|
| 196 |  | 
|---|
| 197 | for ( unsigned int sl = 0; sl < data_roi; sl++){ | 
|---|
| 198 | // hPixelCellData.Fill( sl, Vcorr[sl] ); | 
|---|
| 199 | hBaseline[pix]->Fill( Vslide[sl] ) ; | 
|---|
| 200 | } | 
|---|
| 201 | } | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | FILE *fp; | 
|---|
| 205 | TString fName; // name of the histogram file | 
|---|
| 206 | /* create the filename for the histogram file */ | 
|---|
| 207 | fName = datafilename; // use the name of the tree file | 
|---|
| 208 | fName.Remove(fName.Length() - 5); // remove the extension .root | 
|---|
| 209 | fName += "_bsl.txt"; // add the new extension | 
|---|
| 210 |  | 
|---|
| 211 | fp = fopen(fName, "a+"); | 
|---|
| 212 | fprintf( fp, "FILE: %s\n", datafilename ); | 
|---|
| 213 | fprintf( fp, "NEVENTS: %d\n", NEvents); | 
|---|
| 214 | NBSLeve = NEvents; // this has to be changed when computation on a subset of a run is implemented | 
|---|
| 215 | fprintf( fp, "NBSLEVE:  %d\n", NBSLeve ); | 
|---|
| 216 |  | 
|---|
| 217 | for (int pix = 0; pix < NPIX; pix++) { | 
|---|
| 218 | //printf("Maximum bin pix[%d] %f\n", pix ,hBaseline[pix]->GetMaximumBin() ); | 
|---|
| 219 |  | 
|---|
| 220 | float vmaxprob = hBaseline[pix]->GetXaxis()->GetBinCenter( | 
|---|
| 221 | hBaseline[pix]->GetMaximumBin() ); | 
|---|
| 222 |  | 
|---|
| 223 | fprintf( fp, "%8.3f", vmaxprob ); | 
|---|
| 224 |  | 
|---|
| 225 | hMeanBsl->Fill( vmaxprob ); | 
|---|
| 226 | hpltMeanBsl->SetBinContent(pix+1, vmaxprob ); | 
|---|
| 227 |  | 
|---|
| 228 | hRmsBsl->Fill(hBaseline[pix]->GetRMS() ); | 
|---|
| 229 | hpltRmsBsl->SetBinContent( pix+1, hBaseline[pix]->GetRMS() ); | 
|---|
| 230 | } | 
|---|
| 231 |  | 
|---|
| 232 | fclose( fp ); | 
|---|
| 233 |  | 
|---|
| 234 | SaveHistograms( datafilename ); | 
|---|
| 235 |  | 
|---|
| 236 | TCanvas * cMeanBsl = new TCanvas(); | 
|---|
| 237 | cMeanBsl->cd(); | 
|---|
| 238 | hMeanBsl->Draw(); | 
|---|
| 239 | //canv_mean->Modified(); | 
|---|
| 240 | cMeanBsl->Update(); | 
|---|
| 241 |  | 
|---|
| 242 | TCanvas * cRmsBsl = new TCanvas(); | 
|---|
| 243 | cRmsBsl->cd(); | 
|---|
| 244 | hRmsBsl->Draw(); | 
|---|
| 245 | //canv_rms->Modified(); | 
|---|
| 246 | cMeanBsl->Update(); | 
|---|
| 247 |  | 
|---|
| 248 | return( 0 ); | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | void removeSpikes(int Samples){ | 
|---|
| 252 |  | 
|---|
| 253 | const float fract = 0.8; | 
|---|
| 254 | float x, xp, xpp, x3p; | 
|---|
| 255 |  | 
|---|
| 256 | // assume that there are no spikes | 
|---|
| 257 | for ( int i = 0; i <  Samples; i++) Vcorr[i] = Ameas[i]; | 
|---|
| 258 |  | 
|---|
| 259 | // find the spike and replace it by mean value of neighbors | 
|---|
| 260 | for ( int i = 2; i < Samples-2 ; i++) { | 
|---|
| 261 |  | 
|---|
| 262 | x = Ameas[i] - N1mean[i]; | 
|---|
| 263 |  | 
|---|
| 264 | if ( x < -5. ){ // a spike candidate | 
|---|
| 265 | // check consistency with a single channel spike | 
|---|
| 266 | xp = Ameas[i+1] - N1mean[i+1]; | 
|---|
| 267 | xpp = Ameas[i+2] - N1mean[i+2]; | 
|---|
| 268 |  | 
|---|
| 269 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){ | 
|---|
| 270 | // printf("double spike candidate\n"); | 
|---|
| 271 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.; | 
|---|
| 272 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.; | 
|---|
| 273 | i = i + 3; | 
|---|
| 274 | } | 
|---|
| 275 | else{ | 
|---|
| 276 |  | 
|---|
| 277 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){ | 
|---|
| 278 | Vcorr[i+1] = N1mean[i+1]; | 
|---|
| 279 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]); | 
|---|
| 280 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.); | 
|---|
| 281 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.); | 
|---|
| 282 | i = i + 2;//do not care about the next sample it was the spike | 
|---|
| 283 | } | 
|---|
| 284 | // treatment for the end of the pipeline must be added !!! | 
|---|
| 285 | } | 
|---|
| 286 | } | 
|---|
| 287 | else{ | 
|---|
| 288 | // do nothing | 
|---|
| 289 | } | 
|---|
| 290 | } // end of spike search and correction | 
|---|
| 291 | } | 
|---|
| 292 |  | 
|---|
| 293 | void computeN1mean( int Samples ){ | 
|---|
| 294 | // compute the mean of the left and right neighbors of a channel | 
|---|
| 295 |  | 
|---|
| 296 | for( int i = 2; i < Samples - 2; i++){ | 
|---|
| 297 | /*        if (i == 0){ // use right sample es mean | 
|---|
| 298 | N1mean[i] = Ameas[i+1]; | 
|---|
| 299 | } | 
|---|
| 300 | else if ( i == Samples-1 ){ //use left sample as mean | 
|---|
| 301 | N1mean[i] = Ameas[i-1]; | 
|---|
| 302 | } | 
|---|
| 303 | else{ | 
|---|
| 304 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; | 
|---|
| 305 | } | 
|---|
| 306 | */ | 
|---|
| 307 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; | 
|---|
| 308 | } | 
|---|
| 309 | } // end of computeN1mean computation | 
|---|
| 310 |  | 
|---|
| 311 | float getValue( int slice, int pixel ){ | 
|---|
| 312 |  | 
|---|
| 313 | const float dconv = 2000/4096.0; | 
|---|
| 314 |  | 
|---|
| 315 | float vraw, vcal; | 
|---|
| 316 |  | 
|---|
| 317 | unsigned int pixel_pt; | 
|---|
| 318 | unsigned int slice_pt; | 
|---|
| 319 | unsigned int cal_pt; | 
|---|
| 320 | unsigned int drs_cal_offset; | 
|---|
| 321 |  | 
|---|
| 322 | // printf("pixel = %d, slice = %d\n", slice, pixel); | 
|---|
| 323 |  | 
|---|
| 324 | pixel_pt = pixel * data_roi; | 
|---|
| 325 | slice_pt = pixel_pt + slice; | 
|---|
| 326 | drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi; | 
|---|
| 327 | cal_pt    = pixel_pt + drs_cal_offset; | 
|---|
| 328 |  | 
|---|
| 329 | vraw = data[ slice_pt ] * dconv; | 
|---|
| 330 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35; | 
|---|
| 331 |  | 
|---|
| 332 | return( vcal ); | 
|---|
| 333 | } | 
|---|
| 334 |  | 
|---|
| 335 | void BookHistos( int Samples ){ | 
|---|
| 336 | // booking and parameter settings for all histos | 
|---|
| 337 |  | 
|---|
| 338 | // histograms for baseline extraction | 
|---|
| 339 | char hName[500]; | 
|---|
| 340 | char hTitle[500]; | 
|---|
| 341 |  | 
|---|
| 342 | TH1F *h; | 
|---|
| 343 |  | 
|---|
| 344 | printf("inside BookHistos\n"); | 
|---|
| 345 |  | 
|---|
| 346 | for( int i = 0; i < NPIX; i++ ) { | 
|---|
| 347 |  | 
|---|
| 348 | // printf("call sprintf [%d]\n", i ); | 
|---|
| 349 | sprintf(&hTitle[0],"all events all slices of pixel %d", i); | 
|---|
| 350 | sprintf(&hName[0],"base%d", i); | 
|---|
| 351 | // printf("call sprintf [%d] done\n", i ); | 
|---|
| 352 |  | 
|---|
| 353 | h = new TH1F( hName, hTitle, 400, -99.5 ,100.5 ); | 
|---|
| 354 |  | 
|---|
| 355 | // printf("histo booked\n"); | 
|---|
| 356 | h->GetXaxis()->SetTitle( "Sample value (mV)" ); | 
|---|
| 357 | h->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 358 | // printf("histo title set\n"); | 
|---|
| 359 | hListBaseline.Add( h ); | 
|---|
| 360 | // printf("histo added to List\n"); | 
|---|
| 361 | hBaseline[i] = h; | 
|---|
| 362 | // printf("histo assigned to array\n"); | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | printf("made HBaseline * 1440\n"); | 
|---|
| 366 |  | 
|---|
| 367 | hMeanBsl = new TH1F("histo_mean","Value of maximal probability",400,-99.5,100.5); | 
|---|
| 368 | hMeanBsl->GetXaxis()->SetTitle( "max value (mV)" ); | 
|---|
| 369 | hMeanBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 370 | hList.Add( hMeanBsl ); | 
|---|
| 371 |  | 
|---|
| 372 | hpltMeanBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5); | 
|---|
| 373 | hpltMeanBsl->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 374 | hpltMeanBsl->GetYaxis()->SetTitle( "max value in mV" ); | 
|---|
| 375 | hList.Add( hpltMeanBsl ); | 
|---|
| 376 |  | 
|---|
| 377 | hRmsBsl = new TH1F("histo_rms","RMS in mV",2000,-99.5,100.5); | 
|---|
| 378 | hRmsBsl->GetXaxis()->SetTitle( "RMS (mV)" ); | 
|---|
| 379 | hRmsBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 380 | hList.Add( hRmsBsl ); | 
|---|
| 381 |  | 
|---|
| 382 | hpltRmsBsl = new TH1F("hplt_rms","Value of maximal probability",1440,-0.5,1439.5); | 
|---|
| 383 | hpltRmsBsl->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 384 | hpltRmsBsl->GetYaxis()->SetTitle( "RMS in mV" ); | 
|---|
| 385 | hList.Add( hpltRmsBsl ); | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 |  | 
|---|
| 389 | void SaveHistograms( char * loc_fname ){ | 
|---|
| 390 |  | 
|---|
| 391 | TString fName; // name of the histogram file | 
|---|
| 392 |  | 
|---|
| 393 | /* create the filename for the histogram file */ | 
|---|
| 394 | fName = loc_fname; // use the name of the tree file | 
|---|
| 395 | fName.Remove(fName.Length() - 5); // remove the extension .root | 
|---|
| 396 | fName += "_histo.root"; // add the new extension | 
|---|
| 397 |  | 
|---|
| 398 | TFile tf( fName, "RECREATE"); // create the histogram file (replace if already existing) | 
|---|
| 399 |  | 
|---|
| 400 | hList.Write(); // write the major histograms into the top level directory | 
|---|
| 401 | tf.mkdir("BaselineHisto"); tf.cd("BaselineHisto"); // go to new subdirectory | 
|---|
| 402 | hListBaseline.Write(); // write histos into subdirectory | 
|---|
| 403 |  | 
|---|
| 404 | tf.Close(); // close the file | 
|---|
| 405 |  | 
|---|
| 406 | } // end of function: void ana::SaveHistograms( void ) | 
|---|
| 407 |  | 
|---|
| 408 | int FOpenDataFile(fits &datafile){ | 
|---|
| 409 |  | 
|---|
| 410 | /*  cout << "-------------------- Data Header -------------------" << endl; | 
|---|
| 411 | datafile.PrintKeys(); | 
|---|
| 412 | cout << "------------------- Data Columns -------------------" << endl; | 
|---|
| 413 | datafile.PrintColumns(); | 
|---|
| 414 | */ | 
|---|
| 415 |  | 
|---|
| 416 | //Get the size of the data column | 
|---|
| 417 | data_roi = datafile.GetUInt("NROI");  // Value from header | 
|---|
| 418 | data_px = datafile.GetUInt("NPIX"); | 
|---|
| 419 | data_n = datafile.GetN("Data");         //Size of column "Data" = #Pixel x ROI | 
|---|
| 420 |  | 
|---|
| 421 | //Set the sizes of the data vectors | 
|---|
| 422 | data.resize(data_n,0); | 
|---|
| 423 | data_offset.resize(data_px,0); | 
|---|
| 424 |  | 
|---|
| 425 | //Link the data to variables | 
|---|
| 426 | datafile.SetRefAddress("EventNum", data_num); | 
|---|
| 427 | datafile.SetVecAddress("Data", data); | 
|---|
| 428 | datafile.SetVecAddress("StartCellData", data_offset); | 
|---|
| 429 | datafile.GetRow(0); | 
|---|
| 430 |  | 
|---|
| 431 | cout << "Opening data file successful..." << endl; | 
|---|
| 432 |  | 
|---|
| 433 | return datafile.GetNumRows() ; | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|