| 1 | #include <TROOT.h> | 
|---|
| 2 | #include <TCanvas.h> | 
|---|
| 3 | #include <TProfile.h> | 
|---|
| 4 | #include <TTimer.h> | 
|---|
| 5 | #include <TH1F.h> | 
|---|
| 6 | #include <TH2F.h> | 
|---|
| 7 | #include <Getline.h> | 
|---|
| 8 | #include <TLine.h> | 
|---|
| 9 | #include <TBox.h> | 
|---|
| 10 | #include <TMath.h> | 
|---|
| 11 | #include <TFile.h> | 
|---|
| 12 | #include <TStyle.h> | 
|---|
| 13 |  | 
|---|
| 14 | #include <stdio.h> | 
|---|
| 15 | #include <stdint.h> | 
|---|
| 16 | #include <cstdio> | 
|---|
| 17 |  | 
|---|
| 18 | #define NPIX  1440 | 
|---|
| 19 | #define NCELL 1024 | 
|---|
| 20 | #define FAD_MAX_SAMPLES 1024 | 
|---|
| 21 |  | 
|---|
| 22 | #define HAVE_ZLIB | 
|---|
| 23 | #include "fits.h" | 
|---|
| 24 | #include "FOpenCalibFile.c" | 
|---|
| 25 |  | 
|---|
| 26 | #include "discriminator.h" | 
|---|
| 27 | #include "discriminator.C" | 
|---|
| 28 | #include "zerosearch.h" | 
|---|
| 29 | #include "zerosearch.C" | 
|---|
| 30 | #include "factfir.C" | 
|---|
| 31 |  | 
|---|
| 32 |  | 
|---|
| 33 | vector<int16_t> AllPixelDataVector; | 
|---|
| 34 | vector<int16_t> StartCellVector; | 
|---|
| 35 |  | 
|---|
| 36 | unsigned int CurrentEventID; | 
|---|
| 37 |  | 
|---|
| 38 | bool breakout=false; | 
|---|
| 39 |  | 
|---|
| 40 | size_t ROIxNOP; | 
|---|
| 41 | UInt_t NumberOfPixels; | 
|---|
| 42 | UInt_t RegionOfInterest; | 
|---|
| 43 | int NEvents; | 
|---|
| 44 |  | 
|---|
| 45 | size_t drs_n; | 
|---|
| 46 | vector<float> drs_basemean; | 
|---|
| 47 | vector<float> drs_gainmean; | 
|---|
| 48 | vector<float> drs_triggeroffsetmean; | 
|---|
| 49 |  | 
|---|
| 50 | int FOpenDataFile( fits & ); | 
|---|
| 51 |  | 
|---|
| 52 |  | 
|---|
| 53 | vector<float> Ameas(FAD_MAX_SAMPLES);  // copy of the data (measured amplitude | 
|---|
| 54 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors | 
|---|
| 55 | vector<float> Vcorr(FAD_MAX_SAMPLES);  // corrected Values | 
|---|
| 56 | vector<float> Vdiff(FAD_MAX_SAMPLES);  // numerical derivative | 
|---|
| 57 |  | 
|---|
| 58 | vector<float> Vslide(FAD_MAX_SAMPLES);  // sliding average result | 
|---|
| 59 | vector<float> Vcfd(FAD_MAX_SAMPLES);    // CDF result | 
|---|
| 60 | vector<float> Vcfd2(FAD_MAX_SAMPLES);    // CDF result + 2nd sliding average | 
|---|
| 61 |  | 
|---|
| 62 | // not needed? | 
|---|
| 63 | //vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors | 
|---|
| 64 |  | 
|---|
| 65 |  | 
|---|
| 66 | float getValue( int, int ); | 
|---|
| 67 | float correctDrsOffset( int slice, int pixel ); | 
|---|
| 68 | void computeN1mean( int ); | 
|---|
| 69 | void removeSpikes( int ); | 
|---|
| 70 |  | 
|---|
| 71 | // histograms | 
|---|
| 72 | const int Ntypes = 7; | 
|---|
| 73 | const unsigned int  // arranged by Dominik | 
|---|
| 74 | tAmeas  = 0, | 
|---|
| 75 | tN1mean = 1, | 
|---|
| 76 | tVcorr  = 2, | 
|---|
| 77 | tVtest  = 3, | 
|---|
| 78 | tVslide = 4, | 
|---|
| 79 | tVcfd   = 5, | 
|---|
| 80 | tVcfd2  = 6; | 
|---|
| 81 |  | 
|---|
| 82 | TH1F* h; | 
|---|
| 83 | TH1F *oldh; | 
|---|
| 84 | TH2F* hStartCell;   // id of the DRS physical pipeline cell where readout starts | 
|---|
| 85 | // x = pixel id, y = DRS cell id | 
|---|
| 86 | TH2F hPixelCellData( | 
|---|
| 87 | "PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.); | 
|---|
| 88 | TH1F *hBaseline[ NPIX ]; // histograms for baseline extraction | 
|---|
| 89 | TH1F *hMeanBsl, *hpltMeanBsl; | 
|---|
| 90 | TH1F *hRmsBsl, *hpltRmsBsl; | 
|---|
| 91 | TH2F * hAmplSpek_cfd; | 
|---|
| 92 | TH2F * hAmplSpek_discri; | 
|---|
| 93 | TObjArray hList; | 
|---|
| 94 | TObjArray hListBaseline; | 
|---|
| 95 |  | 
|---|
| 96 | void BookHistos( ); | 
|---|
| 97 | void SaveHistograms( char * ); | 
|---|
| 98 |  | 
|---|
| 99 | // Create a canvas | 
|---|
| 100 | TCanvas* CW; | 
|---|
| 101 | TCanvas* cFilter; | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 | int searchSinglesPeaks = 0; | 
|---|
| 105 |  | 
|---|
| 106 | int fpeak_discri( | 
|---|
| 107 | char *datafilename              = "../../20111011_055.fits.gz", | 
|---|
| 108 | const char *drsfilename = "../../20111011_054.drs.fits.gz", | 
|---|
| 109 | int PixelID                             = -1, | 
|---|
| 110 | int firstevent                  = 0, | 
|---|
| 111 | int nevents                     = -1, | 
|---|
| 112 | bool spikeDebug = false, | 
|---|
| 113 | int verbosityLevel = 1 // different verbosity levels can be implemented here | 
|---|
| 114 | ) | 
|---|
| 115 | { | 
|---|
| 116 |  | 
|---|
| 117 | gStyle->SetPalette(1,0); | 
|---|
| 118 | gROOT->SetStyle("Plain"); | 
|---|
| 119 | // read FACT raw data | 
|---|
| 120 | //      * remove spikes | 
|---|
| 121 | //      * calculate baseline | 
|---|
| 122 | //      * find peaks (CFD and normal discriminator) | 
|---|
| 123 | //      * compute pulse height and pulse integral spektrum of the peaks | 
|---|
| 124 |  | 
|---|
| 125 | // sliding window filter settings | 
|---|
| 126 | int k_slide = 16; | 
|---|
| 127 | vector<double> a_slide(k_slide, 1); | 
|---|
| 128 | double b_slide = k_slide; | 
|---|
| 129 |  | 
|---|
| 130 | // CFD filter settings | 
|---|
| 131 | int k_cfd = 10; | 
|---|
| 132 | vector<double> a_cfd(k_cfd, 0); | 
|---|
| 133 | double b_cfd = 1.; | 
|---|
| 134 | a_cfd[0]=-0.75; | 
|---|
| 135 | a_cfd[k_cfd-1]=1.; | 
|---|
| 136 |  | 
|---|
| 137 | // 2nd slinding window filter | 
|---|
| 138 | int ks2 = 16; | 
|---|
| 139 | vector<double> as2(ks2, 1); | 
|---|
| 140 | double bs2 = ks2; | 
|---|
| 141 |  | 
|---|
| 142 | // Open the data file | 
|---|
| 143 | fits *datafile = new fits( datafilename ); | 
|---|
| 144 | if (!datafile) { | 
|---|
| 145 | printf( "Could not open the file: %s\n", datafilename ); | 
|---|
| 146 | return 1; | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | // access data | 
|---|
| 150 | NEvents = FOpenDataFile( *datafile ); | 
|---|
| 151 | printf("number of events in file: %d\n", NEvents); | 
|---|
| 152 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents; // -1 means all! | 
|---|
| 153 |  | 
|---|
| 154 | //Get the DRS calibration | 
|---|
| 155 | FOpenCalibFile( drsfilename, | 
|---|
| 156 | drs_basemean, | 
|---|
| 157 | drs_gainmean, | 
|---|
| 158 | drs_triggeroffsetmean, | 
|---|
| 159 | drs_n); | 
|---|
| 160 |  | 
|---|
| 161 | //Check the sizes of the data columns | 
|---|
| 162 | if (drs_n != 1474560) { | 
|---|
| 163 | cerr << "error: DRS calib file has wrong ...erm...size ... drs_n is: " | 
|---|
| 164 | << drs_n << endl; | 
|---|
| 165 | cerr << " Aborting." << endl; | 
|---|
| 166 | return 1; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | if(ROIxNOP != 1474560) | 
|---|
| 170 | { | 
|---|
| 171 | cout << "warning: data_n should better be 1440x1024=1474560, but is " | 
|---|
| 172 | << ROIxNOP << endl; | 
|---|
| 173 | cout << "this script is not guaranteed to run under these " | 
|---|
| 174 | <<" circumstances....any way ... it is never guaranteed." << endl; | 
|---|
| 175 | } | 
|---|
| 176 | // Book the histograms | 
|---|
| 177 |  | 
|---|
| 178 | BookHistos( ); | 
|---|
| 179 | TCanvas * cSpektrum = new TCanvas(); | 
|---|
| 180 | cSpektrum->Divide(1,2); | 
|---|
| 181 | cSpektrum->cd(1); | 
|---|
| 182 | hAmplSpek_discri->Draw("COLZ"); | 
|---|
| 183 | cSpektrum->cd(2); | 
|---|
| 184 | hAmplSpek_cfd->Draw("COLZ"); | 
|---|
| 185 | //      TCanvas * cStartCell = new TCanvas(); | 
|---|
| 186 | //      cStartCell->cd(); | 
|---|
| 187 | //      hStartCell->Draw(); | 
|---|
| 188 | //      hPixelCellData.Draw(); | 
|---|
| 189 |  | 
|---|
| 190 | float calibratedVoltage; | 
|---|
| 191 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) { | 
|---|
| 192 | datafile->GetRow( ev ); | 
|---|
| 193 |  | 
|---|
| 194 |  | 
|---|
| 195 | for ( int pix = 0; pix < 1440; pix++ ){ | 
|---|
| 196 | // This means: GetEvent | 
|---|
| 197 |  | 
|---|
| 198 | // this is a stupid hack ... these is more code at the | 
|---|
| 199 | // end of this loop to complete this hack ... | 
|---|
| 200 | if (PixelID != -1) { | 
|---|
| 201 | pix = PixelID; | 
|---|
| 202 | if (verbosityLevel > 0){ | 
|---|
| 203 | cout << "Processing Event number: " << CurrentEventID << "\t" | 
|---|
| 204 | << "Pixel number: "<< pix << endl; | 
|---|
| 205 |  | 
|---|
| 206 | } | 
|---|
| 207 | } | 
|---|
| 208 |  | 
|---|
| 209 | if (verbosityLevel > 0){ | 
|---|
| 210 | if (pix % 20 ==0){ | 
|---|
| 211 | cout << "Processing Event number: " << CurrentEventID << "\t" | 
|---|
| 212 | << "Pixel number: "<< pix << endl; | 
|---|
| 213 | } | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 | //hStartCell->Fill( pix, StartCellVector[pix] ); | 
|---|
| 217 |  | 
|---|
| 218 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){ | 
|---|
| 219 | //calibratedVoltage = getValue( sl, pix); | 
|---|
| 220 | calibratedVoltage = correctDrsOffset( sl, pix); | 
|---|
| 221 | if (verbosityLevel > 10){ | 
|---|
| 222 | printf("calibratedVoltage = %f\n", calibratedVoltage); | 
|---|
| 223 | } | 
|---|
| 224 | Ameas[ sl ] = calibratedVoltage; | 
|---|
| 225 | if (spikeDebug){ | 
|---|
| 226 | oldh[tAmeas].SetBinContent(sl, calibratedVoltage); | 
|---|
| 227 | } | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | computeN1mean( RegionOfInterest ); | 
|---|
| 231 | // operates on Ameas[] and writes to N1mean[] | 
|---|
| 232 | removeSpikes( RegionOfInterest ); | 
|---|
| 233 | // operates on Ameas[] and N1mean[], then writes to Vcorr[] | 
|---|
| 234 |  | 
|---|
| 235 | if (spikeDebug){ | 
|---|
| 236 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){ | 
|---|
| 237 | hPixelCellData.Fill(sl, Vcorr[ sl ]); | 
|---|
| 238 | } | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | // filter Vcorr with sliding average using FIR filter function | 
|---|
| 242 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide); | 
|---|
| 243 | // filter Vslide with CFD using FIR filter function | 
|---|
| 244 | factfir(b_cfd , a_cfd, k_cfd, Vslide, Vcfd); | 
|---|
| 245 | // filter Vcfd with sliding average using FIR filter function | 
|---|
| 246 | factfir(bs2 , as2, ks2, Vcfd, Vcfd2); | 
|---|
| 247 |  | 
|---|
| 248 | float myTHR = 3.5; | 
|---|
| 249 | vector<Region> *Regions =  discriminator( Vslide, myTHR,true , 120); | 
|---|
| 250 | for (unsigned int p=0; p<Regions->size(); p++ ){ | 
|---|
| 251 | hAmplSpek_discri->Fill(pix , Regions->at(p).maxVal); | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 | // peaks in Ameas[] are found by searching for zero crossings | 
|---|
| 255 | // in Vcfd2 | 
|---|
| 256 | // first Argument 1 means ... *rising* edge | 
|---|
| 257 | // second Argument 1 means ... search with stepsize 1 ... 10 is okay as well | 
|---|
| 258 | vector<Region> * zXings = zerosearch( Vcfd2 , 1 , 1); | 
|---|
| 259 |  | 
|---|
| 260 | // zXings means "zero cross ings" | 
|---|
| 261 | ShiftRegionBy(*zXings, -ks2/2); | 
|---|
| 262 | EnlargeRegion(*zXings, 10, 10); | 
|---|
| 263 | findAbsMaxInRegions(*zXings, Vslide); | 
|---|
| 264 |  | 
|---|
| 265 | if (zXings->size() != 0 ){ | 
|---|
| 266 | for (unsigned int i=0; i<zXings->size(); i++){ | 
|---|
| 267 | if (verbosityLevel > 1){ | 
|---|
| 268 | cout << zXings->at(i).maxPos << ":\t" | 
|---|
| 269 | << zXings->at(i).maxVal <<endl; | 
|---|
| 270 | } | 
|---|
| 271 | hAmplSpek_cfd->Fill(pix, zXings->at(i).maxVal); | 
|---|
| 272 | } | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | if ( spikeDebug ){ | 
|---|
| 276 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){ | 
|---|
| 277 | oldh[tVslide].SetBinContent( sl, Vslide[sl] ); | 
|---|
| 278 | oldh[tVcfd].SetBinContent( sl, Vcfd[sl] ); | 
|---|
| 279 | oldh[tVcfd2].SetBinContent( sl, Vcfd2[sl] ); | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | CW->cd( 1); | 
|---|
| 283 | gPad->SetGrid(); | 
|---|
| 284 | oldh[tAmeas].Draw(); | 
|---|
| 285 |  | 
|---|
| 286 | //                              CW->cd( tN1mean + 1); | 
|---|
| 287 | //                              gPad->SetGrid(); | 
|---|
| 288 | //                              oldh[tN1mean].Draw(); | 
|---|
| 289 |  | 
|---|
| 290 | CW->cd( 2); | 
|---|
| 291 | gPad->SetGrid(); | 
|---|
| 292 | oldh[tVcorr].Draw(); | 
|---|
| 293 |  | 
|---|
| 294 | //cFilter->cd( Ntypes - tVslide ); | 
|---|
| 295 | cFilter->cd(1); | 
|---|
| 296 | gPad->SetGrid(); | 
|---|
| 297 | oldh[tVslide].Draw(); | 
|---|
| 298 | TLine thrLine(0, myTHR, 1024, myTHR); | 
|---|
| 299 | thrLine.SetLineColor(kRed); | 
|---|
| 300 | thrLine.SetLineWidth(2); | 
|---|
| 301 | thrLine.Draw(); | 
|---|
| 302 | TLine * OneLine; | 
|---|
| 303 | vector<TLine*> MyLines; | 
|---|
| 304 | for (unsigned int p=0; p<Regions->size(); p++ ){ | 
|---|
| 305 | OneLine = new TLine( | 
|---|
| 306 | Regions->at(p).begin , | 
|---|
| 307 | Regions->at(p).maxVal, | 
|---|
| 308 | Regions->at(p).end, | 
|---|
| 309 | Regions->at(p).maxVal); | 
|---|
| 310 | OneLine->SetLineColor(kRed); | 
|---|
| 311 | OneLine->SetLineWidth(2); | 
|---|
| 312 | MyLines.push_back(OneLine); | 
|---|
| 313 | OneLine->Draw(); | 
|---|
| 314 | } | 
|---|
| 315 | TBox *OneBox; | 
|---|
| 316 | vector<TBox*> MyBoxes; | 
|---|
| 317 | for (unsigned int i=0; i<zXings->size(); i++){ | 
|---|
| 318 | OneBox = new TBox( | 
|---|
| 319 | zXings->at(i).maxPos -10 , | 
|---|
| 320 | zXings->at(i).maxVal -0.5, | 
|---|
| 321 | zXings->at(i).maxPos +10 , | 
|---|
| 322 | zXings->at(i).maxVal +0.5); | 
|---|
| 323 | OneBox->SetLineColor(kBlue); | 
|---|
| 324 | OneBox->SetLineWidth(1); | 
|---|
| 325 | OneBox->SetFillStyle(0); | 
|---|
| 326 | OneBox->SetFillColor(kRed); | 
|---|
| 327 | MyBoxes.push_back(OneBox); | 
|---|
| 328 | OneBox->Draw(); | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | //                              cFilter->cd( Ntypes - tVcfd ); | 
|---|
| 332 | //                              cFilter->cd(2); | 
|---|
| 333 | //                              gPad->SetGrid(); | 
|---|
| 334 | //                              oldh[tVcfd].Draw(); | 
|---|
| 335 | //                              TLine zeroline(0, 0, 1024, 0); | 
|---|
| 336 | //                              zeroline.SetLineColor(kBlue); | 
|---|
| 337 | //                              zeroline.Draw(); | 
|---|
| 338 |  | 
|---|
| 339 | //cFilter->cd( Ntypes - tVcfd2 ); | 
|---|
| 340 | cFilter->cd(2); | 
|---|
| 341 | gPad->SetGrid(); | 
|---|
| 342 | oldh[tVcfd2].Draw(); | 
|---|
| 343 | TLine zeroline(0, 0, 1024, 0); | 
|---|
| 344 | zeroline.SetLineColor(kBlue); | 
|---|
| 345 | zeroline.Draw(); | 
|---|
| 346 |  | 
|---|
| 347 |  | 
|---|
| 348 |  | 
|---|
| 349 |  | 
|---|
| 350 |  | 
|---|
| 351 | CW->Update(); | 
|---|
| 352 | cFilter->Update(); | 
|---|
| 353 |  | 
|---|
| 354 | //Process gui events asynchronously during input | 
|---|
| 355 | TTimer timer("gSystem->ProcessEvents();", 50, kFALSE); | 
|---|
| 356 | timer.TurnOn(); | 
|---|
| 357 | TString input = Getline("Type 'q' to exit, <return> to go on: "); | 
|---|
| 358 | timer.TurnOff(); | 
|---|
| 359 | if (input=="q\n") { | 
|---|
| 360 | breakout=true; | 
|---|
| 361 | delete OneLine; | 
|---|
| 362 | //                                      for (unsigned int i=0; i<MyLines.size(); i++){ | 
|---|
| 363 | //                                              delete MyLines[i]; | 
|---|
| 364 | //                                      } | 
|---|
| 365 | //                                      for (unsigned int i=0; i<MyBoxes.size(); i++){ | 
|---|
| 366 | //                                              delete MyBoxes[i]; | 
|---|
| 367 | //                                      } | 
|---|
| 368 | } | 
|---|
| 369 | }// end of if(spikeDebug) | 
|---|
| 370 | delete Regions; | 
|---|
| 371 | delete zXings; | 
|---|
| 372 |  | 
|---|
| 373 | if (PixelID != -1){ | 
|---|
| 374 | pix = 2000; | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | if (breakout) | 
|---|
| 378 | break; | 
|---|
| 379 |  | 
|---|
| 380 | } // end of loop over pixels | 
|---|
| 381 |  | 
|---|
| 382 | if (ev % 10 ==0){ | 
|---|
| 383 | cSpektrum->Modified(); | 
|---|
| 384 | cSpektrum->Update(); | 
|---|
| 385 | //              cStartCell->Modified(); | 
|---|
| 386 | //              cStartCell->Update(); | 
|---|
| 387 | } | 
|---|
| 388 | if (breakout) | 
|---|
| 389 | break; | 
|---|
| 390 | }       // end of loop over pixels | 
|---|
| 391 |  | 
|---|
| 392 |  | 
|---|
| 393 | //      delete cStartCell; | 
|---|
| 394 | return( 0 ); | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | void removeSpikes(int Samples){ | 
|---|
| 398 |  | 
|---|
| 399 | const float fract = 0.8; | 
|---|
| 400 | float x, xp, xpp, x3p; | 
|---|
| 401 |  | 
|---|
| 402 | // assume that there are no spikes | 
|---|
| 403 | for ( int i = 0; i <  Samples; i++) Vcorr[i] = Ameas[i]; | 
|---|
| 404 |  | 
|---|
| 405 | // find the spike and replace it by mean value of neighbors | 
|---|
| 406 | for ( int i = 0; i < Samples; i++) { | 
|---|
| 407 |  | 
|---|
| 408 | // printf("Vcorr[%d] = %f, Ameas[%d] = %f\n", i, Vcorr[ i ], i, Ameas[ i ] ); | 
|---|
| 409 |  | 
|---|
| 410 | x = Ameas[i] - N1mean[i]; | 
|---|
| 411 |  | 
|---|
| 412 | if ( x < -5. ){ // a spike candidate | 
|---|
| 413 | // check consistency with a single channel spike | 
|---|
| 414 | xp = Ameas[i+1] - N1mean[i+1]; | 
|---|
| 415 | xpp = Ameas[i+2] - N1mean[i+2]; | 
|---|
| 416 | x3p = Ameas[i+3] - N1mean[i+3]; | 
|---|
| 417 |  | 
|---|
| 418 | // printf("candidates x[%d] = %f; xp = %f; xpp = %f, x3p = %f\n", i, x, xp, xpp, x3p); | 
|---|
| 419 |  | 
|---|
| 420 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){ | 
|---|
| 421 | // printf("double spike candidate\n"); | 
|---|
| 422 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.; | 
|---|
| 423 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.; | 
|---|
| 424 | // printf("Vcorr[%d] = %f %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2], Vcorr[ i+3 ]); | 
|---|
| 425 | // printf("Ameas[%d] = %f %f %f %f\n", i, Ameas[ i ], Ameas[ i+1 ], Ameas[ i+2 ], Ameas[i+3]); | 
|---|
| 426 | i = i + 3; | 
|---|
| 427 | } | 
|---|
| 428 | else{ | 
|---|
| 429 |  | 
|---|
| 430 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){ | 
|---|
| 431 | Vcorr[i+1] = N1mean[i+1]; | 
|---|
| 432 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]); | 
|---|
| 433 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.); | 
|---|
| 434 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.); | 
|---|
| 435 | i = i + 2;//do not care about the next sample it was the spike | 
|---|
| 436 | } | 
|---|
| 437 | // treatment for the end of the pipeline must be added !!! | 
|---|
| 438 | } | 
|---|
| 439 | } | 
|---|
| 440 | else{ | 
|---|
| 441 | // do nothing | 
|---|
| 442 | } | 
|---|
| 443 | } // end of spike search and correction | 
|---|
| 444 | for ( int i = 0; i < Samples; i++ ) oldh[ tVcorr ].SetBinContent( i, Vcorr[i] ); | 
|---|
| 445 | } | 
|---|
| 446 | /* | 
|---|
| 447 | void computeN1mean( int Samples ){ | 
|---|
| 448 | cout << "In compute N1mean" << endl; | 
|---|
| 449 | // compute the mean of the left and right neighbors of a channel | 
|---|
| 450 |  | 
|---|
| 451 | for( int i = 0; i < Samples; i++){ | 
|---|
| 452 | if (i == 0){ // use right sample es mean | 
|---|
| 453 | N1mean[i] = Ameas[i+1]; | 
|---|
| 454 | } | 
|---|
| 455 | else if ( i == Samples-1 ){ //use left sample as mean | 
|---|
| 456 | N1mean[i] = Ameas[i-1]; | 
|---|
| 457 | } | 
|---|
| 458 | else{ | 
|---|
| 459 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; | 
|---|
| 460 | } | 
|---|
| 461 | h[tN1mean].SetBinContent(i, Ameas[i] - N1mean[i]); | 
|---|
| 462 | } | 
|---|
| 463 | } // end of computeN1mean computation | 
|---|
| 464 | */ | 
|---|
| 465 |  | 
|---|
| 466 | void computeN1mean( int Samples ){ | 
|---|
| 467 | // compute the mean of the left and right neighbors of a channel | 
|---|
| 468 |  | 
|---|
| 469 | for( int i = 2; i < Samples - 2; i++){ | 
|---|
| 470 | /*        if (i == 0){ // use right sample es mean | 
|---|
| 471 | N1mean[i] = Ameas[i+1]; | 
|---|
| 472 | } | 
|---|
| 473 | else if ( i == Samples-1 ){ //use left sample as mean | 
|---|
| 474 | N1mean[i] = Ameas[i-1]; | 
|---|
| 475 | } | 
|---|
| 476 | else{ | 
|---|
| 477 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; | 
|---|
| 478 | } | 
|---|
| 479 | */ | 
|---|
| 480 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; | 
|---|
| 481 | } | 
|---|
| 482 | } // end of computeN1mean computation | 
|---|
| 483 |  | 
|---|
| 484 | float getValue( int slice, int pixel ){ | 
|---|
| 485 | const float dconv = 2000/4096.0; | 
|---|
| 486 |  | 
|---|
| 487 | float vraw, vcal; | 
|---|
| 488 |  | 
|---|
| 489 | unsigned int pixel_pt; | 
|---|
| 490 | unsigned int slice_pt; | 
|---|
| 491 | unsigned int cal_pt; | 
|---|
| 492 | unsigned int drs_cal_offset; | 
|---|
| 493 |  | 
|---|
| 494 | // printf("pixel = %d, slice = %d\n", slice, pixel); | 
|---|
| 495 |  | 
|---|
| 496 | pixel_pt = pixel * RegionOfInterest; | 
|---|
| 497 | slice_pt = pixel_pt + slice; | 
|---|
| 498 | drs_cal_offset = ( slice + StartCellVector[ pixel ] )%RegionOfInterest; | 
|---|
| 499 | cal_pt    = pixel_pt + drs_cal_offset; | 
|---|
| 500 |  | 
|---|
| 501 | vraw = AllPixelDataVector[ slice_pt ] * dconv; | 
|---|
| 502 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35; | 
|---|
| 503 |  | 
|---|
| 504 | return( vcal ); | 
|---|
| 505 | } | 
|---|
| 506 | float correctDrsOffset( int slice, int pixel ){ | 
|---|
| 507 |  | 
|---|
| 508 | const float dconv = 2000/4096.0; | 
|---|
| 509 |  | 
|---|
| 510 | // here 1024 is not the RegionOfInterest, but really the lenth of the pipeline | 
|---|
| 511 | unsigned int physical_slice = ( slice + StartCellVector[ pixel ] ) % 1024; | 
|---|
| 512 |  | 
|---|
| 513 | unsigned int slice_pt; | 
|---|
| 514 | unsigned int physical_slice_pt; | 
|---|
| 515 | slice_pt                        = pixel * RegionOfInterest + slice; | 
|---|
| 516 | physical_slice_pt       = pixel * RegionOfInterest + physical_slice; | 
|---|
| 517 |  | 
|---|
| 518 | float vcal = AllPixelDataVector[ slice_pt ] * | 
|---|
| 519 | dconv - drs_basemean[ physical_slice_pt ]; | 
|---|
| 520 | return( vcal ); | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | void BookHistos( ){ | 
|---|
| 524 | // booking and parameter settings for all histos | 
|---|
| 525 |  | 
|---|
| 526 | // histograms for baseline extraction | 
|---|
| 527 | char hName[500]; | 
|---|
| 528 | char hTitle[500]; | 
|---|
| 529 |  | 
|---|
| 530 | TH1F *h; | 
|---|
| 531 |  | 
|---|
| 532 | for( int i = 0; i < NPIX; i++ ) { | 
|---|
| 533 | sprintf(&hTitle[0],"all events all slices of pixel %d", i); | 
|---|
| 534 | sprintf(&hName[0],"base%d", i); | 
|---|
| 535 |  | 
|---|
| 536 | h = new TH1F( hName, hTitle, 400, -99.5 ,100.5 ); | 
|---|
| 537 |  | 
|---|
| 538 | h->GetXaxis()->SetTitle( "Sample value (mV)" ); | 
|---|
| 539 | h->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 540 | hListBaseline.Add( h ); | 
|---|
| 541 | hBaseline[i] = h; | 
|---|
| 542 | } | 
|---|
| 543 |  | 
|---|
| 544 | hMeanBsl = new TH1F("histo_mean","Value of maximal probability",400,-99.5,100.5); | 
|---|
| 545 | hMeanBsl->GetXaxis()->SetTitle( "max value (mV)" ); | 
|---|
| 546 | hMeanBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 547 | hList.Add( hMeanBsl ); | 
|---|
| 548 |  | 
|---|
| 549 | hpltMeanBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5); | 
|---|
| 550 | hpltMeanBsl->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 551 | hpltMeanBsl->GetYaxis()->SetTitle( "max value in mV" ); | 
|---|
| 552 | hList.Add( hpltMeanBsl ); | 
|---|
| 553 |  | 
|---|
| 554 | hRmsBsl = new TH1F("histo_rms","RMS in mV",2000,-99.5,100.5); | 
|---|
| 555 | hRmsBsl->GetXaxis()->SetTitle( "RMS (mV)" ); | 
|---|
| 556 | hRmsBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" ); | 
|---|
| 557 | hList.Add( hRmsBsl ); | 
|---|
| 558 |  | 
|---|
| 559 | hpltRmsBsl = new TH1F("hplt_rms","Value of maximal probability",1440,-0.5,1439.5); | 
|---|
| 560 | hpltRmsBsl->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 561 | hpltRmsBsl->GetYaxis()->SetTitle( "RMS in mV" ); | 
|---|
| 562 | hList.Add( hpltRmsBsl ); | 
|---|
| 563 |  | 
|---|
| 564 | hAmplSpek_cfd = new TH2F("hAmplSpek_cfd","amplitude spektrum - CFD",1440,-0.5,1439.5, 256, -27.5, 100.5); | 
|---|
| 565 | hAmplSpek_cfd->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 566 | hAmplSpek_cfd->GetYaxis()->SetTitle( "amplitude in mV" ); | 
|---|
| 567 | hList.Add( hAmplSpek_cfd ); | 
|---|
| 568 |  | 
|---|
| 569 | hAmplSpek_discri = new TH2F("hAmplSpek_discri","amplitude spektrum - std discriminator",1440,-0.5,1439.5, 256, -27.5, 100.5); | 
|---|
| 570 | hAmplSpek_discri->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 571 | hAmplSpek_discri->GetXaxis()->SetTitle( "amplitude in mV" ); | 
|---|
| 572 | hList.Add( hAmplSpek_discri ); | 
|---|
| 573 |  | 
|---|
| 574 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024); | 
|---|
| 575 | hStartCell->GetXaxis()->SetTitle( "pixel" ); | 
|---|
| 576 | hStartCell->GetXaxis()->SetTitle( "slice" ); | 
|---|
| 577 | hList.Add( hStartCell ); | 
|---|
| 578 |  | 
|---|
| 579 | oldh = new TH1F[ Ntypes ]; | 
|---|
| 580 |  | 
|---|
| 581 | for ( int type = 0; type < Ntypes; type++){ | 
|---|
| 582 |  | 
|---|
| 583 | oldh[ type ].SetBins(1024, 0, 1024); | 
|---|
| 584 | oldh[ type ].SetLineColor(1); | 
|---|
| 585 | oldh[ type ].SetLineWidth(2); | 
|---|
| 586 |  | 
|---|
| 587 | // set X axis paras | 
|---|
| 588 | oldh[ type ].GetXaxis()->SetLabelSize(0.1); | 
|---|
| 589 | oldh[ type ].GetXaxis()->SetTitleSize(0.1); | 
|---|
| 590 | oldh[ type ].GetXaxis()->SetTitleOffset(1.2); | 
|---|
| 591 | oldh[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.)); | 
|---|
| 592 |  | 
|---|
| 593 | // set Y axis paras | 
|---|
| 594 | oldh[ type ].GetYaxis()->SetLabelSize(0.1); | 
|---|
| 595 | oldh[ type ].GetYaxis()->SetTitleSize(0.1); | 
|---|
| 596 | oldh[ type ].GetYaxis()->SetTitleOffset(0.3); | 
|---|
| 597 | oldh[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)"); | 
|---|
| 598 | } | 
|---|
| 599 |  | 
|---|
| 600 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600); | 
|---|
| 601 | CW->Divide(1, 2); | 
|---|
| 602 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600); | 
|---|
| 603 | cFilter->Divide(1, 2); | 
|---|
| 604 | } | 
|---|
| 605 |  | 
|---|
| 606 | void SaveHistograms( char * loc_fname ){ | 
|---|
| 607 |  | 
|---|
| 608 | TString fName; // name of the histogram file | 
|---|
| 609 |  | 
|---|
| 610 | // create the filename for the histogram file | 
|---|
| 611 | fName = loc_fname; // use the name of the tree file | 
|---|
| 612 | // TODO ... next statement doesn't work for ".fits.gz" | 
|---|
| 613 | fName.Remove(fName.Length() - 5); // remove the extension .fits | 
|---|
| 614 | fName += "_discri.root"; // add the new extension | 
|---|
| 615 |  | 
|---|
| 616 | // create the histogram file (replace if already existing) | 
|---|
| 617 | TFile tf( fName, "RECREATE"); | 
|---|
| 618 |  | 
|---|
| 619 | hList.Write(); // write the major histograms into the top level directory | 
|---|
| 620 | tf.mkdir("BaselineHisto"); | 
|---|
| 621 | tf.cd("BaselineHisto"); // go to new subdirectory | 
|---|
| 622 | hListBaseline.Write(); // write histos into subdirectory | 
|---|
| 623 |  | 
|---|
| 624 | tf.Close(); // close the file | 
|---|
| 625 | } // end of SaveHistograms( char * loc_fname ) | 
|---|
| 626 |  | 
|---|
| 627 | int FOpenDataFile(fits &datafile){ | 
|---|
| 628 |  | 
|---|
| 629 | //      cout << "-------------------- Data Header -------------------" << endl; | 
|---|
| 630 | //      datafile.PrintKeys(); | 
|---|
| 631 | //      cout << "------------------- Data Columns -------------------" << endl; | 
|---|
| 632 | //      datafile.PrintColumns(); | 
|---|
| 633 |  | 
|---|
| 634 | //Get the size of the data column | 
|---|
| 635 | RegionOfInterest        = datafile.GetUInt("NROI"); | 
|---|
| 636 | NumberOfPixels          = datafile.GetUInt("NPIX"); | 
|---|
| 637 | //Size of column "Data" = #Pixel x ROI | 
|---|
| 638 | ROIxNOP                         = datafile.GetN("Data"); | 
|---|
| 639 |  | 
|---|
| 640 | //Set the sizes of the data vectors | 
|---|
| 641 | AllPixelDataVector.resize(ROIxNOP,0); | 
|---|
| 642 | StartCellVector.resize(NumberOfPixels,0); | 
|---|
| 643 |  | 
|---|
| 644 | //Link the data to variables | 
|---|
| 645 | datafile.SetRefAddress("EventNum", CurrentEventID); | 
|---|
| 646 | datafile.SetVecAddress("Data", AllPixelDataVector); | 
|---|
| 647 | datafile.SetVecAddress("StartCellData", StartCellVector); | 
|---|
| 648 | datafile.GetRow(0); | 
|---|
| 649 |  | 
|---|
| 650 | return datafile.GetNumRows() ; | 
|---|
| 651 | } | 
|---|
| 652 |  | 
|---|
| 653 |  | 
|---|
| 654 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 655 | /// old BookHistos | 
|---|
| 656 | /* | 
|---|
| 657 | void BookHistos( int Samples ){ | 
|---|
| 658 | // booking and parameter settings for all histos | 
|---|
| 659 |  | 
|---|
| 660 | h = new TH1F[ Ntypes ]; | 
|---|
| 661 |  | 
|---|
| 662 | for ( int type = 0; type < Ntypes; type++){ | 
|---|
| 663 |  | 
|---|
| 664 | h[ type ].SetBins(Samples, 0, Samples); | 
|---|
| 665 | h[ type ].SetLineColor(1); | 
|---|
| 666 | h[ type ].SetLineWidth(2); | 
|---|
| 667 |  | 
|---|
| 668 | // set X axis paras | 
|---|
| 669 | h[ type ].GetXaxis()->SetLabelSize(0.1); | 
|---|
| 670 | h[ type ].GetXaxis()->SetTitleSize(0.1); | 
|---|
| 671 | h[ type ].GetXaxis()->SetTitleOffset(1.2); | 
|---|
| 672 | h[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.)); | 
|---|
| 673 |  | 
|---|
| 674 | // set Y axis paras | 
|---|
| 675 | h[ type ].GetYaxis()->SetLabelSize(0.1); | 
|---|
| 676 | h[ type ].GetYaxis()->SetTitleSize(0.1); | 
|---|
| 677 | h[ type ].GetYaxis()->SetTitleOffset(0.3); | 
|---|
| 678 | h[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)"); | 
|---|
| 679 | } | 
|---|
| 680 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600); | 
|---|
| 681 | CW->Divide(1, 3); | 
|---|
| 682 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600); | 
|---|
| 683 | cFilter->Divide(1, 3); | 
|---|
| 684 |  | 
|---|
| 685 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024); | 
|---|
| 686 |  | 
|---|
| 687 | } | 
|---|
| 688 | */ | 
|---|
| 689 |  | 
|---|