| 1 | #include <TROOT.h>
|
|---|
| 2 | #include <TCanvas.h>
|
|---|
| 3 | #include <TProfile.h>
|
|---|
| 4 | #include <TTimer.h>
|
|---|
| 5 | #include <TH1F.h>
|
|---|
| 6 | #include <TH2F.h>
|
|---|
| 7 | #include <Getline.h>
|
|---|
| 8 | #include <TLine.h>
|
|---|
| 9 | #include <TBox.h>
|
|---|
| 10 | #include <TMath.h>
|
|---|
| 11 | #include <TFile.h>
|
|---|
| 12 | #include <TStyle.h>
|
|---|
| 13 |
|
|---|
| 14 | #include <stdio.h>
|
|---|
| 15 | #include <stdint.h>
|
|---|
| 16 | #include <cstdio>
|
|---|
| 17 |
|
|---|
| 18 | #define NPIX 1440
|
|---|
| 19 | #define NCELL 1024
|
|---|
| 20 | #define FAD_MAX_SAMPLES 1024
|
|---|
| 21 |
|
|---|
| 22 | #define HAVE_ZLIB
|
|---|
| 23 | #include "fits.h"
|
|---|
| 24 | #include "FOpenCalibFile.c"
|
|---|
| 25 |
|
|---|
| 26 | #include "discriminator.h"
|
|---|
| 27 | #include "discriminator.C"
|
|---|
| 28 | #include "zerosearch.h"
|
|---|
| 29 | #include "zerosearch.C"
|
|---|
| 30 | #include "factfir.C"
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 | vector<int16_t> AllPixelDataVector;
|
|---|
| 34 | vector<int16_t> StartCellVector;
|
|---|
| 35 |
|
|---|
| 36 | unsigned int CurrentEventID;
|
|---|
| 37 |
|
|---|
| 38 | bool breakout=false;
|
|---|
| 39 |
|
|---|
| 40 | size_t ROIxNOP;
|
|---|
| 41 | UInt_t NumberOfPixels;
|
|---|
| 42 | UInt_t RegionOfInterest;
|
|---|
| 43 | int NEvents;
|
|---|
| 44 |
|
|---|
| 45 | size_t drs_n;
|
|---|
| 46 | vector<float> drs_basemean;
|
|---|
| 47 | vector<float> drs_gainmean;
|
|---|
| 48 | vector<float> drs_triggeroffsetmean;
|
|---|
| 49 |
|
|---|
| 50 | int FOpenDataFile( fits & );
|
|---|
| 51 |
|
|---|
| 52 |
|
|---|
| 53 | vector<float> Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude
|
|---|
| 54 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors
|
|---|
| 55 | vector<float> Vcorr(FAD_MAX_SAMPLES); // corrected Values
|
|---|
| 56 | vector<float> Vdiff(FAD_MAX_SAMPLES); // numerical derivative
|
|---|
| 57 |
|
|---|
| 58 | vector<float> Vslide(FAD_MAX_SAMPLES); // sliding average result
|
|---|
| 59 | vector<float> Vcfd(FAD_MAX_SAMPLES); // CDF result
|
|---|
| 60 | vector<float> Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average
|
|---|
| 61 |
|
|---|
| 62 | // not needed?
|
|---|
| 63 | //vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | float getValue( int, int );
|
|---|
| 67 | float correctDrsOffset( int slice, int pixel );
|
|---|
| 68 | void computeN1mean( int );
|
|---|
| 69 | void removeSpikes( int );
|
|---|
| 70 |
|
|---|
| 71 | // histograms
|
|---|
| 72 | const int Ntypes = 7;
|
|---|
| 73 | const unsigned int // arranged by Dominik
|
|---|
| 74 | tAmeas = 0,
|
|---|
| 75 | tN1mean = 1,
|
|---|
| 76 | tVcorr = 2,
|
|---|
| 77 | tVtest = 3,
|
|---|
| 78 | tVslide = 4,
|
|---|
| 79 | tVcfd = 5,
|
|---|
| 80 | tVcfd2 = 6;
|
|---|
| 81 |
|
|---|
| 82 | TH1F* h;
|
|---|
| 83 | TH1F *oldh;
|
|---|
| 84 | TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts
|
|---|
| 85 | // x = pixel id, y = DRS cell id
|
|---|
| 86 | TH2F hPixelCellData(
|
|---|
| 87 | "PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.);
|
|---|
| 88 | TH1F *hBaseline[ NPIX ]; // histograms for baseline extraction
|
|---|
| 89 | TH1F *hMeanBsl, *hpltMeanBsl;
|
|---|
| 90 | TH1F *hRmsBsl, *hpltRmsBsl;
|
|---|
| 91 | TH2F * hAmplSpek_cfd;
|
|---|
| 92 | TH2F * hAmplSpek_discri;
|
|---|
| 93 | TObjArray hList;
|
|---|
| 94 | TObjArray hListBaseline;
|
|---|
| 95 |
|
|---|
| 96 | void BookHistos( );
|
|---|
| 97 | void SaveHistograms( char * );
|
|---|
| 98 |
|
|---|
| 99 | // Create a canvas
|
|---|
| 100 | TCanvas* CW;
|
|---|
| 101 | TCanvas* cFilter;
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 | int searchSinglesPeaks = 0;
|
|---|
| 105 |
|
|---|
| 106 | int fpeak_discri(
|
|---|
| 107 | char *datafilename = "../../20111011_055.fits.gz",
|
|---|
| 108 | const char *drsfilename = "../../20111011_054.drs.fits.gz",
|
|---|
| 109 | int PixelID = -1,
|
|---|
| 110 | int firstevent = 0,
|
|---|
| 111 | int nevents = -1,
|
|---|
| 112 | bool spikeDebug = false,
|
|---|
| 113 | int verbosityLevel = 1 // different verbosity levels can be implemented here
|
|---|
| 114 | )
|
|---|
| 115 | {
|
|---|
| 116 |
|
|---|
| 117 | gStyle->SetPalette(1,0);
|
|---|
| 118 | gROOT->SetStyle("Plain");
|
|---|
| 119 | // read FACT raw data
|
|---|
| 120 | // * remove spikes
|
|---|
| 121 | // * calculate baseline
|
|---|
| 122 | // * find peaks (CFD and normal discriminator)
|
|---|
| 123 | // * compute pulse height and pulse integral spektrum of the peaks
|
|---|
| 124 |
|
|---|
| 125 | // sliding window filter settings
|
|---|
| 126 | int k_slide = 16;
|
|---|
| 127 | vector<double> a_slide(k_slide, 1);
|
|---|
| 128 | double b_slide = k_slide;
|
|---|
| 129 |
|
|---|
| 130 | // CFD filter settings
|
|---|
| 131 | int k_cfd = 10;
|
|---|
| 132 | vector<double> a_cfd(k_cfd, 0);
|
|---|
| 133 | double b_cfd = 1.;
|
|---|
| 134 | a_cfd[0]=-0.75;
|
|---|
| 135 | a_cfd[k_cfd-1]=1.;
|
|---|
| 136 |
|
|---|
| 137 | // 2nd slinding window filter
|
|---|
| 138 | int ks2 = 16;
|
|---|
| 139 | vector<double> as2(ks2, 1);
|
|---|
| 140 | double bs2 = ks2;
|
|---|
| 141 |
|
|---|
| 142 | // Open the data file
|
|---|
| 143 | fits *datafile = new fits( datafilename );
|
|---|
| 144 | if (!datafile) {
|
|---|
| 145 | printf( "Could not open the file: %s\n", datafilename );
|
|---|
| 146 | return 1;
|
|---|
| 147 | }
|
|---|
| 148 |
|
|---|
| 149 | // access data
|
|---|
| 150 | NEvents = FOpenDataFile( *datafile );
|
|---|
| 151 | printf("number of events in file: %d\n", NEvents);
|
|---|
| 152 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents; // -1 means all!
|
|---|
| 153 |
|
|---|
| 154 | //Get the DRS calibration
|
|---|
| 155 | FOpenCalibFile( drsfilename,
|
|---|
| 156 | drs_basemean,
|
|---|
| 157 | drs_gainmean,
|
|---|
| 158 | drs_triggeroffsetmean,
|
|---|
| 159 | drs_n);
|
|---|
| 160 |
|
|---|
| 161 | //Check the sizes of the data columns
|
|---|
| 162 | if (drs_n != 1474560) {
|
|---|
| 163 | cerr << "error: DRS calib file has wrong ...erm...size ... drs_n is: "
|
|---|
| 164 | << drs_n << endl;
|
|---|
| 165 | cerr << " Aborting." << endl;
|
|---|
| 166 | return 1;
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | if(ROIxNOP != 1474560)
|
|---|
| 170 | {
|
|---|
| 171 | cout << "warning: data_n should better be 1440x1024=1474560, but is "
|
|---|
| 172 | << ROIxNOP << endl;
|
|---|
| 173 | cout << "this script is not guaranteed to run under these "
|
|---|
| 174 | <<" circumstances....any way ... it is never guaranteed." << endl;
|
|---|
| 175 | }
|
|---|
| 176 | // Book the histograms
|
|---|
| 177 |
|
|---|
| 178 | BookHistos( );
|
|---|
| 179 | TCanvas * cSpektrum = new TCanvas();
|
|---|
| 180 | cSpektrum->Divide(1,2);
|
|---|
| 181 | cSpektrum->cd(1);
|
|---|
| 182 | hAmplSpek_discri->Draw("COLZ");
|
|---|
| 183 | cSpektrum->cd(2);
|
|---|
| 184 | hAmplSpek_cfd->Draw("COLZ");
|
|---|
| 185 | // TCanvas * cStartCell = new TCanvas();
|
|---|
| 186 | // cStartCell->cd();
|
|---|
| 187 | // hStartCell->Draw();
|
|---|
| 188 | // hPixelCellData.Draw();
|
|---|
| 189 |
|
|---|
| 190 | float calibratedVoltage;
|
|---|
| 191 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) {
|
|---|
| 192 | datafile->GetRow( ev );
|
|---|
| 193 |
|
|---|
| 194 |
|
|---|
| 195 | for ( int pix = 0; pix < 1440; pix++ ){
|
|---|
| 196 | // This means: GetEvent
|
|---|
| 197 |
|
|---|
| 198 | // this is a stupid hack ... these is more code at the
|
|---|
| 199 | // end of this loop to complete this hack ...
|
|---|
| 200 | if (PixelID != -1) {
|
|---|
| 201 | pix = PixelID;
|
|---|
| 202 | if (verbosityLevel > 0){
|
|---|
| 203 | cout << "Processing Event number: " << CurrentEventID << "\t"
|
|---|
| 204 | << "Pixel number: "<< pix << endl;
|
|---|
| 205 |
|
|---|
| 206 | }
|
|---|
| 207 | }
|
|---|
| 208 |
|
|---|
| 209 | if (verbosityLevel > 0){
|
|---|
| 210 | if (pix % 20 ==0){
|
|---|
| 211 | cout << "Processing Event number: " << CurrentEventID << "\t"
|
|---|
| 212 | << "Pixel number: "<< pix << endl;
|
|---|
| 213 | }
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | //hStartCell->Fill( pix, StartCellVector[pix] );
|
|---|
| 217 |
|
|---|
| 218 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){
|
|---|
| 219 | //calibratedVoltage = getValue( sl, pix);
|
|---|
| 220 | calibratedVoltage = correctDrsOffset( sl, pix);
|
|---|
| 221 | if (verbosityLevel > 10){
|
|---|
| 222 | printf("calibratedVoltage = %f\n", calibratedVoltage);
|
|---|
| 223 | }
|
|---|
| 224 | Ameas[ sl ] = calibratedVoltage;
|
|---|
| 225 | if (spikeDebug){
|
|---|
| 226 | oldh[tAmeas].SetBinContent(sl, calibratedVoltage);
|
|---|
| 227 | }
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 | computeN1mean( RegionOfInterest );
|
|---|
| 231 | // operates on Ameas[] and writes to N1mean[]
|
|---|
| 232 | removeSpikes( RegionOfInterest );
|
|---|
| 233 | // operates on Ameas[] and N1mean[], then writes to Vcorr[]
|
|---|
| 234 |
|
|---|
| 235 | if (spikeDebug){
|
|---|
| 236 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){
|
|---|
| 237 | hPixelCellData.Fill(sl, Vcorr[ sl ]);
|
|---|
| 238 | }
|
|---|
| 239 | }
|
|---|
| 240 |
|
|---|
| 241 | // filter Vcorr with sliding average using FIR filter function
|
|---|
| 242 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide);
|
|---|
| 243 | // filter Vslide with CFD using FIR filter function
|
|---|
| 244 | factfir(b_cfd , a_cfd, k_cfd, Vslide, Vcfd);
|
|---|
| 245 | // filter Vcfd with sliding average using FIR filter function
|
|---|
| 246 | factfir(bs2 , as2, ks2, Vcfd, Vcfd2);
|
|---|
| 247 |
|
|---|
| 248 | float myTHR = 3.5;
|
|---|
| 249 | vector<Region> *Regions = discriminator( Vslide, myTHR,true , 120);
|
|---|
| 250 | for (unsigned int p=0; p<Regions->size(); p++ ){
|
|---|
| 251 | hAmplSpek_discri->Fill(pix , Regions->at(p).maxVal);
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | // peaks in Ameas[] are found by searching for zero crossings
|
|---|
| 255 | // in Vcfd2
|
|---|
| 256 | // first Argument 1 means ... *rising* edge
|
|---|
| 257 | // second Argument 1 means ... search with stepsize 1 ... 10 is okay as well
|
|---|
| 258 | vector<Region> * zXings = zerosearch( Vcfd2 , 1 , 1);
|
|---|
| 259 |
|
|---|
| 260 | // zXings means "zero cross ings"
|
|---|
| 261 | ShiftRegionBy(*zXings, -ks2/2);
|
|---|
| 262 | EnlargeRegion(*zXings, 10, 10);
|
|---|
| 263 | findAbsMaxInRegions(*zXings, Vslide);
|
|---|
| 264 |
|
|---|
| 265 | if (zXings->size() != 0 ){
|
|---|
| 266 | for (unsigned int i=0; i<zXings->size(); i++){
|
|---|
| 267 | if (verbosityLevel > 1){
|
|---|
| 268 | cout << zXings->at(i).maxPos << ":\t"
|
|---|
| 269 | << zXings->at(i).maxVal <<endl;
|
|---|
| 270 | }
|
|---|
| 271 | hAmplSpek_cfd->Fill(pix, zXings->at(i).maxVal);
|
|---|
| 272 | }
|
|---|
| 273 | }
|
|---|
| 274 |
|
|---|
| 275 | if ( spikeDebug ){
|
|---|
| 276 | for ( unsigned int sl = 0; sl < RegionOfInterest; sl++){
|
|---|
| 277 | oldh[tVslide].SetBinContent( sl, Vslide[sl] );
|
|---|
| 278 | oldh[tVcfd].SetBinContent( sl, Vcfd[sl] );
|
|---|
| 279 | oldh[tVcfd2].SetBinContent( sl, Vcfd2[sl] );
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | CW->cd( 1);
|
|---|
| 283 | gPad->SetGrid();
|
|---|
| 284 | oldh[tAmeas].Draw();
|
|---|
| 285 |
|
|---|
| 286 | // CW->cd( tN1mean + 1);
|
|---|
| 287 | // gPad->SetGrid();
|
|---|
| 288 | // oldh[tN1mean].Draw();
|
|---|
| 289 |
|
|---|
| 290 | CW->cd( 2);
|
|---|
| 291 | gPad->SetGrid();
|
|---|
| 292 | oldh[tVcorr].Draw();
|
|---|
| 293 |
|
|---|
| 294 | //cFilter->cd( Ntypes - tVslide );
|
|---|
| 295 | cFilter->cd(1);
|
|---|
| 296 | gPad->SetGrid();
|
|---|
| 297 | oldh[tVslide].Draw();
|
|---|
| 298 | TLine thrLine(0, myTHR, 1024, myTHR);
|
|---|
| 299 | thrLine.SetLineColor(kRed);
|
|---|
| 300 | thrLine.SetLineWidth(2);
|
|---|
| 301 | thrLine.Draw();
|
|---|
| 302 | TLine * OneLine;
|
|---|
| 303 | vector<TLine*> MyLines;
|
|---|
| 304 | for (unsigned int p=0; p<Regions->size(); p++ ){
|
|---|
| 305 | OneLine = new TLine(
|
|---|
| 306 | Regions->at(p).begin ,
|
|---|
| 307 | Regions->at(p).maxVal,
|
|---|
| 308 | Regions->at(p).end,
|
|---|
| 309 | Regions->at(p).maxVal);
|
|---|
| 310 | OneLine->SetLineColor(kRed);
|
|---|
| 311 | OneLine->SetLineWidth(2);
|
|---|
| 312 | MyLines.push_back(OneLine);
|
|---|
| 313 | OneLine->Draw();
|
|---|
| 314 | }
|
|---|
| 315 | TBox *OneBox;
|
|---|
| 316 | vector<TBox*> MyBoxes;
|
|---|
| 317 | for (unsigned int i=0; i<zXings->size(); i++){
|
|---|
| 318 | OneBox = new TBox(
|
|---|
| 319 | zXings->at(i).maxPos -10 ,
|
|---|
| 320 | zXings->at(i).maxVal -0.5,
|
|---|
| 321 | zXings->at(i).maxPos +10 ,
|
|---|
| 322 | zXings->at(i).maxVal +0.5);
|
|---|
| 323 | OneBox->SetLineColor(kBlue);
|
|---|
| 324 | OneBox->SetLineWidth(1);
|
|---|
| 325 | OneBox->SetFillStyle(0);
|
|---|
| 326 | OneBox->SetFillColor(kRed);
|
|---|
| 327 | MyBoxes.push_back(OneBox);
|
|---|
| 328 | OneBox->Draw();
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | // cFilter->cd( Ntypes - tVcfd );
|
|---|
| 332 | // cFilter->cd(2);
|
|---|
| 333 | // gPad->SetGrid();
|
|---|
| 334 | // oldh[tVcfd].Draw();
|
|---|
| 335 | // TLine zeroline(0, 0, 1024, 0);
|
|---|
| 336 | // zeroline.SetLineColor(kBlue);
|
|---|
| 337 | // zeroline.Draw();
|
|---|
| 338 |
|
|---|
| 339 | //cFilter->cd( Ntypes - tVcfd2 );
|
|---|
| 340 | cFilter->cd(2);
|
|---|
| 341 | gPad->SetGrid();
|
|---|
| 342 | oldh[tVcfd2].Draw();
|
|---|
| 343 | TLine zeroline(0, 0, 1024, 0);
|
|---|
| 344 | zeroline.SetLineColor(kBlue);
|
|---|
| 345 | zeroline.Draw();
|
|---|
| 346 |
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 |
|
|---|
| 350 |
|
|---|
| 351 | CW->Update();
|
|---|
| 352 | cFilter->Update();
|
|---|
| 353 |
|
|---|
| 354 | //Process gui events asynchronously during input
|
|---|
| 355 | TTimer timer("gSystem->ProcessEvents();", 50, kFALSE);
|
|---|
| 356 | timer.TurnOn();
|
|---|
| 357 | TString input = Getline("Type 'q' to exit, <return> to go on: ");
|
|---|
| 358 | timer.TurnOff();
|
|---|
| 359 | if (input=="q\n") {
|
|---|
| 360 | breakout=true;
|
|---|
| 361 | delete OneLine;
|
|---|
| 362 | // for (unsigned int i=0; i<MyLines.size(); i++){
|
|---|
| 363 | // delete MyLines[i];
|
|---|
| 364 | // }
|
|---|
| 365 | // for (unsigned int i=0; i<MyBoxes.size(); i++){
|
|---|
| 366 | // delete MyBoxes[i];
|
|---|
| 367 | // }
|
|---|
| 368 | }
|
|---|
| 369 | }// end of if(spikeDebug)
|
|---|
| 370 | delete Regions;
|
|---|
| 371 | delete zXings;
|
|---|
| 372 |
|
|---|
| 373 | if (PixelID != -1){
|
|---|
| 374 | pix = 2000;
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | if (breakout)
|
|---|
| 378 | break;
|
|---|
| 379 |
|
|---|
| 380 | } // end of loop over pixels
|
|---|
| 381 |
|
|---|
| 382 | if (ev % 10 ==0){
|
|---|
| 383 | cSpektrum->Modified();
|
|---|
| 384 | cSpektrum->Update();
|
|---|
| 385 | // cStartCell->Modified();
|
|---|
| 386 | // cStartCell->Update();
|
|---|
| 387 | }
|
|---|
| 388 | if (breakout)
|
|---|
| 389 | break;
|
|---|
| 390 | } // end of loop over pixels
|
|---|
| 391 |
|
|---|
| 392 |
|
|---|
| 393 | // delete cStartCell;
|
|---|
| 394 | return( 0 );
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | void removeSpikes(int Samples){
|
|---|
| 398 |
|
|---|
| 399 | const float fract = 0.8;
|
|---|
| 400 | float x, xp, xpp, x3p;
|
|---|
| 401 |
|
|---|
| 402 | // assume that there are no spikes
|
|---|
| 403 | for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i];
|
|---|
| 404 |
|
|---|
| 405 | // find the spike and replace it by mean value of neighbors
|
|---|
| 406 | for ( int i = 0; i < Samples; i++) {
|
|---|
| 407 |
|
|---|
| 408 | // printf("Vcorr[%d] = %f, Ameas[%d] = %f\n", i, Vcorr[ i ], i, Ameas[ i ] );
|
|---|
| 409 |
|
|---|
| 410 | x = Ameas[i] - N1mean[i];
|
|---|
| 411 |
|
|---|
| 412 | if ( x < -5. ){ // a spike candidate
|
|---|
| 413 | // check consistency with a single channel spike
|
|---|
| 414 | xp = Ameas[i+1] - N1mean[i+1];
|
|---|
| 415 | xpp = Ameas[i+2] - N1mean[i+2];
|
|---|
| 416 | x3p = Ameas[i+3] - N1mean[i+3];
|
|---|
| 417 |
|
|---|
| 418 | // printf("candidates x[%d] = %f; xp = %f; xpp = %f, x3p = %f\n", i, x, xp, xpp, x3p);
|
|---|
| 419 |
|
|---|
| 420 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){
|
|---|
| 421 | // printf("double spike candidate\n");
|
|---|
| 422 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 423 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 424 | // printf("Vcorr[%d] = %f %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2], Vcorr[ i+3 ]);
|
|---|
| 425 | // printf("Ameas[%d] = %f %f %f %f\n", i, Ameas[ i ], Ameas[ i+1 ], Ameas[ i+2 ], Ameas[i+3]);
|
|---|
| 426 | i = i + 3;
|
|---|
| 427 | }
|
|---|
| 428 | else{
|
|---|
| 429 |
|
|---|
| 430 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){
|
|---|
| 431 | Vcorr[i+1] = N1mean[i+1];
|
|---|
| 432 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]);
|
|---|
| 433 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.);
|
|---|
| 434 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.);
|
|---|
| 435 | i = i + 2;//do not care about the next sample it was the spike
|
|---|
| 436 | }
|
|---|
| 437 | // treatment for the end of the pipeline must be added !!!
|
|---|
| 438 | }
|
|---|
| 439 | }
|
|---|
| 440 | else{
|
|---|
| 441 | // do nothing
|
|---|
| 442 | }
|
|---|
| 443 | } // end of spike search and correction
|
|---|
| 444 | for ( int i = 0; i < Samples; i++ ) oldh[ tVcorr ].SetBinContent( i, Vcorr[i] );
|
|---|
| 445 | }
|
|---|
| 446 | /*
|
|---|
| 447 | void computeN1mean( int Samples ){
|
|---|
| 448 | cout << "In compute N1mean" << endl;
|
|---|
| 449 | // compute the mean of the left and right neighbors of a channel
|
|---|
| 450 |
|
|---|
| 451 | for( int i = 0; i < Samples; i++){
|
|---|
| 452 | if (i == 0){ // use right sample es mean
|
|---|
| 453 | N1mean[i] = Ameas[i+1];
|
|---|
| 454 | }
|
|---|
| 455 | else if ( i == Samples-1 ){ //use left sample as mean
|
|---|
| 456 | N1mean[i] = Ameas[i-1];
|
|---|
| 457 | }
|
|---|
| 458 | else{
|
|---|
| 459 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 460 | }
|
|---|
| 461 | h[tN1mean].SetBinContent(i, Ameas[i] - N1mean[i]);
|
|---|
| 462 | }
|
|---|
| 463 | } // end of computeN1mean computation
|
|---|
| 464 | */
|
|---|
| 465 |
|
|---|
| 466 | void computeN1mean( int Samples ){
|
|---|
| 467 | // compute the mean of the left and right neighbors of a channel
|
|---|
| 468 |
|
|---|
| 469 | for( int i = 2; i < Samples - 2; i++){
|
|---|
| 470 | /* if (i == 0){ // use right sample es mean
|
|---|
| 471 | N1mean[i] = Ameas[i+1];
|
|---|
| 472 | }
|
|---|
| 473 | else if ( i == Samples-1 ){ //use left sample as mean
|
|---|
| 474 | N1mean[i] = Ameas[i-1];
|
|---|
| 475 | }
|
|---|
| 476 | else{
|
|---|
| 477 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 478 | }
|
|---|
| 479 | */
|
|---|
| 480 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 481 | }
|
|---|
| 482 | } // end of computeN1mean computation
|
|---|
| 483 |
|
|---|
| 484 | float getValue( int slice, int pixel ){
|
|---|
| 485 | const float dconv = 2000/4096.0;
|
|---|
| 486 |
|
|---|
| 487 | float vraw, vcal;
|
|---|
| 488 |
|
|---|
| 489 | unsigned int pixel_pt;
|
|---|
| 490 | unsigned int slice_pt;
|
|---|
| 491 | unsigned int cal_pt;
|
|---|
| 492 | unsigned int drs_cal_offset;
|
|---|
| 493 |
|
|---|
| 494 | // printf("pixel = %d, slice = %d\n", slice, pixel);
|
|---|
| 495 |
|
|---|
| 496 | pixel_pt = pixel * RegionOfInterest;
|
|---|
| 497 | slice_pt = pixel_pt + slice;
|
|---|
| 498 | drs_cal_offset = ( slice + StartCellVector[ pixel ] )%RegionOfInterest;
|
|---|
| 499 | cal_pt = pixel_pt + drs_cal_offset;
|
|---|
| 500 |
|
|---|
| 501 | vraw = AllPixelDataVector[ slice_pt ] * dconv;
|
|---|
| 502 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35;
|
|---|
| 503 |
|
|---|
| 504 | return( vcal );
|
|---|
| 505 | }
|
|---|
| 506 | float correctDrsOffset( int slice, int pixel ){
|
|---|
| 507 |
|
|---|
| 508 | const float dconv = 2000/4096.0;
|
|---|
| 509 |
|
|---|
| 510 | // here 1024 is not the RegionOfInterest, but really the lenth of the pipeline
|
|---|
| 511 | unsigned int physical_slice = ( slice + StartCellVector[ pixel ] ) % 1024;
|
|---|
| 512 |
|
|---|
| 513 | unsigned int slice_pt;
|
|---|
| 514 | unsigned int physical_slice_pt;
|
|---|
| 515 | slice_pt = pixel * RegionOfInterest + slice;
|
|---|
| 516 | physical_slice_pt = pixel * RegionOfInterest + physical_slice;
|
|---|
| 517 |
|
|---|
| 518 | float vcal = AllPixelDataVector[ slice_pt ] *
|
|---|
| 519 | dconv - drs_basemean[ physical_slice_pt ];
|
|---|
| 520 | return( vcal );
|
|---|
| 521 | }
|
|---|
| 522 |
|
|---|
| 523 | void BookHistos( ){
|
|---|
| 524 | // booking and parameter settings for all histos
|
|---|
| 525 |
|
|---|
| 526 | // histograms for baseline extraction
|
|---|
| 527 | char hName[500];
|
|---|
| 528 | char hTitle[500];
|
|---|
| 529 |
|
|---|
| 530 | TH1F *h;
|
|---|
| 531 |
|
|---|
| 532 | for( int i = 0; i < NPIX; i++ ) {
|
|---|
| 533 | sprintf(&hTitle[0],"all events all slices of pixel %d", i);
|
|---|
| 534 | sprintf(&hName[0],"base%d", i);
|
|---|
| 535 |
|
|---|
| 536 | h = new TH1F( hName, hTitle, 400, -99.5 ,100.5 );
|
|---|
| 537 |
|
|---|
| 538 | h->GetXaxis()->SetTitle( "Sample value (mV)" );
|
|---|
| 539 | h->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 540 | hListBaseline.Add( h );
|
|---|
| 541 | hBaseline[i] = h;
|
|---|
| 542 | }
|
|---|
| 543 |
|
|---|
| 544 | hMeanBsl = new TH1F("histo_mean","Value of maximal probability",400,-99.5,100.5);
|
|---|
| 545 | hMeanBsl->GetXaxis()->SetTitle( "max value (mV)" );
|
|---|
| 546 | hMeanBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 547 | hList.Add( hMeanBsl );
|
|---|
| 548 |
|
|---|
| 549 | hpltMeanBsl = new TH1F("hplt_mean","Value of maximal probability",1440,-0.5,1439.5);
|
|---|
| 550 | hpltMeanBsl->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 551 | hpltMeanBsl->GetYaxis()->SetTitle( "max value in mV" );
|
|---|
| 552 | hList.Add( hpltMeanBsl );
|
|---|
| 553 |
|
|---|
| 554 | hRmsBsl = new TH1F("histo_rms","RMS in mV",2000,-99.5,100.5);
|
|---|
| 555 | hRmsBsl->GetXaxis()->SetTitle( "RMS (mV)" );
|
|---|
| 556 | hRmsBsl->GetYaxis()->SetTitle( "Entries / 0.5 mV" );
|
|---|
| 557 | hList.Add( hRmsBsl );
|
|---|
| 558 |
|
|---|
| 559 | hpltRmsBsl = new TH1F("hplt_rms","Value of maximal probability",1440,-0.5,1439.5);
|
|---|
| 560 | hpltRmsBsl->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 561 | hpltRmsBsl->GetYaxis()->SetTitle( "RMS in mV" );
|
|---|
| 562 | hList.Add( hpltRmsBsl );
|
|---|
| 563 |
|
|---|
| 564 | hAmplSpek_cfd = new TH2F("hAmplSpek_cfd","amplitude spektrum - CFD",1440,-0.5,1439.5, 256, -27.5, 100.5);
|
|---|
| 565 | hAmplSpek_cfd->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 566 | hAmplSpek_cfd->GetYaxis()->SetTitle( "amplitude in mV" );
|
|---|
| 567 | hList.Add( hAmplSpek_cfd );
|
|---|
| 568 |
|
|---|
| 569 | hAmplSpek_discri = new TH2F("hAmplSpek_discri","amplitude spektrum - std discriminator",1440,-0.5,1439.5, 256, -27.5, 100.5);
|
|---|
| 570 | hAmplSpek_discri->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 571 | hAmplSpek_discri->GetXaxis()->SetTitle( "amplitude in mV" );
|
|---|
| 572 | hList.Add( hAmplSpek_discri );
|
|---|
| 573 |
|
|---|
| 574 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024);
|
|---|
| 575 | hStartCell->GetXaxis()->SetTitle( "pixel" );
|
|---|
| 576 | hStartCell->GetXaxis()->SetTitle( "slice" );
|
|---|
| 577 | hList.Add( hStartCell );
|
|---|
| 578 |
|
|---|
| 579 | oldh = new TH1F[ Ntypes ];
|
|---|
| 580 |
|
|---|
| 581 | for ( int type = 0; type < Ntypes; type++){
|
|---|
| 582 |
|
|---|
| 583 | oldh[ type ].SetBins(1024, 0, 1024);
|
|---|
| 584 | oldh[ type ].SetLineColor(1);
|
|---|
| 585 | oldh[ type ].SetLineWidth(2);
|
|---|
| 586 |
|
|---|
| 587 | // set X axis paras
|
|---|
| 588 | oldh[ type ].GetXaxis()->SetLabelSize(0.1);
|
|---|
| 589 | oldh[ type ].GetXaxis()->SetTitleSize(0.1);
|
|---|
| 590 | oldh[ type ].GetXaxis()->SetTitleOffset(1.2);
|
|---|
| 591 | oldh[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.));
|
|---|
| 592 |
|
|---|
| 593 | // set Y axis paras
|
|---|
| 594 | oldh[ type ].GetYaxis()->SetLabelSize(0.1);
|
|---|
| 595 | oldh[ type ].GetYaxis()->SetTitleSize(0.1);
|
|---|
| 596 | oldh[ type ].GetYaxis()->SetTitleOffset(0.3);
|
|---|
| 597 | oldh[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)");
|
|---|
| 598 | }
|
|---|
| 599 |
|
|---|
| 600 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600);
|
|---|
| 601 | CW->Divide(1, 2);
|
|---|
| 602 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600);
|
|---|
| 603 | cFilter->Divide(1, 2);
|
|---|
| 604 | }
|
|---|
| 605 |
|
|---|
| 606 | void SaveHistograms( char * loc_fname ){
|
|---|
| 607 |
|
|---|
| 608 | TString fName; // name of the histogram file
|
|---|
| 609 |
|
|---|
| 610 | // create the filename for the histogram file
|
|---|
| 611 | fName = loc_fname; // use the name of the tree file
|
|---|
| 612 | // TODO ... next statement doesn't work for ".fits.gz"
|
|---|
| 613 | fName.Remove(fName.Length() - 5); // remove the extension .fits
|
|---|
| 614 | fName += "_discri.root"; // add the new extension
|
|---|
| 615 |
|
|---|
| 616 | // create the histogram file (replace if already existing)
|
|---|
| 617 | TFile tf( fName, "RECREATE");
|
|---|
| 618 |
|
|---|
| 619 | hList.Write(); // write the major histograms into the top level directory
|
|---|
| 620 | tf.mkdir("BaselineHisto");
|
|---|
| 621 | tf.cd("BaselineHisto"); // go to new subdirectory
|
|---|
| 622 | hListBaseline.Write(); // write histos into subdirectory
|
|---|
| 623 |
|
|---|
| 624 | tf.Close(); // close the file
|
|---|
| 625 | } // end of SaveHistograms( char * loc_fname )
|
|---|
| 626 |
|
|---|
| 627 | int FOpenDataFile(fits &datafile){
|
|---|
| 628 |
|
|---|
| 629 | // cout << "-------------------- Data Header -------------------" << endl;
|
|---|
| 630 | // datafile.PrintKeys();
|
|---|
| 631 | // cout << "------------------- Data Columns -------------------" << endl;
|
|---|
| 632 | // datafile.PrintColumns();
|
|---|
| 633 |
|
|---|
| 634 | //Get the size of the data column
|
|---|
| 635 | RegionOfInterest = datafile.GetUInt("NROI");
|
|---|
| 636 | NumberOfPixels = datafile.GetUInt("NPIX");
|
|---|
| 637 | //Size of column "Data" = #Pixel x ROI
|
|---|
| 638 | ROIxNOP = datafile.GetN("Data");
|
|---|
| 639 |
|
|---|
| 640 | //Set the sizes of the data vectors
|
|---|
| 641 | AllPixelDataVector.resize(ROIxNOP,0);
|
|---|
| 642 | StartCellVector.resize(NumberOfPixels,0);
|
|---|
| 643 |
|
|---|
| 644 | //Link the data to variables
|
|---|
| 645 | datafile.SetRefAddress("EventNum", CurrentEventID);
|
|---|
| 646 | datafile.SetVecAddress("Data", AllPixelDataVector);
|
|---|
| 647 | datafile.SetVecAddress("StartCellData", StartCellVector);
|
|---|
| 648 | datafile.GetRow(0);
|
|---|
| 649 |
|
|---|
| 650 | return datafile.GetNumRows() ;
|
|---|
| 651 | }
|
|---|
| 652 |
|
|---|
| 653 |
|
|---|
| 654 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 655 | /// old BookHistos
|
|---|
| 656 | /*
|
|---|
| 657 | void BookHistos( int Samples ){
|
|---|
| 658 | // booking and parameter settings for all histos
|
|---|
| 659 |
|
|---|
| 660 | h = new TH1F[ Ntypes ];
|
|---|
| 661 |
|
|---|
| 662 | for ( int type = 0; type < Ntypes; type++){
|
|---|
| 663 |
|
|---|
| 664 | h[ type ].SetBins(Samples, 0, Samples);
|
|---|
| 665 | h[ type ].SetLineColor(1);
|
|---|
| 666 | h[ type ].SetLineWidth(2);
|
|---|
| 667 |
|
|---|
| 668 | // set X axis paras
|
|---|
| 669 | h[ type ].GetXaxis()->SetLabelSize(0.1);
|
|---|
| 670 | h[ type ].GetXaxis()->SetTitleSize(0.1);
|
|---|
| 671 | h[ type ].GetXaxis()->SetTitleOffset(1.2);
|
|---|
| 672 | h[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.));
|
|---|
| 673 |
|
|---|
| 674 | // set Y axis paras
|
|---|
| 675 | h[ type ].GetYaxis()->SetLabelSize(0.1);
|
|---|
| 676 | h[ type ].GetYaxis()->SetTitleSize(0.1);
|
|---|
| 677 | h[ type ].GetYaxis()->SetTitleOffset(0.3);
|
|---|
| 678 | h[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)");
|
|---|
| 679 | }
|
|---|
| 680 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600);
|
|---|
| 681 | CW->Divide(1, 3);
|
|---|
| 682 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600);
|
|---|
| 683 | cFilter->Divide(1, 3);
|
|---|
| 684 |
|
|---|
| 685 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024);
|
|---|
| 686 |
|
|---|
| 687 | }
|
|---|
| 688 | */
|
|---|
| 689 |
|
|---|