| 1 | #include <TROOT.h>
|
|---|
| 2 | #include <TCanvas.h>
|
|---|
| 3 | #include <TProfile.h>
|
|---|
| 4 | #include <TTimer.h>
|
|---|
| 5 | #include <TH1F.h>
|
|---|
| 6 | #include <TH2F.h>
|
|---|
| 7 | #include <Getline.h>
|
|---|
| 8 | #include <TLine.h>
|
|---|
| 9 | #include <TMath.h>
|
|---|
| 10 |
|
|---|
| 11 | #include <stdint.h>
|
|---|
| 12 | #include <cstdio>
|
|---|
| 13 |
|
|---|
| 14 |
|
|---|
| 15 | #define HAVE_ZLIB
|
|---|
| 16 | #include "fits.h"
|
|---|
| 17 | //#include "TPKplotevent.c"
|
|---|
| 18 | //#include "FOpenDataFile.c"
|
|---|
| 19 | #include "FOpenCalibFile.c"
|
|---|
| 20 |
|
|---|
| 21 | #include "discriminator.h"
|
|---|
| 22 | #include "discriminator.C"
|
|---|
| 23 |
|
|---|
| 24 | #include "zerosearch.C"
|
|---|
| 25 |
|
|---|
| 26 | #define NPIX 1440
|
|---|
| 27 | #define NCELL 1024
|
|---|
| 28 |
|
|---|
| 29 | // data access and treatment
|
|---|
| 30 | #define FAD_MAX_SAMPLES 1024
|
|---|
| 31 |
|
|---|
| 32 | vector<int16_t> data;
|
|---|
| 33 | vector<int16_t> data_offset;
|
|---|
| 34 |
|
|---|
| 35 | unsigned int data_num;
|
|---|
| 36 |
|
|---|
| 37 | size_t data_n;
|
|---|
| 38 | UInt_t data_px;
|
|---|
| 39 | UInt_t data_roi;
|
|---|
| 40 | int NEvents;
|
|---|
| 41 |
|
|---|
| 42 | size_t drs_n;
|
|---|
| 43 | vector<float> drs_basemean;
|
|---|
| 44 | vector<float> drs_gainmean;
|
|---|
| 45 | vector<float> drs_triggeroffsetmean;
|
|---|
| 46 |
|
|---|
| 47 | int FOpenDataFile( fits & );
|
|---|
| 48 |
|
|---|
| 49 |
|
|---|
| 50 | vector<float> Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude
|
|---|
| 51 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors
|
|---|
| 52 | vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors
|
|---|
| 53 | vector<float> Vcorr(FAD_MAX_SAMPLES); // corrected Values
|
|---|
| 54 | vector<float> Vdiff(FAD_MAX_SAMPLES); // numerical derivative
|
|---|
| 55 |
|
|---|
| 56 | vector<float> Vslide(FAD_MAX_SAMPLES); // sliding average result
|
|---|
| 57 | vector<float> Vcfd(FAD_MAX_SAMPLES); // CDF result
|
|---|
| 58 | vector<float> Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average
|
|---|
| 59 |
|
|---|
| 60 | #include "factfir.C"
|
|---|
| 61 |
|
|---|
| 62 | float getValue( int, int );
|
|---|
| 63 | void computeN1mean( int );
|
|---|
| 64 | void removeSpikes( int );
|
|---|
| 65 |
|
|---|
| 66 | // histograms
|
|---|
| 67 | const int Ntypes = 7;
|
|---|
| 68 | const unsigned int // arranged by Dominik
|
|---|
| 69 | tAmeas = 0,
|
|---|
| 70 | tN1mean = 1,
|
|---|
| 71 | tVcorr = 2,
|
|---|
| 72 | tVtest = 3,
|
|---|
| 73 | tVslide = 4,
|
|---|
| 74 | tVcfd = 5,
|
|---|
| 75 | tVcfd2 = 6;
|
|---|
| 76 |
|
|---|
| 77 | TH1F* h;
|
|---|
| 78 | TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts
|
|---|
| 79 | // x = pixel id, y = DRS cell id
|
|---|
| 80 | TH2F hPixelCellData("PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.);
|
|---|
| 81 |
|
|---|
| 82 | void BookHistos( int );
|
|---|
| 83 |
|
|---|
| 84 | // Create a canvas
|
|---|
| 85 | TCanvas* CW;
|
|---|
| 86 | TCanvas* cFilter;
|
|---|
| 87 |
|
|---|
| 88 | int spikeDebug = 0;
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | int zippedfitstest(
|
|---|
| 92 | char *datafilename = "../../20111011_026.fits.gz",
|
|---|
| 93 | const char *drsfilename = "../../20111011_022.drs.fits.gz",
|
|---|
| 94 | int pixelnr = 4,
|
|---|
| 95 | int firstevent = 0,
|
|---|
| 96 | int nevents = -1 ){
|
|---|
| 97 | // read and analyze FACT raw data
|
|---|
| 98 |
|
|---|
| 99 | // sliding window filter settings
|
|---|
| 100 | int k_slide = 16;
|
|---|
| 101 | vector<double> a_slide(k_slide, 1);
|
|---|
| 102 | double b_slide = k_slide;
|
|---|
| 103 |
|
|---|
| 104 | // CFD filter settings
|
|---|
| 105 | int k_cfd = 10;
|
|---|
| 106 | vector<double> a_cfd(k_cfd, 0);
|
|---|
| 107 | double b_cfd = 1.;
|
|---|
| 108 | a_cfd[0]=0.75;
|
|---|
| 109 | a_cfd[k_cfd-1]=-1.;
|
|---|
| 110 |
|
|---|
| 111 | // 2nd slinding window filter
|
|---|
| 112 | int ks2 = 16;
|
|---|
| 113 | vector<double> as2(ks2, 1);
|
|---|
| 114 | double bs2 = ks2;
|
|---|
| 115 | gROOT->SetStyle("Plain");
|
|---|
| 116 |
|
|---|
| 117 | //-------------------------------------------
|
|---|
| 118 | // Open the file
|
|---|
| 119 | //-------------------------------------------
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 | fits *datafile = new fits( datafilename );
|
|---|
| 123 | if (!datafile) {
|
|---|
| 124 | printf( "Could not open the file: %s\n", datafilename );
|
|---|
| 125 | return 1;
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 |
|
|---|
| 129 | // access data
|
|---|
| 130 | NEvents = FOpenDataFile( *datafile );
|
|---|
| 131 |
|
|---|
| 132 | printf("number of events in file: %d\n", NEvents);
|
|---|
| 133 |
|
|---|
| 134 | // compare the number of events in the data file with the nevents the
|
|---|
| 135 | // the user would like to read. nevents = -1 means: read all
|
|---|
| 136 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents;
|
|---|
| 137 |
|
|---|
| 138 |
|
|---|
| 139 | //-------------------------------------------
|
|---|
| 140 | //Get the DRS calibration
|
|---|
| 141 | //-------------------------------------------
|
|---|
| 142 |
|
|---|
| 143 | FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n);
|
|---|
| 144 |
|
|---|
| 145 | //-------------------------------------------
|
|---|
| 146 | //Check the sizes of the data columns
|
|---|
| 147 | //-------------------------------------------
|
|---|
| 148 | if(drs_n!=data_n)
|
|---|
| 149 | {
|
|---|
| 150 | cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl;
|
|---|
| 151 | return 1;
|
|---|
| 152 | }
|
|---|
| 153 | // Book the histograms
|
|---|
| 154 | BookHistos( data_roi );
|
|---|
| 155 |
|
|---|
| 156 | // Loop over events
|
|---|
| 157 | cout << "--------------------- Data --------------------" << endl;
|
|---|
| 158 |
|
|---|
| 159 | float value;
|
|---|
| 160 | TH1F * sp = new TH1F("spektrum", "test of Stepktrum", 256, -0.5, 63.5);
|
|---|
| 161 |
|
|---|
| 162 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) {
|
|---|
| 163 |
|
|---|
| 164 | datafile->GetRow( ev );
|
|---|
| 165 |
|
|---|
| 166 | if (ev % 50 ==0){
|
|---|
| 167 | cout << "Event number: " << data_num << endl;
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | for ( int pix = 0; pix < 1440; pix++ ){
|
|---|
| 171 | hStartCell->Fill( pix, data_offset[pix] );
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
|---|
| 175 | value = getValue(sl, pixelnr);
|
|---|
| 176 | //printf("value = %f\n", value);
|
|---|
| 177 | Ameas[ sl ] = value;
|
|---|
| 178 | h[tAmeas].SetBinContent(sl, value);
|
|---|
| 179 |
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | computeN1mean( data_roi );
|
|---|
| 183 | removeSpikes( data_roi );
|
|---|
| 184 |
|
|---|
| 185 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
|---|
| 186 | hPixelCellData.Fill(sl, Vcorr[ sl ]);
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | // filter Vcorr with sliding average using FIR filter function
|
|---|
| 190 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide);
|
|---|
| 191 |
|
|---|
| 192 | // filter Vslide with CFD using FIR filter function
|
|---|
| 193 | factfir(b_cfd , a_cfd, k_cfd, Vslide, Vcfd);
|
|---|
| 194 | // filter Vcfd with sliding average using FIR filter function
|
|---|
| 195 | factfir(b_slide , a_slide, k_slide, Vcfd, Vcfd2);
|
|---|
| 196 |
|
|---|
| 197 | vector<DiscOut> *my = discriminator( Vslide, 3.5, 100 );
|
|---|
| 198 | for (int p=0; p<my->size(); p++ ){
|
|---|
| 199 | sp->Fill(my->at(p).maxVal);
|
|---|
| 200 | }
|
|---|
| 201 | delete my;
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | if ( spikeDebug ){
|
|---|
| 205 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
|---|
| 206 | h[tVslide].SetBinContent( sl, Vslide[sl] );
|
|---|
| 207 | h[tVcfd].SetBinContent( sl, Vcfd[sl] );
|
|---|
| 208 | h[tVcfd2].SetBinContent( sl, Vcfd2[sl] );
|
|---|
| 209 | }
|
|---|
| 210 | }
|
|---|
| 211 | /*
|
|---|
| 212 | vector<int> * zeros = zerosearch( Vcfd2, -1, 10, 20 );
|
|---|
| 213 | if (zeros->size() == 0 ){
|
|---|
| 214 | continue;
|
|---|
| 215 | }
|
|---|
| 216 | // check value of Vside at zero position
|
|---|
| 217 | for ( int i=0; i<zeros->size(); i++){
|
|---|
| 218 | cout << zeros->at(i) << ":\t" << Vslide[ zeros->at(i) ]<<endl;
|
|---|
| 219 | // sp->Fill(Vslide[zeros->at(i)]);
|
|---|
| 220 | }
|
|---|
| 221 | */
|
|---|
| 222 |
|
|---|
| 223 | if ( spikeDebug ){
|
|---|
| 224 |
|
|---|
| 225 | CW->cd( tAmeas + 1);
|
|---|
| 226 | gPad->SetGrid();
|
|---|
| 227 | h[tAmeas].Draw();
|
|---|
| 228 |
|
|---|
| 229 | CW->cd( tN1mean + 1);
|
|---|
| 230 | gPad->SetGrid();
|
|---|
| 231 | h[tN1mean].Draw();
|
|---|
| 232 |
|
|---|
| 233 | CW->cd( tVcorr + 1);
|
|---|
| 234 | gPad->SetGrid();
|
|---|
| 235 | h[tVcorr].Draw();
|
|---|
| 236 |
|
|---|
| 237 | // CW->cd( tVtest + 1);
|
|---|
| 238 | // gPad->SetGrid();
|
|---|
| 239 | // h[tVtest].Draw();
|
|---|
| 240 |
|
|---|
| 241 | cFilter->cd( Ntypes - tVslide );
|
|---|
| 242 | cFilter->cd(1);
|
|---|
| 243 | gPad->SetGrid();
|
|---|
| 244 | h[tVslide].Draw();
|
|---|
| 245 |
|
|---|
| 246 | cFilter->cd( Ntypes - tVcfd );
|
|---|
| 247 | cFilter->cd(2);
|
|---|
| 248 | gPad->SetGrid();
|
|---|
| 249 | h[tVcfd].Draw();
|
|---|
| 250 |
|
|---|
| 251 | TLine zeroline(0, 0, 1024, 0);
|
|---|
| 252 | zeroline.SetLineColor(kBlue);
|
|---|
| 253 | zeroline.Draw();
|
|---|
| 254 |
|
|---|
| 255 | cFilter->cd( Ntypes - tVcfd2 );
|
|---|
| 256 | cFilter->cd(3);
|
|---|
| 257 | gPad->SetGrid();
|
|---|
| 258 | h[tVcfd2].Draw();
|
|---|
| 259 |
|
|---|
| 260 | zeroline.Draw();
|
|---|
| 261 |
|
|---|
| 262 | CW->Update();
|
|---|
| 263 | cFilter->Update();
|
|---|
| 264 |
|
|---|
| 265 | //Process gui events asynchronously during input
|
|---|
| 266 | TTimer timer("gSystem->ProcessEvents();", 50, kFALSE);
|
|---|
| 267 | timer.TurnOn();
|
|---|
| 268 | TString input = Getline("Type 'q' to exit, <return> to go on: ");
|
|---|
| 269 | timer.TurnOff();
|
|---|
| 270 | if (input=="q\n") break;
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | TCanvas * cSpektrum = new TCanvas();
|
|---|
| 277 | cSpektrum->cd();
|
|---|
| 278 | sp->Draw();
|
|---|
| 279 | TCanvas * cStartCell = new TCanvas();
|
|---|
| 280 | cStartCell->cd();
|
|---|
| 281 | hStartCell->Draw();
|
|---|
| 282 | hPixelCellData.Draw();
|
|---|
| 283 |
|
|---|
| 284 | delete cStartCell;
|
|---|
| 285 |
|
|---|
| 286 | return( 0 );
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | void removeSpikes(int Samples){
|
|---|
| 290 |
|
|---|
| 291 | const float fract = 0.8;
|
|---|
| 292 | float x, xp, xpp, x3p;
|
|---|
| 293 |
|
|---|
| 294 | // assume that there are no spikes
|
|---|
| 295 | for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i];
|
|---|
| 296 |
|
|---|
| 297 | // find the spike and replace it by mean value of neighbors
|
|---|
| 298 | for ( int i = 0; i < Samples; i++) {
|
|---|
| 299 |
|
|---|
| 300 | // printf("Vcorr[%d] = %f, Ameas[%d] = %f\n", i, Vcorr[ i ], i, Ameas[ i ] );
|
|---|
| 301 |
|
|---|
| 302 | x = Ameas[i] - N1mean[i];
|
|---|
| 303 |
|
|---|
| 304 | if ( x < -5. ){ // a spike candidate
|
|---|
| 305 | // check consistency with a single channel spike
|
|---|
| 306 | xp = Ameas[i+1] - N1mean[i+1];
|
|---|
| 307 | xpp = Ameas[i+2] - N1mean[i+2];
|
|---|
| 308 | x3p = Ameas[i+3] - N1mean[i+3];
|
|---|
| 309 |
|
|---|
| 310 | // printf("candidates x[%d] = %f; xp = %f; xpp = %f, x3p = %f\n", i, x, xp, xpp, x3p);
|
|---|
| 311 |
|
|---|
| 312 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){
|
|---|
| 313 | // printf("double spike candidate\n");
|
|---|
| 314 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 315 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.;
|
|---|
| 316 | // printf("Vcorr[%d] = %f %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2], Vcorr[ i+3 ]);
|
|---|
| 317 | // printf("Ameas[%d] = %f %f %f %f\n", i, Ameas[ i ], Ameas[ i+1 ], Ameas[ i+2 ], Ameas[i+3]);
|
|---|
| 318 | i = i + 3;
|
|---|
| 319 | }
|
|---|
| 320 | else{
|
|---|
| 321 |
|
|---|
| 322 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){
|
|---|
| 323 | Vcorr[i+1] = N1mean[i+1];
|
|---|
| 324 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]);
|
|---|
| 325 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.);
|
|---|
| 326 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.);
|
|---|
| 327 | i = i + 2;//do not care about the next sample it was the spike
|
|---|
| 328 | }
|
|---|
| 329 | // treatment for the end of the pipeline must be added !!!
|
|---|
| 330 | }
|
|---|
| 331 | }
|
|---|
| 332 | else{
|
|---|
| 333 | // do nothing
|
|---|
| 334 | }
|
|---|
| 335 | } // end of spike search and correction
|
|---|
| 336 | for ( int i = 0; i < Samples; i++ ) h[ tVcorr ].SetBinContent( i, Vcorr[i] );
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | void computeN1mean( int Samples ){
|
|---|
| 340 |
|
|---|
| 341 | // compute the mean of the left and right neighbors of a channel
|
|---|
| 342 |
|
|---|
| 343 | for( int i = 0; i < Samples; i++){
|
|---|
| 344 | if (i == 0){ // use right sample es mean
|
|---|
| 345 | N1mean[i] = Ameas[i+1];
|
|---|
| 346 | }
|
|---|
| 347 | else if ( i == Samples-1 ){ //use left sample as mean
|
|---|
| 348 | N1mean[i] = Ameas[i-1];
|
|---|
| 349 | }
|
|---|
| 350 | else{
|
|---|
| 351 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
|---|
| 352 | }
|
|---|
| 353 | h[tN1mean].SetBinContent(i, Ameas[i] - N1mean[i]);
|
|---|
| 354 | }
|
|---|
| 355 | } // end of computeN1mean computation
|
|---|
| 356 |
|
|---|
| 357 | float getValue( int slice, int pixel ){
|
|---|
| 358 |
|
|---|
| 359 | const float dconv = 2000/4096.0;
|
|---|
| 360 |
|
|---|
| 361 | float vraw, vcal;
|
|---|
| 362 |
|
|---|
| 363 | unsigned int pixel_pt;
|
|---|
| 364 | unsigned int slice_pt;
|
|---|
| 365 | unsigned int cal_pt;
|
|---|
| 366 | unsigned int drs_cal_offset;
|
|---|
| 367 |
|
|---|
| 368 | // printf("pixel = %d, slice = %d\n", slice, pixel);
|
|---|
| 369 |
|
|---|
| 370 | pixel_pt = pixel * data_roi;
|
|---|
| 371 | slice_pt = pixel_pt + slice;
|
|---|
| 372 | drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi;
|
|---|
| 373 | cal_pt = pixel_pt + drs_cal_offset;
|
|---|
| 374 |
|
|---|
| 375 | vraw = data[ slice_pt ] * dconv;
|
|---|
| 376 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35;
|
|---|
| 377 |
|
|---|
| 378 | return( vcal );
|
|---|
| 379 | }
|
|---|
| 380 |
|
|---|
| 381 | void BookHistos( int Samples ){
|
|---|
| 382 | // booking and parameter settings for all histos
|
|---|
| 383 |
|
|---|
| 384 | h = new TH1F[ Ntypes ];
|
|---|
| 385 |
|
|---|
| 386 | for ( int type = 0; type < Ntypes; type++){
|
|---|
| 387 |
|
|---|
| 388 | h[ type ].SetBins(Samples, 0, Samples);
|
|---|
| 389 | h[ type ].SetLineColor(1);
|
|---|
| 390 | h[ type ].SetLineWidth(2);
|
|---|
| 391 |
|
|---|
| 392 | // set X axis paras
|
|---|
| 393 | h[ type ].GetXaxis()->SetLabelSize(0.1);
|
|---|
| 394 | h[ type ].GetXaxis()->SetTitleSize(0.1);
|
|---|
| 395 | h[ type ].GetXaxis()->SetTitleOffset(1.2);
|
|---|
| 396 | h[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.));
|
|---|
| 397 |
|
|---|
| 398 | // set Y axis paras
|
|---|
| 399 | h[ type ].GetYaxis()->SetLabelSize(0.1);
|
|---|
| 400 | h[ type ].GetYaxis()->SetTitleSize(0.1);
|
|---|
| 401 | h[ type ].GetYaxis()->SetTitleOffset(0.3);
|
|---|
| 402 | h[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)");
|
|---|
| 403 | }
|
|---|
| 404 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600);
|
|---|
| 405 | CW->Divide(1, 3);
|
|---|
| 406 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600);
|
|---|
| 407 | cFilter->Divide(1, 3);
|
|---|
| 408 |
|
|---|
| 409 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024);
|
|---|
| 410 |
|
|---|
| 411 | }
|
|---|
| 412 | int FOpenDataFile(fits &datafile){
|
|---|
| 413 |
|
|---|
| 414 | /* cout << "-------------------- Data Header -------------------" << endl;
|
|---|
| 415 | datafile.PrintKeys();
|
|---|
| 416 | cout << "------------------- Data Columns -------------------" << endl;
|
|---|
| 417 | datafile.PrintColumns();
|
|---|
| 418 | */
|
|---|
| 419 |
|
|---|
| 420 | //Get the size of the data column
|
|---|
| 421 | data_roi = datafile.GetUInt("NROI"); // Value from header
|
|---|
| 422 | data_px = datafile.GetUInt("NPIX");
|
|---|
| 423 | data_n = datafile.GetN("Data"); //Size of column "Data" = #Pixel x ROI
|
|---|
| 424 |
|
|---|
| 425 | //Set the sizes of the data vectors
|
|---|
| 426 | data.resize(data_n,0);
|
|---|
| 427 | data_offset.resize(data_px,0);
|
|---|
| 428 |
|
|---|
| 429 | //Link the data to variables
|
|---|
| 430 | datafile.SetRefAddress("EventNum", data_num);
|
|---|
| 431 | datafile.SetVecAddress("Data", data);
|
|---|
| 432 | datafile.SetVecAddress("StartCellData", data_offset);
|
|---|
| 433 | datafile.GetRow(0);
|
|---|
| 434 |
|
|---|
| 435 | cout << "Opening data file successful..." << endl;
|
|---|
| 436 |
|
|---|
| 437 | return datafile.GetNumRows() ;
|
|---|
| 438 | }
|
|---|
| 439 |
|
|---|