#include #include #include #include #include #include #include #include #include #include #include #define HAVE_ZLIB #include "izstream.h" #include "fits.h" //#include "TPKplotevent.c" //#include "FOpenDataFile.c" #include "FOpenCalibFile.c" #include "discriminator.h" #include "discriminator.C" #include "zerosearch.C" #define NPIX 1440 #define NCELL 1024 // data access and treatment #define FAD_MAX_SAMPLES 1024 vector data; vector data_offset; unsigned int data_num; size_t data_n; UInt_t data_px; UInt_t data_roi; int NEvents; size_t drs_n; vector drs_basemean; vector drs_gainmean; vector drs_triggeroffsetmean; int FOpenDataFile( fits & ); vector Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude vector N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors vector N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors vector Vcorr(FAD_MAX_SAMPLES); // corrected Values vector Vdiff(FAD_MAX_SAMPLES); // numerical derivative vector Vslide(FAD_MAX_SAMPLES); // sliding average result vector Vcfd(FAD_MAX_SAMPLES); // CDF result vector Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average #include "factfir.C" float getValue( int, int ); void computeN1mean( int ); void removeSpikes( int ); // histograms const int Ntypes = 7; const unsigned int // arranged by Dominik tAmeas = 0, tN1mean = 1, tVcorr = 2, tVtest = 3, tVslide = 4, tVcfd = 5, tVcfd2 = 6; TH1F* h; TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts // x = pixel id, y = DRS cell id TH2F hPixelCellData("PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.); void BookHistos( int ); // Create a canvas TCanvas* CW; TCanvas* cFilter; int spikeDebug = 0; int zippedfitstest( char *datafilename = "../raw/20111011_026.fits.gz", const char *drsfilename = "../raw/20111011_022.drs.fits.gz", int pixelnr = 4, int firstevent = 0, int nevents = -1 ){ // read and analyze FACT raw data // sliding window filter settings int k_slide = 16; vector a_slide(k_slide, 1); double b_slide = k_slide; // CFD filter settings int k_cfd = 10; vector a_cfd(k_cfd, 0); double b_cfd = 1.; a_cfd[0]=0.75; a_cfd[k_cfd-1]=-1.; // 2nd slinding window filter int ks2 = 16; vector as2(ks2, 1); double bs2 = ks2; gROOT->SetStyle("Plain"); //------------------------------------------- // Open the file //------------------------------------------- fits datafile( datafilename ); if (!datafile) { printf( "Could not open the file: %s\n", datafilename ); return 1; } // access data NEvents = FOpenDataFile( datafile ); printf("number of events in file: %d\n", NEvents); // compare the number of events in the data file with the nevents the // the user would like to read. nevents = -1 means: read all if ( nevents == -1 || nevents > NEvents ) nevents = NEvents; //------------------------------------------- //Get the DRS calibration //------------------------------------------- FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n); //------------------------------------------- //Check the sizes of the data columns //------------------------------------------- if(drs_n!=data_n) { cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl; return 1; } // Book the histograms BookHistos( data_roi ); // Loop over events cout << "--------------------- Data --------------------" << endl; float value; TH1F * sp = new TH1F("spektrum", "test of Stepktrum", 256, -0.5, 63.5); for ( int ev = firstevent; ev < firstevent + nevents; ev++) { datafile.GetRow( ev ); if (ev % 50 ==0){ cout << "Event number: " << data_num << endl; } for ( int pix = 0; pix < 1440; pix++ ){ hStartCell->Fill( pix, data_offset[pix] ); } for ( unsigned int sl = 0; sl < data_roi; sl++){ value = getValue(sl, pixelnr); //printf("value = %f\n", value); Ameas[ sl ] = value; h[tAmeas].SetBinContent(sl, value); } computeN1mean( data_roi ); removeSpikes( data_roi ); for ( unsigned int sl = 0; sl < data_roi; sl++){ hPixelCellData.Fill(sl, Vcorr[ sl ]); } // filter Vcorr with sliding average using FIR filter function factfir(b_slide , a_slide, k_slide, Vcorr, Vslide); // filter Vslide with CFD using FIR filter function factfir(b_cfd , a_cfd, k_cfd, Vslide, Vcfd); // filter Vcfd with sliding average using FIR filter function factfir(b_slide , a_slide, k_slide, Vcfd, Vcfd2); vector *my = discriminator( Vslide, 3.5, 100 ); for (int p=0; psize(); p++ ){ sp->Fill(my->at(p).maxVal); } delete my; if ( spikeDebug ){ for ( unsigned int sl = 0; sl < data_roi; sl++){ h[tVslide].SetBinContent( sl, Vslide[sl] ); h[tVcfd].SetBinContent( sl, Vcfd[sl] ); h[tVcfd2].SetBinContent( sl, Vcfd2[sl] ); } } /* vector * zeros = zerosearch( Vcfd2, -1, 10, 20 ); if (zeros->size() == 0 ){ continue; } // check value of Vside at zero position for ( int i=0; isize(); i++){ cout << zeros->at(i) << ":\t" << Vslide[ zeros->at(i) ]<Fill(Vslide[zeros->at(i)]); } */ if ( spikeDebug ){ CW->cd( tAmeas + 1); gPad->SetGrid(); h[tAmeas].Draw(); CW->cd( tN1mean + 1); gPad->SetGrid(); h[tN1mean].Draw(); CW->cd( tVcorr + 1); gPad->SetGrid(); h[tVcorr].Draw(); // CW->cd( tVtest + 1); // gPad->SetGrid(); // h[tVtest].Draw(); cFilter->cd( Ntypes - tVslide ); cFilter->cd(1); gPad->SetGrid(); h[tVslide].Draw(); cFilter->cd( Ntypes - tVcfd ); cFilter->cd(2); gPad->SetGrid(); h[tVcfd].Draw(); TLine zeroline(0, 0, 1024, 0); zeroline.SetLineColor(kBlue); zeroline.Draw(); cFilter->cd( Ntypes - tVcfd2 ); cFilter->cd(3); gPad->SetGrid(); h[tVcfd2].Draw(); zeroline.Draw(); CW->Update(); cFilter->Update(); //Process gui events asynchronously during input TTimer timer("gSystem->ProcessEvents();", 50, kFALSE); timer.TurnOn(); TString input = Getline("Type 'q' to exit, to go on: "); timer.TurnOff(); if (input=="q\n") break; } } TCanvas * cSpektrum = new TCanvas(); cSpektrum->cd(); sp->Draw(); TCanvas * cStartCell = new TCanvas(); cStartCell->cd(); hStartCell->Draw(); hPixelCellData.Draw(); delete cStartCell; return( 0 ); } void removeSpikes(int Samples){ const float fract = 0.8; float x, xp, xpp, x3p; // assume that there are no spikes for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i]; // find the spike and replace it by mean value of neighbors for ( int i = 0; i < Samples; i++) { // printf("Vcorr[%d] = %f, Ameas[%d] = %f\n", i, Vcorr[ i ], i, Ameas[ i ] ); x = Ameas[i] - N1mean[i]; if ( x < -5. ){ // a spike candidate // check consistency with a single channel spike xp = Ameas[i+1] - N1mean[i+1]; xpp = Ameas[i+2] - N1mean[i+2]; x3p = Ameas[i+3] - N1mean[i+3]; // printf("candidates x[%d] = %f; xp = %f; xpp = %f, x3p = %f\n", i, x, xp, xpp, x3p); if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){ // printf("double spike candidate\n"); Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.; Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.; // printf("Vcorr[%d] = %f %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2], Vcorr[ i+3 ]); // printf("Ameas[%d] = %f %f %f %f\n", i, Ameas[ i ], Ameas[ i+1 ], Ameas[ i+2 ], Ameas[i+3]); i = i + 3; } else{ if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){ Vcorr[i+1] = N1mean[i+1]; // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]); // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.); N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.); i = i + 2;//do not care about the next sample it was the spike } // treatment for the end of the pipeline must be added !!! } } else{ // do nothing } } // end of spike search and correction for ( int i = 0; i < Samples; i++ ) h[ tVcorr ].SetBinContent( i, Vcorr[i] ); } void computeN1mean( int Samples ){ // compute the mean of the left and right neighbors of a channel for( int i = 0; i < Samples; i++){ if (i == 0){ // use right sample es mean N1mean[i] = Ameas[i+1]; } else if ( i == Samples-1 ){ //use left sample as mean N1mean[i] = Ameas[i-1]; } else{ N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.; } h[tN1mean].SetBinContent(i, Ameas[i] - N1mean[i]); } } // end of computeN1mean computation float getValue( int slice, int pixel ){ const float dconv = 2000/4096.0; float vraw, vcal; unsigned int pixel_pt; unsigned int slice_pt; unsigned int cal_pt; unsigned int drs_cal_offset; // printf("pixel = %d, slice = %d\n", slice, pixel); pixel_pt = pixel * data_roi; slice_pt = pixel_pt + slice; drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi; cal_pt = pixel_pt + drs_cal_offset; vraw = data[ slice_pt ] * dconv; vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35; return( vcal ); } void BookHistos( int Samples ){ // booking and parameter settings for all histos h = new TH1F[ Ntypes ]; for ( int type = 0; type < Ntypes; type++){ h[ type ].SetBins(Samples, 0, Samples); h[ type ].SetLineColor(1); h[ type ].SetLineWidth(2); // set X axis paras h[ type ].GetXaxis()->SetLabelSize(0.1); h[ type ].GetXaxis()->SetTitleSize(0.1); h[ type ].GetXaxis()->SetTitleOffset(1.2); h[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.)); // set Y axis paras h[ type ].GetYaxis()->SetLabelSize(0.1); h[ type ].GetYaxis()->SetTitleSize(0.1); h[ type ].GetYaxis()->SetTitleOffset(0.3); h[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)"); } CW = new TCanvas("CW","DRS Waveform",10,10,800,600); CW->Divide(1, 3); cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600); cFilter->Divide(1, 3); hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024); } int FOpenDataFile(fits &datafile){ /* cout << "-------------------- Data Header -------------------" << endl; datafile.PrintKeys(); cout << "------------------- Data Columns -------------------" << endl; datafile.PrintColumns(); */ //Get the size of the data column data_roi = datafile.GetUInt("NROI"); // Value from header data_px = datafile.GetUInt("NPIX"); data_n = datafile.GetN("Data"); //Size of column "Data" = #Pixel x ROI //Set the sizes of the data vectors data.resize(data_n,0); data_offset.resize(data_px,0); //Link the data to variables datafile.SetRefAddress("EventNum", data_num); datafile.SetVecAddress("Data", data); datafile.SetVecAddress("StartCellData", data_offset); datafile.GetRow(0); cout << "Opening data file successful..." << endl; return datafile.GetNumRows() ; }