1 | #include <TROOT.h>
|
---|
2 | #include <TCanvas.h>
|
---|
3 | #include <TProfile.h>
|
---|
4 | #include <TTimer.h>
|
---|
5 | #include <TH1F.h>
|
---|
6 | #include <TH2F.h>
|
---|
7 | #include <Getline.h>
|
---|
8 | #include <TLine.h>
|
---|
9 | #include <TMath.h>
|
---|
10 |
|
---|
11 | #include <stdint.h>
|
---|
12 | #include <cstdio>
|
---|
13 |
|
---|
14 |
|
---|
15 | #define HAVE_ZLIB
|
---|
16 | #include "fits.h"
|
---|
17 | //#include "TPKplotevent.c"
|
---|
18 | //#include "FOpenDataFile.c"
|
---|
19 | #include "FOpenCalibFile.c"
|
---|
20 |
|
---|
21 | #include "discriminator.h"
|
---|
22 | #include "discriminator.C"
|
---|
23 |
|
---|
24 | #include "zerosearch.C"
|
---|
25 |
|
---|
26 | #define NPIX 1440
|
---|
27 | #define NCELL 1024
|
---|
28 |
|
---|
29 | // data access and treatment
|
---|
30 | #define FAD_MAX_SAMPLES 1024
|
---|
31 |
|
---|
32 | vector<int16_t> data;
|
---|
33 | vector<int16_t> data_offset;
|
---|
34 |
|
---|
35 | unsigned int data_num;
|
---|
36 |
|
---|
37 | size_t data_n;
|
---|
38 | UInt_t data_px;
|
---|
39 | UInt_t data_roi;
|
---|
40 | int NEvents;
|
---|
41 |
|
---|
42 | size_t drs_n;
|
---|
43 | vector<float> drs_basemean;
|
---|
44 | vector<float> drs_gainmean;
|
---|
45 | vector<float> drs_triggeroffsetmean;
|
---|
46 |
|
---|
47 | int FOpenDataFile( fits & );
|
---|
48 |
|
---|
49 |
|
---|
50 | vector<float> Ameas(FAD_MAX_SAMPLES); // copy of the data (measured amplitude
|
---|
51 | vector<float> N1mean(FAD_MAX_SAMPLES); // mean of the +1 -1 ch neighbors
|
---|
52 | vector<float> N2mean(FAD_MAX_SAMPLES); // mean of the +2 -2 ch neighbors
|
---|
53 | vector<float> Vcorr(FAD_MAX_SAMPLES); // corrected Values
|
---|
54 | vector<float> Vdiff(FAD_MAX_SAMPLES); // numerical derivative
|
---|
55 |
|
---|
56 | vector<float> Vslide(FAD_MAX_SAMPLES); // sliding average result
|
---|
57 | vector<float> Vcfd(FAD_MAX_SAMPLES); // CDF result
|
---|
58 | vector<float> Vcfd2(FAD_MAX_SAMPLES); // CDF result + 2nd sliding average
|
---|
59 |
|
---|
60 | #include "factfir.C"
|
---|
61 |
|
---|
62 | float getValue( int, int );
|
---|
63 | void computeN1mean( int );
|
---|
64 | void removeSpikes( int );
|
---|
65 |
|
---|
66 | // histograms
|
---|
67 | const int Ntypes = 7;
|
---|
68 | const unsigned int // arranged by Dominik
|
---|
69 | tAmeas = 0,
|
---|
70 | tN1mean = 1,
|
---|
71 | tVcorr = 2,
|
---|
72 | tVtest = 3,
|
---|
73 | tVslide = 4,
|
---|
74 | tVcfd = 5,
|
---|
75 | tVcfd2 = 6;
|
---|
76 |
|
---|
77 | TH1F* h;
|
---|
78 | TH2F* hStartCell; // id of the DRS physical pipeline cell where readout starts
|
---|
79 | // x = pixel id, y = DRS cell id
|
---|
80 | TH2F hPixelCellData("PixelPedestal", "PixelPedestal", NCELL, 0., NCELL, 200, -50., 150.);
|
---|
81 |
|
---|
82 | void BookHistos( int );
|
---|
83 |
|
---|
84 | // Create a canvas
|
---|
85 | TCanvas* CW;
|
---|
86 | TCanvas* cFilter;
|
---|
87 |
|
---|
88 | int spikeDebug = 0;
|
---|
89 |
|
---|
90 |
|
---|
91 | int zippedfitstest(
|
---|
92 | char *datafilename = "../../20111011_026.fits.gz",
|
---|
93 | const char *drsfilename = "../../20111011_022.drs.fits.gz",
|
---|
94 | int pixelnr = 4,
|
---|
95 | int firstevent = 0,
|
---|
96 | int nevents = -1 ){
|
---|
97 | // read and analyze FACT raw data
|
---|
98 |
|
---|
99 | // sliding window filter settings
|
---|
100 | int k_slide = 16;
|
---|
101 | vector<double> a_slide(k_slide, 1);
|
---|
102 | double b_slide = k_slide;
|
---|
103 |
|
---|
104 | // CFD filter settings
|
---|
105 | int k_cfd = 10;
|
---|
106 | vector<double> a_cfd(k_cfd, 0);
|
---|
107 | double b_cfd = 1.;
|
---|
108 | a_cfd[0]=0.75;
|
---|
109 | a_cfd[k_cfd-1]=-1.;
|
---|
110 |
|
---|
111 | // 2nd slinding window filter
|
---|
112 | int ks2 = 16;
|
---|
113 | vector<double> as2(ks2, 1);
|
---|
114 | double bs2 = ks2;
|
---|
115 | gROOT->SetStyle("Plain");
|
---|
116 |
|
---|
117 | //-------------------------------------------
|
---|
118 | // Open the file
|
---|
119 | //-------------------------------------------
|
---|
120 |
|
---|
121 |
|
---|
122 | fits *datafile = new fits( datafilename );
|
---|
123 | if (!datafile) {
|
---|
124 | printf( "Could not open the file: %s\n", datafilename );
|
---|
125 | return 1;
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | // access data
|
---|
130 | NEvents = FOpenDataFile( *datafile );
|
---|
131 |
|
---|
132 | printf("number of events in file: %d\n", NEvents);
|
---|
133 |
|
---|
134 | // compare the number of events in the data file with the nevents the
|
---|
135 | // the user would like to read. nevents = -1 means: read all
|
---|
136 | if ( nevents == -1 || nevents > NEvents ) nevents = NEvents;
|
---|
137 |
|
---|
138 |
|
---|
139 | //-------------------------------------------
|
---|
140 | //Get the DRS calibration
|
---|
141 | //-------------------------------------------
|
---|
142 |
|
---|
143 | FOpenCalibFile(drsfilename, drs_basemean, drs_gainmean, drs_triggeroffsetmean, drs_n);
|
---|
144 |
|
---|
145 | //-------------------------------------------
|
---|
146 | //Check the sizes of the data columns
|
---|
147 | //-------------------------------------------
|
---|
148 | if(drs_n!=data_n)
|
---|
149 | {
|
---|
150 | cout << "Data and DRS file incompatible (Px*ROI disagree)" << endl;
|
---|
151 | return 1;
|
---|
152 | }
|
---|
153 | // Book the histograms
|
---|
154 | BookHistos( data_roi );
|
---|
155 |
|
---|
156 | // Loop over events
|
---|
157 | cout << "--------------------- Data --------------------" << endl;
|
---|
158 |
|
---|
159 | float value;
|
---|
160 | TH1F * sp = new TH1F("spektrum", "test of Stepktrum", 256, -0.5, 63.5);
|
---|
161 |
|
---|
162 | for ( int ev = firstevent; ev < firstevent + nevents; ev++) {
|
---|
163 |
|
---|
164 | datafile->GetRow( ev );
|
---|
165 |
|
---|
166 | if (ev % 50 ==0){
|
---|
167 | cout << "Event number: " << data_num << endl;
|
---|
168 | }
|
---|
169 |
|
---|
170 | for ( int pix = 0; pix < 1440; pix++ ){
|
---|
171 | hStartCell->Fill( pix, data_offset[pix] );
|
---|
172 | }
|
---|
173 |
|
---|
174 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
---|
175 | value = getValue(sl, pixelnr);
|
---|
176 | //printf("value = %f\n", value);
|
---|
177 | Ameas[ sl ] = value;
|
---|
178 | h[tAmeas].SetBinContent(sl, value);
|
---|
179 |
|
---|
180 | }
|
---|
181 |
|
---|
182 | computeN1mean( data_roi );
|
---|
183 | removeSpikes( data_roi );
|
---|
184 |
|
---|
185 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
---|
186 | hPixelCellData.Fill(sl, Vcorr[ sl ]);
|
---|
187 | }
|
---|
188 |
|
---|
189 | // filter Vcorr with sliding average using FIR filter function
|
---|
190 | factfir(b_slide , a_slide, k_slide, Vcorr, Vslide);
|
---|
191 |
|
---|
192 | // filter Vslide with CFD using FIR filter function
|
---|
193 | factfir(b_cfd , a_cfd, k_cfd, Vslide, Vcfd);
|
---|
194 | // filter Vcfd with sliding average using FIR filter function
|
---|
195 | factfir(b_slide , a_slide, k_slide, Vcfd, Vcfd2);
|
---|
196 |
|
---|
197 | vector<DiscOut> *my = discriminator( Vslide, 3.5, 100 );
|
---|
198 | for (int p=0; p<my->size(); p++ ){
|
---|
199 | sp->Fill(my->at(p).maxVal);
|
---|
200 | }
|
---|
201 | delete my;
|
---|
202 |
|
---|
203 |
|
---|
204 | if ( spikeDebug ){
|
---|
205 | for ( unsigned int sl = 0; sl < data_roi; sl++){
|
---|
206 | h[tVslide].SetBinContent( sl, Vslide[sl] );
|
---|
207 | h[tVcfd].SetBinContent( sl, Vcfd[sl] );
|
---|
208 | h[tVcfd2].SetBinContent( sl, Vcfd2[sl] );
|
---|
209 | }
|
---|
210 | }
|
---|
211 | /*
|
---|
212 | vector<int> * zeros = zerosearch( Vcfd2, -1, 10, 20 );
|
---|
213 | if (zeros->size() == 0 ){
|
---|
214 | continue;
|
---|
215 | }
|
---|
216 | // check value of Vside at zero position
|
---|
217 | for ( int i=0; i<zeros->size(); i++){
|
---|
218 | cout << zeros->at(i) << ":\t" << Vslide[ zeros->at(i) ]<<endl;
|
---|
219 | // sp->Fill(Vslide[zeros->at(i)]);
|
---|
220 | }
|
---|
221 | */
|
---|
222 |
|
---|
223 | if ( spikeDebug ){
|
---|
224 |
|
---|
225 | CW->cd( tAmeas + 1);
|
---|
226 | gPad->SetGrid();
|
---|
227 | h[tAmeas].Draw();
|
---|
228 |
|
---|
229 | CW->cd( tN1mean + 1);
|
---|
230 | gPad->SetGrid();
|
---|
231 | h[tN1mean].Draw();
|
---|
232 |
|
---|
233 | CW->cd( tVcorr + 1);
|
---|
234 | gPad->SetGrid();
|
---|
235 | h[tVcorr].Draw();
|
---|
236 |
|
---|
237 | // CW->cd( tVtest + 1);
|
---|
238 | // gPad->SetGrid();
|
---|
239 | // h[tVtest].Draw();
|
---|
240 |
|
---|
241 | cFilter->cd( Ntypes - tVslide );
|
---|
242 | cFilter->cd(1);
|
---|
243 | gPad->SetGrid();
|
---|
244 | h[tVslide].Draw();
|
---|
245 |
|
---|
246 | cFilter->cd( Ntypes - tVcfd );
|
---|
247 | cFilter->cd(2);
|
---|
248 | gPad->SetGrid();
|
---|
249 | h[tVcfd].Draw();
|
---|
250 |
|
---|
251 | TLine zeroline(0, 0, 1024, 0);
|
---|
252 | zeroline.SetLineColor(kBlue);
|
---|
253 | zeroline.Draw();
|
---|
254 |
|
---|
255 | cFilter->cd( Ntypes - tVcfd2 );
|
---|
256 | cFilter->cd(3);
|
---|
257 | gPad->SetGrid();
|
---|
258 | h[tVcfd2].Draw();
|
---|
259 |
|
---|
260 | zeroline.Draw();
|
---|
261 |
|
---|
262 | CW->Update();
|
---|
263 | cFilter->Update();
|
---|
264 |
|
---|
265 | //Process gui events asynchronously during input
|
---|
266 | TTimer timer("gSystem->ProcessEvents();", 50, kFALSE);
|
---|
267 | timer.TurnOn();
|
---|
268 | TString input = Getline("Type 'q' to exit, <return> to go on: ");
|
---|
269 | timer.TurnOff();
|
---|
270 | if (input=="q\n") break;
|
---|
271 | }
|
---|
272 |
|
---|
273 |
|
---|
274 | }
|
---|
275 |
|
---|
276 | TCanvas * cSpektrum = new TCanvas();
|
---|
277 | cSpektrum->cd();
|
---|
278 | sp->Draw();
|
---|
279 | TCanvas * cStartCell = new TCanvas();
|
---|
280 | cStartCell->cd();
|
---|
281 | hStartCell->Draw();
|
---|
282 | hPixelCellData.Draw();
|
---|
283 |
|
---|
284 | delete cStartCell;
|
---|
285 |
|
---|
286 | return( 0 );
|
---|
287 | }
|
---|
288 |
|
---|
289 | void removeSpikes(int Samples){
|
---|
290 |
|
---|
291 | const float fract = 0.8;
|
---|
292 | float x, xp, xpp, x3p;
|
---|
293 |
|
---|
294 | // assume that there are no spikes
|
---|
295 | for ( int i = 0; i < Samples; i++) Vcorr[i] = Ameas[i];
|
---|
296 |
|
---|
297 | // find the spike and replace it by mean value of neighbors
|
---|
298 | for ( int i = 0; i < Samples; i++) {
|
---|
299 |
|
---|
300 | // printf("Vcorr[%d] = %f, Ameas[%d] = %f\n", i, Vcorr[ i ], i, Ameas[ i ] );
|
---|
301 |
|
---|
302 | x = Ameas[i] - N1mean[i];
|
---|
303 |
|
---|
304 | if ( x < -5. ){ // a spike candidate
|
---|
305 | // check consistency with a single channel spike
|
---|
306 | xp = Ameas[i+1] - N1mean[i+1];
|
---|
307 | xpp = Ameas[i+2] - N1mean[i+2];
|
---|
308 | x3p = Ameas[i+3] - N1mean[i+3];
|
---|
309 |
|
---|
310 | // printf("candidates x[%d] = %f; xp = %f; xpp = %f, x3p = %f\n", i, x, xp, xpp, x3p);
|
---|
311 |
|
---|
312 | if ( Ameas[i+2] - ( Ameas[i] + Ameas[i+3] )/2. > 10. ){
|
---|
313 | // printf("double spike candidate\n");
|
---|
314 | Vcorr[i+1] = ( Ameas[i] + Ameas[i+3] )/2.;
|
---|
315 | Vcorr[i+2] = ( Ameas[i] + Ameas[i+3] )/2.;
|
---|
316 | // printf("Vcorr[%d] = %f %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2], Vcorr[ i+3 ]);
|
---|
317 | // printf("Ameas[%d] = %f %f %f %f\n", i, Ameas[ i ], Ameas[ i+1 ], Ameas[ i+2 ], Ameas[i+3]);
|
---|
318 | i = i + 3;
|
---|
319 | }
|
---|
320 | else{
|
---|
321 |
|
---|
322 | if ( ( xp > -2.*x*fract ) && ( xpp < -10. ) ){
|
---|
323 | Vcorr[i+1] = N1mean[i+1];
|
---|
324 | // printf("Vcorr[%d] = %f %f %f\n", i, Vcorr[i], Vcorr[i+1], Vcorr[i+2]);
|
---|
325 | // N1mean[i+1] = (Ameas[i] - Ameas[i+2] / 2.);
|
---|
326 | N1mean[i+2] = (Ameas[i+1] - Ameas[i+3] / 2.);
|
---|
327 | i = i + 2;//do not care about the next sample it was the spike
|
---|
328 | }
|
---|
329 | // treatment for the end of the pipeline must be added !!!
|
---|
330 | }
|
---|
331 | }
|
---|
332 | else{
|
---|
333 | // do nothing
|
---|
334 | }
|
---|
335 | } // end of spike search and correction
|
---|
336 | for ( int i = 0; i < Samples; i++ ) h[ tVcorr ].SetBinContent( i, Vcorr[i] );
|
---|
337 | }
|
---|
338 |
|
---|
339 | void computeN1mean( int Samples ){
|
---|
340 |
|
---|
341 | // compute the mean of the left and right neighbors of a channel
|
---|
342 |
|
---|
343 | for( int i = 0; i < Samples; i++){
|
---|
344 | if (i == 0){ // use right sample es mean
|
---|
345 | N1mean[i] = Ameas[i+1];
|
---|
346 | }
|
---|
347 | else if ( i == Samples-1 ){ //use left sample as mean
|
---|
348 | N1mean[i] = Ameas[i-1];
|
---|
349 | }
|
---|
350 | else{
|
---|
351 | N1mean[i] = ( Ameas[i-1] + Ameas[i+1] ) / 2.;
|
---|
352 | }
|
---|
353 | h[tN1mean].SetBinContent(i, Ameas[i] - N1mean[i]);
|
---|
354 | }
|
---|
355 | } // end of computeN1mean computation
|
---|
356 |
|
---|
357 | float getValue( int slice, int pixel ){
|
---|
358 |
|
---|
359 | const float dconv = 2000/4096.0;
|
---|
360 |
|
---|
361 | float vraw, vcal;
|
---|
362 |
|
---|
363 | unsigned int pixel_pt;
|
---|
364 | unsigned int slice_pt;
|
---|
365 | unsigned int cal_pt;
|
---|
366 | unsigned int drs_cal_offset;
|
---|
367 |
|
---|
368 | // printf("pixel = %d, slice = %d\n", slice, pixel);
|
---|
369 |
|
---|
370 | pixel_pt = pixel * data_roi;
|
---|
371 | slice_pt = pixel_pt + slice;
|
---|
372 | drs_cal_offset = ( slice + data_offset[ pixel ] )%data_roi;
|
---|
373 | cal_pt = pixel_pt + drs_cal_offset;
|
---|
374 |
|
---|
375 | vraw = data[ slice_pt ] * dconv;
|
---|
376 | vcal = ( vraw - drs_basemean[ cal_pt ] - drs_triggeroffsetmean[ slice_pt ] ) / drs_gainmean[ cal_pt ]*1907.35;
|
---|
377 |
|
---|
378 | return( vcal );
|
---|
379 | }
|
---|
380 |
|
---|
381 | void BookHistos( int Samples ){
|
---|
382 | // booking and parameter settings for all histos
|
---|
383 |
|
---|
384 | h = new TH1F[ Ntypes ];
|
---|
385 |
|
---|
386 | for ( int type = 0; type < Ntypes; type++){
|
---|
387 |
|
---|
388 | h[ type ].SetBins(Samples, 0, Samples);
|
---|
389 | h[ type ].SetLineColor(1);
|
---|
390 | h[ type ].SetLineWidth(2);
|
---|
391 |
|
---|
392 | // set X axis paras
|
---|
393 | h[ type ].GetXaxis()->SetLabelSize(0.1);
|
---|
394 | h[ type ].GetXaxis()->SetTitleSize(0.1);
|
---|
395 | h[ type ].GetXaxis()->SetTitleOffset(1.2);
|
---|
396 | h[ type ].GetXaxis()->SetTitle(Form("Time slice (%.1f ns/slice)", 1./2.));
|
---|
397 |
|
---|
398 | // set Y axis paras
|
---|
399 | h[ type ].GetYaxis()->SetLabelSize(0.1);
|
---|
400 | h[ type ].GetYaxis()->SetTitleSize(0.1);
|
---|
401 | h[ type ].GetYaxis()->SetTitleOffset(0.3);
|
---|
402 | h[ type ].GetYaxis()->SetTitle("Amplitude (a.u.)");
|
---|
403 | }
|
---|
404 | CW = new TCanvas("CW","DRS Waveform",10,10,800,600);
|
---|
405 | CW->Divide(1, 3);
|
---|
406 | cFilter = new TCanvas("cFilter","filtered DRS Waveforms",10,10,800,600);
|
---|
407 | cFilter->Divide(1, 3);
|
---|
408 |
|
---|
409 | hStartCell = new TH2F("StartCell", "StartCell", 1440, 0., 1440., 1024, 0., 1024);
|
---|
410 |
|
---|
411 | }
|
---|
412 | int FOpenDataFile(fits &datafile){
|
---|
413 |
|
---|
414 | /* cout << "-------------------- Data Header -------------------" << endl;
|
---|
415 | datafile.PrintKeys();
|
---|
416 | cout << "------------------- Data Columns -------------------" << endl;
|
---|
417 | datafile.PrintColumns();
|
---|
418 | */
|
---|
419 |
|
---|
420 | //Get the size of the data column
|
---|
421 | data_roi = datafile.GetUInt("NROI"); // Value from header
|
---|
422 | data_px = datafile.GetUInt("NPIX");
|
---|
423 | data_n = datafile.GetN("Data"); //Size of column "Data" = #Pixel x ROI
|
---|
424 |
|
---|
425 | //Set the sizes of the data vectors
|
---|
426 | data.resize(data_n,0);
|
---|
427 | data_offset.resize(data_px,0);
|
---|
428 |
|
---|
429 | //Link the data to variables
|
---|
430 | datafile.SetRefAddress("EventNum", data_num);
|
---|
431 | datafile.SetVecAddress("Data", data);
|
---|
432 | datafile.SetVecAddress("StartCellData", data_offset);
|
---|
433 | datafile.GetRow(0);
|
---|
434 |
|
---|
435 | cout << "Opening data file successful..." << endl;
|
---|
436 |
|
---|
437 | return datafile.GetNumRows() ;
|
---|
438 | }
|
---|
439 |
|
---|