source: firmware/FSC/src/FSC.c@ 10109

Last change on this file since 10109 was 10109, checked in by lutz, 14 years ago
niculin & dom debugged quite some stuff
File size: 22.9 KB
Line 
1//-----------------------------------------------------------------------------
2#include "typedefs.h"
3#include "application.h"
4#include "spi_master.h"
5#include "ad7719_adc.h"
6#include "atmega_adc.h"
7#include "usart.h"
8#include "macros.h"
9#include "interpol.h"
10#include "w5100_spi_interface.h"
11#include <avr/interrupt.h>
12#include <avr/wdt.h>
13#include <stdlib.h>
14
15
16//-----------------------------------------------------------------------------
17// definition of some functions:
18// these function are implemented below the main()
19// here in FSC.c
20//
21// sooner or later, they will be moved into more apropriate files.
22U08 increase_adc (U08 channel);
23U08 increase_ad7719 (U08 channel);
24void Set_V_Muxer (U08 channel);
25void Set_T_Muxer(U08 channel);
26void talk(void);// never used up to now.
27void ad7719_output(U08 channel, U32 data);
28void adc_output(U08 channel, U08 data);
29void adc_output_all();
30void parse(); //doesn't do anything at the moment
31void check_if_measured_all() ;
32// end of function definition:
33//-----------------------------------------------------------------------------
34
35// MAIN WORKFLOW GLOBAL VARIABLES
36 bool verbose;
37 bool heartbeat_enable;
38
39// USART global variables
40 U08 usart_rx_buffer[USART_RX_BUFFER_SIZE];
41 U08 usart_tx_buffer[USART_TX_BUFFER_SIZE];
42 U08 usart_rx_buffer_index = 0;
43 U08 usart_tx_buffer_index = 0;
44 U08 usart_last_char; // last received char
45
46// USART FLAGS
47 bool usart_tx_buffer_overflow = false; // true if usart_tx_buffer was full.
48 bool usart_rx_ready = false; // EOL was received, parser needs to be called
49
50// TIMER global variable
51 volatile U32 local_ms = 0;
52
53// AD7719 global variables
54 #define TEMP_CHANNELS 64
55 #define CHANNEL_BITMAP 8
56 #define AD7719_READINGS_UNTIL_SETTLED 1 // bei3:480ms
57 U32 ad7719_values[TEMP_CHANNELS];
58 U08 ad7719_enables[CHANNEL_BITMAP];
59 U08 ad7719_channels_ready[CHANNEL_BITMAP];
60 U08 ad7719_readings_since_last_muxing = 0;
61 U08 ad7719_current_channel = 0;
62 U32 ad7719_current_reading = 0;
63 bool ad7719_measured_all = false;
64
65// ATMEGA ADC global variables
66 #define V_CHANNELS 40
67 #define I_CHANNELS 40
68 #define H_CHANNELS 4
69 #define V_BITMAP 5
70 #define I_BITMAP 5
71 #define H_BITMAP 1
72 #define ADC_READINGS_UNTIL_SETTLED 1
73 U32 adc_values[V_CHANNELS + I_CHANNELS + H_CHANNELS]; // stores measured voltage in steps of 16mV
74 U08 adc_enables[V_BITMAP + I_BITMAP + H_BITMAP];
75 U08 adc_channels_ready[V_BITMAP + I_BITMAP + H_BITMAP];
76 U08 adc_readings_since_last_muxing = 0;
77 U08 adc_current_channel = 0;
78 U08 adc_current_reading = 0;
79 bool adc_measured_all = false;
80
81//-----------------------------------------------------------------------------
82// M A I N --- M A I N --- M A I N --- M A I N --- M A I N
83//-----------------------------------------------------------------------------
84int main(void)
85{
86 app_init(); // Setup: Watchdog and I/Os
87 usart_init(); // Initialize serial interface
88 spi_init(); // Initialize SPI interface as master
89 ad7719_init(); // Initialize AD7719 ADC as SPI slave
90 atmega_adc_init();
91
92// TIMER2 is used as local clock:
93// configure timer 2
94 TCCR2 = (1<<WGM21); // CTC Modus
95 TCCR2 |= (1<<CS21) | (1<<CS20); // Prescaler 64 --> counts up every 8us
96 OCR2 = 125-1; // --> output compare interrupt occurs every 125 x 8us = 1ms
97 // Compare Interrupt erlauben
98 TIMSK |= (1<<OCIE2);
99
100 // Enable interrupts
101 sei();
102
103for ( U08 i=0; i<CHANNEL_BITMAP; ++i ) {
104 ad7719_enables[i]=0xFF;
105 ad7719_channels_ready[i]=0;
106 }
107for ( U08 i=0; i<V_BITMAP + I_BITMAP + H_BITMAP; ++i ) {
108 adc_enables[i]=0xFF;
109 adc_channels_ready[i]=0;
110}
111 static U08 welcome[]="\n\nwelcome to FACT FSC commandline interface v0.1\nready?";
112 usart_write_str(welcome);
113
114
115//MAIN LOOP
116while (1)
117{
118 if (heartbeat_enable) PORTB ^= (1<<PB3); // toggle Out2_spare --> heartbeat
119//----------------------------------------------------------------------------
120 //IF we need to send away one byte, and ready to send
121
122 if ( (usart_tx_buffer_index > 0) && (UCSRA & (1<<UDRE)) ) {
123 UDR = usart_tx_buffer[0];
124 // THis is shit
125 for (U08 i=0 ; i < USART_TX_BUFFER_SIZE; ++i) {
126 usart_tx_buffer[i] = usart_tx_buffer[i+1];
127 }
128 usart_tx_buffer_index--;
129 }
130//----------------------------------------------------------------------------
131
132 //IF we just received one byte, and there is enough space in the RX_buffer
133 if ( (UCSRA & (1<<RXC)) && (usart_rx_buffer_index < USART_RX_BUFFER_SIZE) ){
134 usart_last_char = UDR;
135 if (usart_last_char == '\n'){ // if EOL was received
136 usart_rx_ready = true;
137 }else {
138 usart_rx_buffer[usart_rx_buffer_index] = usart_last_char;
139 usart_rx_buffer_index++;
140 }
141 // here is still something strange .... better send an enter automatically
142 } else if (UCSRA & (1<<RXC)) { // if there is no scace in the buffer; read anyway.
143 usart_last_char = UDR;
144 usart_rx_buffer_index =0;
145 }
146//----------------------------------------------------------------------------
147
148 //IF USART DOR bit is set, PC is sending data to fast!!!
149 if ( UCSRA & (1<<DOR) ){
150 // flush TX_buffer and write warning message in
151 // maybe even switch off every measurement. ?
152 }
153//----------------------------------------------------------------------------
154
155 //IF TX_BUFFER was overrun.
156 if (usart_tx_buffer_overflow) {
157 // flash TX_buffer and write warning message in
158 // maybe even switch off every measurement. ?
159 //
160 // this should only happen, in verbose mode and with low baudrates.
161 }
162//----------------------------------------------------------------------------
163
164 //IF one command was received.
165 // -It is not allowed to send more than one command between two '\n'
166 if (usart_rx_ready){
167 parse();
168 usart_rx_buffer_index = 0;
169 usart_rx_ready = false;
170 }
171//----------------------------------------------------------------------------
172
173 //IF ATmega internal ADC did finish a conversion --every 200us
174 if ( (ADCSRA & (1<<ADIF)) && !adc_measured_all) {
175 adc_current_reading = ADCH;
176 if (adc_readings_since_last_muxing == ADC_READINGS_UNTIL_SETTLED) {
177 adc_values[adc_current_channel] = adc_current_reading;
178 adc_readings_since_last_muxing=0;
179 // note that this channel is ready, now and
180 adc_output(adc_current_channel, adc_current_reading);
181 // proceed to the next enabled channel.
182 adc_channels_ready[adc_current_channel/8] |= (1<<(adc_current_channel%8));
183 adc_current_channel = increase_adc (adc_current_channel);
184 Set_V_Muxer(adc_current_channel);
185 } else { // the ADC did not settle yet, we discard the reading
186 ++adc_readings_since_last_muxing;
187 // current reading is not used for anything else
188 }
189 }
190//----------------------------------------------------------------------------
191
192 //IF AD7719 ADC just finished a conversion -- every 60ms
193
194 if (AD7719_IS_READY()) {
195 ad7719_current_reading = read_adc(); // --takes at 4MHz SCLK speed about 6us
196 // AD7719 is only read out if settled. saves time.
197 if (ad7719_readings_since_last_muxing == AD7719_READINGS_UNTIL_SETTLED) {
198 ad7719_values[ad7719_current_channel] = ad7719_current_reading;
199 ad7719_readings_since_last_muxing=0;
200 // now prepare the data to be send away via USART.
201 //ad7719_output(ad7719_current_channel, ad7719_current_reading);
202 // note that this channel is ready, now and
203 // proceed to the next enabled channel.
204 ad7719_channels_ready[ad7719_current_channel/8] |= (1<<(ad7719_current_channel%8));
205 ad7719_current_channel = increase_ad7719 (ad7719_current_channel);
206 Set_T_Muxer(ad7719_current_channel);
207 } else { // the AD7719 did not settle yet, we discard the reading
208 ++ad7719_readings_since_last_muxing;
209
210 // current reading is not used for anything else
211 }
212 }
213//----------------------------------------------------------------------------
214 //IF one of the ADC measured all channels, we wanted to know.
215 check_if_measured_all();
216
217 if (ad7719_measured_all && adc_measured_all)
218 adc_output_all();
219
220//----------------------------------------------------------------------------
221/*
222 if (verbose == true)
223 // talk() was just defined so the
224 // code is not at this place ... look down.
225 talk();
226*/
227
228} // end of MAIN LOOP
229//-----------------------------------------------------------------------------
230// E N D E N D E N D E N D E N D E N D E N D
231//-----------------------------------------------------------------------------
232
233
234
235float resistance;
236
237U08 SA_mux_val = 0x00;
238U08 SB_mux_val = 0x00;
239
240//U08 counter = 0;
241U08 Res_or_Volt = 0x00;
242
243
244while (TRUE)
245 {
246
247
248 ++Res_or_Volt;
249 if (Res_or_Volt <= 64){
250
251
252 // if USART data arrives. i.e. data via USB
253 // the usart_rx_ready flag is set TRUE
254 // now process the incoming data which is stored in
255 // U08 usart_rx_buffer[USART_RX_BUFFER_SIZE]
256 // and tell the USART interface, it may receive new data
257 // by setting the usart_rx_ready flag FALSE again
258 ++SA_mux_val;
259 if (Res_or_Volt == 1) SB_mux_val = 16;
260 else if (SA_mux_val == 64) SA_mux_val = 32;
261 else if (SA_mux_val == 16) SA_mux_val = 48;
262 else if (SA_mux_val == 32) SA_mux_val = 0;
263 PORTA = (SA_mux_val & 0x3F);
264
265// usart_write_str((pU08)"SA:");
266 usart_write_U08(SA_mux_val,2);
267 usart_write_str((pU08)" Sensor:");
268 usart_write_U08((SA_mux_val % 8)+1,2);
269 usart_write_str((pU08)" an Temperatur_");
270 switch (SA_mux_val / 8)
271 {
272 case 0: usart_write_str((pU08)"C");
273 break;
274 case 1: usart_write_str((pU08)"D");
275 break;
276 case 2: usart_write_str((pU08)"A");
277 break;
278 case 3: usart_write_str((pU08)"B");
279 break;
280 case 4: usart_write_str((pU08)"G");
281 break;
282 case 5: usart_write_str((pU08)"H");
283 break;
284 case 6: usart_write_str((pU08)"E");
285 break;
286 case 7: usart_write_str((pU08)"F");
287 break;
288 default: usart_write_str((pU08)"alarm!");
289 break;
290 }
291// usart_write_str((pU08)"\n");
292 usart_write_str((pU08)" ");
293
294
295 startconv(0);
296
297
298 while (!AD7719_IS_READY())
299 {
300 // just wait until ADC is redy -- really bad code here!
301 }
302
303 resistance = getresistance();
304 //Start a new A/D Conversion
305 //temp = readandsendtemp();
306 //adcword = getadc();
307
308 //temperature = gettemp();
309 usart_write_str((pU08)"R:");
310 usart_write_float(resistance,3,4);
311 usart_write_str((pU08)"kOhm ");
312
313 //_delay_ms(200);
314
315 startconv(0);
316
317 while (!AD7719_IS_READY())
318 {
319 // just wait until ADC is redy -- really bad code here!
320 }
321 //Start a new A/D Conversion
322 //temp = readandsendtemp();
323 //adcword = getadc();
324 resistance = getresistance();
325 //temperature = gettemp();
326 usart_write_str((pU08)"R:");
327 usart_write_float(resistance,3,4);
328 usart_write_str((pU08)"kOhm ");
329
330//usart_write_str((pU08)"\n");
331switch (SA_mux_val)
332 {
333 case 7: usart_write_str((pU08)"\n\n");
334 break;
335 case 15: usart_write_str((pU08)"\n\n");
336 break;
337 case 23: usart_write_str((pU08)"\n\n");
338 break;
339 case 31: usart_write_str((pU08)"\n\n");
340 break;
341 case 39: usart_write_str((pU08)"\n\n");
342 break;
343 case 47: usart_write_str((pU08)"\n\n");
344 break;
345 case 55: usart_write_str((pU08)"\n\n");
346 break;
347 case 63: usart_write_str((pU08)"\n\n");
348 break;
349 default: usart_write_str((pU08)"\n");
350 break;
351 }
352SB_mux_val = 0;
353}
354else if (Res_or_Volt == 148) Res_or_Volt = 0;
355else {
356
357
358 ++SB_mux_val;
359 if (SB_mux_val == 84) SB_mux_val = 0;
360 else if (SB_mux_val == 74) SB_mux_val = 82;
361 else if (SB_mux_val == 82) SB_mux_val = 72;
362 else if (SB_mux_val == 72) SB_mux_val = 74;
363 else if (SB_mux_val == 48) SB_mux_val = 64;
364 else if (SB_mux_val == 64) SB_mux_val = 32;
365 else if (SB_mux_val == 32) SB_mux_val = 48;
366 PORTC = (SB_mux_val & 0x7F);
367
368
369
370
371usart_write_str((pU08)"8bit-ADC: ");
372
373if (SB_mux_val < 64)
374{
375 switch (SB_mux_val / 16)
376 {
377 case 0: usart_write_str((pU08)"voltage_A: ");
378 break;
379 case 1: usart_write_str((pU08)"voltage_B: ");
380 break;
381 case 2: usart_write_str((pU08)"voltage_D: ");
382 break;
383 case 3: usart_write_str((pU08)"voltage_C: ");
384 break;
385 }
386
387 if (SB_mux_val % 2 == 0) {
388 usart_write_str((pU08)"U");
389 usart_write_U08( (SB_mux_val%16)/2 , 1 );
390 } else {
391 usart_write_str((pU08)"I");
392 usart_write_U08( ((SB_mux_val%16)-1)/2 , 1 );
393 }
394
395
396} else {
397
398
399 if (SB_mux_val < 72) {
400 usart_write_str((pU08)"voltage_E: ");
401 if (SB_mux_val % 2 == 0) {
402 usart_write_str((pU08)"U");
403 usart_write_U08( (SB_mux_val%8)/2 , 1 );
404 } else {
405 usart_write_str((pU08)"I");
406 usart_write_U08( ((SB_mux_val%8)-1)/2 , 1 );
407 }
408
409 }
410else if (SB_mux_val == 72) usart_write_str((pU08)"humidity_A: H0");
411else if (SB_mux_val == 73) usart_write_str((pU08)"humidity_A: H1");
412
413else if (SB_mux_val < 82) {
414 usart_write_str((pU08)"voltage_F: ");
415 if (SB_mux_val % 2 == 0) {
416 usart_write_str((pU08)"U");
417 usart_write_U08( ((SB_mux_val-2)%8)/2 , 1 );
418 } else {
419 usart_write_str((pU08)"I");
420 usart_write_U08( (((SB_mux_val-2)%8)-1)/2 , 1 );
421 }
422
423 }
424else if (SB_mux_val == 82) usart_write_str((pU08)"humidity_B: H0");
425else if (SB_mux_val == 83) usart_write_str((pU08)"humidity_B: H1");
426}
427
428for (U08 counter = 0; counter < 1; ++counter) {
429 while (ADCSRA & (1<<ADSC) ); // wait until internal ADC is ready
430 float voltage;
431 voltage = ( (float)ADCH ) / 256 * 4.096;
432 usart_write_str((pU08)" ");
433 usart_write_float(voltage,3,4);
434
435
436}
437//usart_write_str((pU08)"\n");
438
439switch (SB_mux_val)
440 {
441 case 15: usart_write_str((pU08)"\n\n");
442 break;
443 case 31: usart_write_str((pU08)"\n\n");
444 break;
445 case 47: usart_write_str((pU08)"\n\n");
446 break;
447 case 63: usart_write_str((pU08)"\n\n");
448 break;
449 case 71: usart_write_str((pU08)"\n\n");
450 break;
451 case 73: usart_write_str((pU08)"\n\n");
452 break;
453 case 81: usart_write_str((pU08)"\n\n");
454 break;
455 case 83: usart_write_str((pU08)"\n\n");
456 break;
457 default: usart_write_str((pU08)"\n");
458 break;
459 }
460
461SA_mux_val = 15;
462}
463 /*
464 if ( usart_rx_ready == TRUE )
465 {
466 //understand what it means and react
467
468 switch (usart_rx_buffer[0])
469 {
470
471 case 'h':
472 {
473 // toggle the heartbeat mode on or off.
474 heartbeat_enable = !heartbeat_enable;
475 break;
476 }
477 case 'a':
478 {
479 // conduct adc - AD7719 SPI interface test
480
481 break;
482 }
483 case 'e':
484 {
485 // conduct ethernet module SPI interface test
486 strtol((char*) usart_rx_buffer+1, NULL, 0);
487 break;
488 }
489
490 default:
491 {
492 usart_write_str((pU08)"? you wrote: ");
493 usart_write_str((pU08)usart_rx_buffer);
494 usart_write_str((pU08)"\n");
495 break;
496 }
497 }
498
499 heartbeat_enable = !heartbeat_enable;
500 usart_rx_ready = FALSE;
501 }
502*/
503// das ist ein paar schritte zu früh.
504// erstmal müssen die interfaces getestet werden.
505/*
506
507 for (U08 i = 0; i<16; i++)
508 {
509
510 if((~PIND) & 0x08) // PD4 is #ADC_RDY input. Inverted logic! if PD4=0 this evaluates to true
511 {
512 PORTA = (PORTA & 0xF0) | ((i) & 0x0F); // switch muxer
513 startconv(); //Start a new A/D Conversion
514 //temp = readandsendtemp();
515 //adcword = getadc();
516 //resistance = getresistance();
517 temperature = gettemp();
518 usart_write_float(temperature,2,4);
519 usart_write_str((pU08)"\t");
520
521 } // end of if adc ready
522 else
523 {
524 i--;
525 }
526 } // end of for loop over 16 channels
527 usart_write_crlf();
528
529*/
530
531 } // end of infinite while loop
532} // end of main()
533
534
535ISR (TIMER2_COMP_vect)
536{
537 ++local_ms;
538}
539
540
541U08 increase_adc (U08 channel){
542bool valid_ch_found = false;
543 while (!valid_ch_found){
544
545 // just increase 'channel' or turnover to zero.
546 ++channel;
547 if (channel == V_CHANNELS + I_CHANNELS + H_CHANNELS)
548 channel = 0;
549
550 // check if this channel is enabled in the bitmap
551 if (adc_enables[channel/8] & (1<<channel%8))
552 valid_ch_found = true;
553 } // end of while loop
554 return channel;
555} // end if increase_adc;
556
557U08 increase_ad7719 (U08 channel){
558bool valid_ch_found = false;
559 while (!valid_ch_found){
560
561 // just increase 'channel' or turnover to zero.
562 ++channel;
563 if (channel == TEMP_CHANNELS)
564 channel = 0;
565
566 // check if this channel is enabled in the bitmap
567 if (ad7719_enables[channel/8] & (1<<channel%8))
568 valid_ch_found = true;
569 } // end of while loop
570 return channel;
571} // end if increase_adc;
572
573
574// Sets voltage Muxer to current channel
575// this is a Muxing, and therefor the adc might need some time to settle.
576// Since there are:
577// - 40 voltage monitor channels
578// - 40 current monitor channels
579// - 4 humidity monitor channels
580// the muxer is set as follows.
581// channel 00..39 --> looking at the voltage channels
582// channel 40..79 --> looking at the current channels
583// channel 80..83 --> looking at the humidities
584void Set_V_Muxer (U08 channel){
585U08 SB = 0;
586 // voltages
587 if (channel < 40) {
588 if (channel < 36)
589 SB = channel*2;
590 else
591 SB = (channel+1)*2;
592 }
593 // currents
594 else if (channel < 80) {
595 channel -= 40;
596 if (channel < 36)
597 SB = channel*2+1;
598 else
599 SB = (channel+1)*2+1;
600 }
601 // humidities
602 else if (channel < 84) {
603 channel -= 80;
604 switch (channel) {
605 case 0:
606 SB = 0x48; //0100.1000
607 break;
608 case 1:
609 SB = 0x49; //0100.1001
610 break;
611 case 2:
612 SB = 0x58; //0101.0010
613 break;
614 case 3:
615 SB = 0x58; //0101.0011
616 break;
617 } // end of switch-case
618 } // end of if (channel < some_number)
619
620 PORTC = (PORTC & 0x80) | (0x7F & SB); // Here the muxer is switched.
621}
622
623void Set_T_Muxer(U08 channel) {
624U08 SA = 0x00;
625
626 switch (channel/16) {
627 case 0:
628 SA |= 1<<4; // 0001.0000
629 break;
630 case 1:
631 break; // 0000.0000
632 case 2:
633 SA |= (1<<4)|(1<<5); // 0011.0000
634 break;
635 case 3:
636 SA |= 1<<5; // 0010.0000
637 break;
638 }
639
640 SA = SA | (channel%16);
641
642 PORTA = (PORTA & 0xC0) | (0x3F & SA); // Here the muxer is switched.
643}
644
645void talk(void){
646
647/*
648// makes no sense to declare the 'new_measurement' vars here
649// but maybe the whole function will be deleted, anyway ...
650// I'm thinking about it.
651bool ad7719_new_measurement;
652bool atmega_adc_new_measurement;
653 if (verbose == true) {
654 // somebody wants to read every new measured value, even if it is trash!
655 // do not actually send away data !
656 // just prepare the data to be send away.
657 if ( ad7719_new_measurement == true ) {
658 add_str_to_output_stream("ad7719: reading:");
659 add_dec_to_output_stream(reading_since_last_muxer_switch,1);
660 add_str_to_output_stream(" temperature channel:");
661 add_dec_to_output_stream(current_temperature_channel,2);
662 add_str_to_output_stream(" = ");
663 add_float_to_output_stream(current_ad7719_value,4,3);
664 add_str_to_output_stream("\n");
665 }
666 if (atmega_adc_new_measurement == true) {
667 add_str_to_output_stream("atmega_adc: reading:");
668 add_dec_to_output_stream(reading_since_last_muxer_switch,1);
669 add_str_to_output_stream(" voltage channel:");
670 add_dec_to_output_stream(current_voltage_channel,2);
671 add_str_to_output_stream(" = ");
672 add_float_to_output_stream(current_atmega_adc_value,4,3);
673 add_str_to_output_stream("\n");
674 }
675 } // end of: if verbose
676*/
677} // end of talk()
678
679// this function generates some output.
680void ad7719_output(U08 channel, U32 data) {
681 usart_write_str((pU08)"R:"); //R for resistance
682 usart_write_char('A'+channel/8); // Letters A,B,C,D,E,F,G,H
683 usart_write_char(' ');
684 usart_write_U08(channel%8+1,1); // Numbers 1...8
685 usart_write_char(':');
686 usart_write_U32_hex(data); //data
687 usart_write_char('\n');
688}
689
690void adc_output(U08 channel, U08 data) {
691
692 if (channel < 40)
693 usart_write_str((pU08)"V:"); //V for Vendetta
694 else if (channel < 80)
695 usart_write_str((pU08)"I:"); //I for Irregular verbs
696 else if (channel < 84)
697 usart_write_str((pU08)"H:"); //H for Huurrray!!!
698
699 switch (channel/16) {
700 case 0:
701 usart_write_char('A'); //V for Vendetta
702 case 1:
703 usart_write_char('B'); //V for Vendetta
704 case 2:
705 usart_write_char('D'); //V for Vendetta
706 case 3:
707 usart_write_char('C'); //V for Vendetta
708 case 4:
709 usart_write_char('EF'); //V for Vendetta
710 }
711 usart_write_char(' ');
712 usart_write_U08((channel/2)%8+1,1); // Numbers 1...8
713 usart_write_char(':');
714 usart_write_U16((U16)data*16,5); //data
715 usart_write_char('\n');
716
717
718}
719
720
721void adc_output_all() {
722 // output all values, which are enabled
723 for (U08 i=0 ; i<40; ++i){
724 if (i==0) usart_write_str((pU08)"voltages:(in units of 16mV)\n");
725 if (i==40) usart_write_str((pU08)"currents:\n");
726 if (i==80) usart_write_str((pU08)"humidities:\n");
727 if (adc_enables[i/8] & i%8){
728 usart_write_U08(adc_values[i],3);
729 usart_write_char('\t');
730 }
731 if (i%8==7) usart_write_char('\n');
732 if (i==83) usart_write_char('\n');
733 }
734}
735
736
737// this method parses the data,
738// which came in via USART
739// later it might as well parse the data from ethernet.
740void parse() {
741U08 command = usart_rx_buffer[0];
742// look at first byte
743// I hope, I can manage to use one byte commands
744 usart_rx_buffer[USART_RX_BUFFER_SIZE-1] = 0;
745 usart_write_str((pU08)"got:");
746 usart_write_str(usart_rx_buffer);
747
748
749
750 switch (command) {
751 case 'E': // AD7719 enable bitmaps may be set
752 for ( U08 i=0; i<CHANNEL_BITMAP; ++i ) {
753 ad7719_enables[i]=usart_rx_buffer[i+1];
754 ad7719_channels_ready[i]=0;
755 }
756 break;
757 case 'e': // ATmega internal ADC enable bitmaps may be set
758 for ( U08 i=0; i<V_BITMAP + I_BITMAP + H_BITMAP; ++i ) {
759 adc_enables[i]=usart_rx_buffer[i+1];
760 adc_channels_ready[i]=0;
761 }
762 break;
763 case 'h':
764 usart_write_str((pU08)"\nheartbeat ");
765 heartbeat_enable = true;
766 if (usart_rx_buffer[1] == '0'){
767 heartbeat_enable = false;
768 usart_write_str((pU08)"off\n");
769 } else {
770 usart_write_str((pU08)"on\n");
771 }
772 break;
773 case 'G': // GET the Temperature channels, which are enabled
774 for ( U08 i=0; i<CHANNEL_BITMAP; ++i ) {
775 ad7719_channels_ready[i]=0;
776 }
777 break;
778 case 'g': // GET the voltage/current/humidity channels, which are enabled
779 for ( U08 i=0; i<V_BITMAP + I_BITMAP + H_BITMAP; ++i ) {
780 adc_channels_ready[i]=0;
781 }
782 break;
783 case 's':
784 usart_write_char('\n');
785 for (U08 i=0; i< CHANNEL_BITMAP;++i) {
786 usart_write_U08_bin(ad7719_enables[i]);
787 usart_write_char('\t');
788 }
789 usart_write_char('\n');
790 for (U08 i=0; i< CHANNEL_BITMAP;++i){
791 usart_write_U08_bin(ad7719_channels_ready[i]);
792 usart_write_char('\t');
793 }
794 usart_write_char('\n');
795 usart_write_U32_hex(local_ms);
796 break;
797 }
798 usart_write_str((pU08)"\nready?");
799 for (U08 i=0; i<USART_RX_BUFFER_SIZE; ++i)
800 usart_rx_buffer[i] = 0;
801}
802
803void check_if_measured_all() {
804 adc_measured_all = true;
805 for ( U08 i=0; i<V_BITMAP + I_BITMAP + H_BITMAP; ++i ) {
806 if ((adc_enables[i] ^ adc_channels_ready[i]) != 0x00) {
807 adc_measured_all = false;
808 break;
809 }
810 }
811 ad7719_measured_all = true;
812 for ( U08 i=0; i<CHANNEL_BITMAP; ++i ) {
813 if ((ad7719_enables[i] ^ ad7719_channels_ready[i]) != 0x00) {
814 ad7719_measured_all = false;
815 break;
816 }
817 }
818
819
820}
Note: See TracBrowser for help on using the repository browser.