source: firmware/FTM/doc/v4.0/FTM_firmware_specs_v4-0.tex@ 18066

Last change on this file since 18066 was 10440, checked in by weitzel, 14 years ago
new version of FTM docu
File size: 45.9 KB
Line 
1\documentclass[a4paper,11pt]{report}
2
3\usepackage{float}
4\usepackage{graphicx}
5\usepackage{url}
6\usepackage[T1]{fontenc}
7\usepackage{amsmath}
8\usepackage{longtable}
9\usepackage{parskip}
10\usepackage{pifont}
11\usepackage{array}
12
13\setlength{\oddsidemargin}{0cm}
14\setlength{\evensidemargin}{0cm}
15\setlength{\topmargin}{0cm}
16
17\textwidth 6.2in
18\textheight 9in
19\columnsep 0.25in
20
21\pagestyle{plain}
22\setcounter{tocdepth}{1}
23
24\title{\vspace*{-7cm} \Huge \bf FTM Firmware Specifications}
25\author{\Large Patrick Vogler\footnote{Contact for questions and suggestions concerning this
26 document: {\tt patrick.vogler@phys.ethz.ch}}, Quirin Weitzel}
27\date{\vspace*{0.5cm} \Large v4.0~~~-~~~April 2011}
28
29\begin{document}
30
31\maketitle
32
33\newpage
34
35\tableofcontents
36
37%---------------------------------------------------------------------------------
38
39\chapter{Introduction}
40\label{cha:Introduction}
41
42The FTM (FACT Trigger Master) board collects the trigger primitives from all
4340 FTU boards (FACT Trigger Unit) and generates the trigger signal for the
44FACT camera. The trigger logic is a 'n-out-of-40' majority coincidence of all
45trigger primitives. Beside the trigger, the FTM board also generates a
46trigger-ID (see chapter \ref{cha:Trigger-ID}). It is controlled from outside
47via ethernet. Two auxiliary RS-485 interfaces are also available.
48
49In addition to the trigger, the FTM board also generates other fast control
50signals: Time-Marker (TIM), DRS \cite{DRS4} reference clock (CLD) and
51reset. These four fast control signals are distributed to the FAD (FACT Analog
52to Digital) boards via two FFC (FACT Fast Control) boards. The FTM board also
53provides via the TIM line the signal for the DRS timing calibration. In order
54to generate the CLD DRS reference clock, as well as the time-marker signal for
55DRS timing calibration, the FTM board uses a clock conditioner
56\cite{LMK03000}.
57
58The FTM board has two time counters, the 'timestamp counter' and the 'on-time
59counter'. While the 'timestamp counter' runs continuously, the 'on-time
60counter' only counts when the camera trigger is enabled.
61
62The FTM board further serves as slow control master for the 40 FTU boards. The
63slow control of the FTU boards and the distribution of the trigger-ID to the
64FAD boards are performed via dedicated RS-485 buses. Because the FAD as well
65as the FTU boards are arranged in crates of 10 boards each, the FTM board has
66four connectors, one for each crate. Running over these connectors there are
67two RS-485 buses (one for FTU slow control and one for the trigger-ID) besides
68the busy signal from the FAD boards and the crate reset.
69
70In addition, the FTM board controls the two FLPs (FACT Light Pulser) via four
71LVDS signals each. Light pulser~1 is located in the mirror dish, light
72pulser~2 inside the camera shutter. There are also digital auxiliary in- and
73outputs according to the NIM (Nuclear Instrumentation Module) standard, for
74example for external triggers and veto, and to have the signals accessible.
75
76The main component of the FTM board is a FPGA (Xilinx Spartan
77XC3SD3400A-4FGG676C), fulfilling the main functions within the board. The
78purpose of this document is to provide specifications needed for the
79development of the firmware of this FPGA and the software (called 'FTMcontrol'
80in the following) controlling the FTM board. For further information about the
81FTM board hardware please refer to \cite{FTM-Schematics}.
82
83\chapter{Trigger-ID}
84\label{cha:Trigger-ID}
85
86For each processed trigger the FTM board generates a unique trigger-ID to be
87broadcasted to all FAD boards and added to the event data. This trigger-ID
88consists of a 32 bit trigger number, a two byte trigger type indicator and a
89checksum. The transmission protocol for the trigger-ID broadcast is shown in
90table \ref{tab:Trigger-ID broadcast}.
91
92\begin{table}[htbp]
93\centering
94\begin{tabular}{|l|l|}\hline
95byte no & content\\\hline\hline
960 & Trigger-No first byte (least significant byte) \\\hline
971 & Trigger-No second byte\\\hline
982 & Trigger-No third byte\\\hline
993 & Trigger-No forth byte (most significant byte)\\\hline
1004 & Trigger-Type 1\\\hline
1015 & Trigger-Type 2\\\hline
1026 & CRC-8-CCITT (checksum)\\\hline
103\end{tabular}
104\caption{The transmission protocol to broadcast the trigger-ID to the FAD boards}
105\label{tab:Trigger-ID broadcast}
106\end{table}
107
108A Cyclic Redundancy Check (CRC) over byte 0 - 5 is used to evaluate the
109integrity of the trigger-ID. An 8-CCITT CRC has been chosen which is based on
110the polynomial $x^8 + x^2 + x + 1$ (00000111, omitting the most significant
111bit). The resulting 1-byte checksum comprises the last byte of the trigger-ID.
112The transmission of the trigger-ID to the FAD boards is done by means of
113dedicated RS-485 buses (one per crate).
114
115In the first byte of the trigger type indicator (see table
116\ref{tab:Trigger-Type 1}) n0 - n5 indicate the number of trigger primitives
117required for a trigger, thus the 'n' of the 'n-out-of-40' majority
118coincidence. The two flags 'external trigger 1' and 'external trigger 2',
119when set, indicate a trigger from the corresponding NIM inputs. See also
120section \ref{sec:Static-data-block} and table \ref{tab:FTM-majority} for
121further information.
122
123\begin{table}[htbp]
124\centering
125%\begin{small}
126\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
127 Bit7 & Bit6 & Bit5 & Bit4 & Bit3 & Bit2 & Bit1 & Bit0\\\hline\hline
128 n5 & n4 & n3 & n2 & n1 & n0 & external trigger 2 & external trigger 1\\\hline
129\end{tabular}
130%\end{small}
131\caption{Trigger-Type 1}
132\label{tab:Trigger-Type 1}
133\end{table}
134
135\begin{table}[htbp]
136\centering
137\begin{small}
138\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
139Bit7 & Bit6 & Bit5 & Bit4 & Bit3 & Bit2 & Bit1 & Bit0\\\hline\hline
140TIM source & LP\_set\_3 & LP\_set\_2 & LP\_set\_1 & LP\_set\_0 & pedestal & LP\_2 & LP\_1\\\hline
141\end{tabular}
142\end{small}
143\caption{Trigger-Type 2}
144\label{tab:Trigger-Type 2}
145\end{table}
146
147The 'TIM source' bit in 'Trigger-Type 2' (see table \ref{tab:Trigger-Type 2})
148indicates the source of the timemarker signal: a '0' indicates the timemarker
149being produced in the FPGA while a '1' indicates the timemarker coming from
150the clock conditioner. The flags 'LP\_1' and 'LP\_2' are set when the
151corresponding lightpulser has flashed while the 'pedestal' flag is set in case
152of a pedestal (random) trigger. An event having none of these flags set
153indicates a physics event. The bits 'LP\_set\_0' to 'LP\_set\_3' are used to
154code information about the light pulser settings. They only have a meaning in
155case of calibration events.
156
157\chapter{FTM Commands}
158\label{cha:FTM-Commands}
159
160The communication between the FTM board and the FTMcontrol software, including
161the corresponding commands, protocols and data, is based on 16-bit words and
162big-endian. This is to facilitate the data-transmission over the Wiznet W5300
163ethernet interface \cite{W5300}.
164
165The basic structure of all commands is the same and given in table
166\ref{tab:FTM-command-structure}. After a start delimiter, the second word
167identifies the command. Next there is a parameter further refining the
168command, e.g. what to read. The fourth and fifth words are spares and should
169contain zeros. Starting from the sixth word, an optional data block of
170variable size is following. This data block differs in length and content
171depending on command and parameter. In case of 'read' instructions, the
172corresponding data block is sent back.
173
174%The FTM board must answer every command by sending back the appropriate data
175%block or by simply sending back the instruction where there is no datablock to
176%be sent back. All 'read' commands to the FTM board do not contain any data
177%blocks, but the FTM boards response does. In case of 'read' and 'write'
178%instructions, the datablock is to be sent back. When 'start run' or 'stop run'
179%commands are used, the FTM board 'mirrors' them, i.e. sends them back for
180%confirmation.
181
182\begin{table}[p]
183\centering
184\begin{tabular}{|l|l|}\hline
185 word no & content\\\hline\hline
186 0 & start delimiter (e.g. '@') \\\hline
187 1 & command ID \\\hline
188 2 & command parameter \\\hline
189 3 & spare: containing 0x0000\\\hline
190 4 & spare: containing 0x0000 \\\hline
191 5 & data block (optional and of variable size)\\\hline
192 ... & ...\\\hline
193 X & data block\\\hline
194\end{tabular}
195\caption{FTM command structure}
196\label{tab:FTM-command-structure}
197\end{table}
198
199So far seven different commands are foreseen: 'read', 'write', 'start run',
200'stop run', 'ping FTUs', 'crate reset' and 'autosend on/off' (see table
201\ref{tab:FTM-command-ID}). The command parameters of the 'read' and write
202commands are shown in table~\ref{tab:FTM-read-command-param} and
203table~\ref{tab:FTM-write-command-param}, respectively. With the 'autosend
204on/off' command it is possible to switch off the automatic sending of trigger
205rates and error messages (see table~\ref{tab:FTM-as-command-param}).
206
207\begin{table}[p]
208\centering
209\begin{tabular}{|r|r|}\hline
210 command-ID: bits & \\\cline{1-1}
211 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command\\\hline\hline
212 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & read \\\hline
213 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & write \\\hline
214 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & start run / take X events\\\hline
215 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & stop run \\\hline
216 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 & ping all FTUs \\\hline
217 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & crate reset \\\hline
218 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & autosend on/off \\\hline
219\end{tabular}
220\caption{FTM command ID listing}
221\label{tab:FTM-command-ID}
222\end{table}
223
224\begin{table}[p]
225\centering
226\begin{tabular}{|r|r|r|}\hline
227 command parameter: bits & & \\\cline{1-1}
228 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
229 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & read complete static data block & no\\\hline
230 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & read complete dynamic data block & no\\\hline
231 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 &
232 read single address of static data block & address\\\hline
233 %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & read trigger list & no\\\hline
234\end{tabular}
235\caption{Command parameters for the 'read' command; only for the static data
236 block single addresses can be read.}
237\label{tab:FTM-read-command-param}
238\end{table}
239
240\begin{table}[p]
241\centering
242\begin{tabular}{|r|r|r|}\hline
243 command parameter: bits & & \\\cline{1-1}
244 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
245 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & write complete static data block & all configuration data\\\hline
246 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 &
247 write single address of static data block & address + data\\\hline
248\end{tabular}
249\caption{Command parameters for the 'write' command; only the static data
250 block can be written, therefore parameter value 0x2 is not used.}
251\label{tab:FTM-write-command-param}
252\end{table}
253
254\begin{table}[p]
255\centering
256\begin{tabular}{|r|r|r|}\hline
257 command parameter: bits & & \\\cline{1-1}
258 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
259 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & reports disabled & no\\\hline
260 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & reports enabled & no\\\hline
261\end{tabular}
262\caption{Command parameters for the 'autosend on/off' command}
263\label{tab:FTM-as-command-param}
264\end{table}
265
266%\begin{table}[htbp]
267%\centering
268%\begin{tabular}{|r|r|r|}\hline
269% command parameter: bits & & \\\cline{1-1}
270% 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
271% 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline0 \vline 0 \vline0 \vline1 & write static data & static data block\\\hline
272%\end{tabular}
273%\caption{Command parameters for the 'write' command}
274%\label{tab:FTM-write-command-param}
275%\end{table}
276
277In table \ref{tab:FTM-start-command-param} the parameters to start a run are
278listed. The type of the run is fully described in the FTM configuration
279(static data block, see section~\ref{sec:Static-data-block}), which always has
280to be sent by the FTMcontrol before starting a run. Therefore the only
281option is to start an "endless" run or to take X events instead. In the latter
282case X is defined by a two words (32 bit) long unsigned integer, making up the
283command data block. The 'start run' command enables the transmission of
284trigger signals (physics, calibration or pedestal) to the FAD boards and
285resets the trigger and time counters. There is no parameter for stopping a
286run. If a number of events has been specified ('take X events'), the run will
287terminate if either the 'stop run' command is received or the requested number
288of events is reached. In any case the trigger and time counters are reset,
289too.
290
291\begin{table}[p]
292\centering
293\begin{tabular}{|r|r|r|}\hline
294 command parameter: bits & & \\\cline{1-1}
295 15 ... 8 \vline7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
296 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & start run & no \\\hline
297 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & take X events & number of events X \\\hline
298 %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & start taking pedestals & no \\\hline
299 %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 1 & take X pedestals events & number of events X \\\hline
300 %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & start calibration run & no \\\hline
301 %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 1 & take X calibration events & number of events X \\\hline
302\end{tabular}
303\caption{Command parameters for the 'start run' command: "start run" means an
304 "endless" run, i.e. no pre-defined number of events; if a number of events X
305 is specified, this is done with a 32-bit unsigned long integer (big endian).}
306\label{tab:FTM-start-command-param}
307\end{table}
308
309%\begin{table}[htbp]
310%\centering
311%\begin{tabular}{|r|r|r|}\hline
312% command parameter: bits & & \\\cline{1-1}
313% 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
314% 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & stop run & no\\\hline
315%\end{tabular}
316%\caption{Command parameter for the 'stop run' command}
317%\label{tab:FTM-stop-command-param}
318%\end{table}
319
320In case of a 'ping FTUs' command the FTM will address the FTUs one by one and
321readout their DNA. The results are collected in the FTU list (see section
322\ref{sec:FTU-List}), which is sent back to the FTMcontrol. There are no
323parameters for this command. With the 'crate reset' command the boards of a
324particular crate can be rebooted, where the command parameter defines the
325crate number (see table \ref{tab:FTM-reset-command-param}). Only one crate
326reset at a time is possible, i.e. the FTM firmware does not allow to reset
327multiple crates in one command.
328
329\begin{table}[p]
330\centering
331\begin{tabular}{|r|r|r|}\hline
332 command parameter: bits & & \\\cline{1-1}
333 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
334 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & reset crate 0 & no\\\hline
335 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & reset crate 1 & no\\\hline
336 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & reset crate 2 & no\\\hline
337 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & reset crate 3 & no\\\hline
338\end{tabular}
339\caption{Command parameters for the 'crate reset' command: the command parameter may only contain a single "1"
340 corresponding to only one crate reset at a time.}
341\label{tab:FTM-reset-command-param}
342\end{table}
343
344\chapter{FTM data blocks}
345\label{cha:FTM-data-block}
346
347The trigger master features two main data blocks, named 'static data block'
348and 'dynamic data block' in the following. They are implemented in the
349firmware as block-RAM. In addition, there is the so-called 'FTU list', which
350is filled only on request ('ping FTUs' command). If any of these blocks is
351sent to the FTMcontrol (either automatically or on demand), a header with a
352size of 14 words is added, and the whole data package is put between a start
353and an end delimiter (see table~\ref{tab:FTM-package}). The header is
354identical for all data blocks and contains solely read-only information: the
355type and length of the package, the FTM status, the FTM board ID (57-bit
356Xilinx device DNA \cite{ds557, ds610, wp267, wp266}), a firmware ID and the
357readings of the trigger counter and time stamp counter (see
358table~\ref{tab:FTM-header}).
359
360\begin{table}[h]
361\centering
362\begin{tabular}{|c|c|c|c|}\hline
363 start delimiter & header & data block & end delimiter \\\hline
364 0xFB01 & 14 words & optional size & 0x04FE\\\hline
365\end{tabular}
366\caption{Structure of a data package as sent by the FTM to the FTMcontrol
367 software. The start and end delimiters are the same as used for the FAD boards.}
368\label{tab:FTM-package}
369\end{table}
370
371\begin{table}[h]
372\centering
373\begin{tabular}{|l|l|c|}\hline
374 word no & content & description\\\hline\hline
375 0x000 & type of data package & 1: SD, 2: DD, 3: FTU-list, 4: error, 5: single SD-word\\\hline
376 0x001 & length of data package & after header, including end delimiter\\\hline
377 0x002 & status of FTM & 1: IDLE, 2: CONFIG, 3: RUNNING, 4: CALIB\\\hline
378 0x003 & board ID bits 63...48 & FPGA device DNA\\\hline
379 0x004 & board ID bits 47...32 & FPGA device DNA\\\hline
380 0x005 & board ID bits 31...16 & FPGA device DNA\\\hline
381 0x006 & board ID bits 15... 0 & FPGA device DNA\\\hline
382 0x007 & firmware ID & defined as a VHDL constant\\\hline
383 0x008 & trigger counter bits 31...16 & at read-out time\\\hline
384 0x009 & trigger counter bits 15... 0 & at read-out time\\\hline
385 0x00A & time stamp bits 63...48 & filled up with zeros\\\hline
386 0x00B & time stamp bits 47...32 & at read-out time\\\hline
387 0x00C & time stamp bits 31...16 & at read-out time\\\hline
388 0x00D & time stamp bits 15... 0 & at read-out time\\\hline
389\end{tabular}
390\caption{Header structure for sending a data block or error message}
391\label{tab:FTM-header}
392\end{table}
393
394\section{Static data block}
395\label{sec:Static-data-block}
396
397The static data block contains all the settings needed to configure and
398operate the FTM. It has to be written by the FTMcontrol each time before a run
399is started or, in general, some component has to be reprogrammed. Single
400register access is possible, but not foreseen for the standard data taking. In
401addition, whenever the FTM board receives a new static data block, it performs
402a complete reconfiguration including a reprogramming of the
403FTUs. Table~\ref{tab:FTM-trigger-master-static-data-block} summarizes the
404static data block. More details about the individual registers can be found in
405the subsequent tables.
406
407%These settings are readable and writable by the main control using the
408%corresponding commands 'read static data block' or 'write static data block',
409%respectively. There is one exception from writability: In case the static
410%data block is read back, the first eleven words (address 0..A) are identical
411%with the dynamic data block and the trigger list shown in
412%\ref{tab:FTM-trigger-master-dynamic-data-block} and
413%\ref{tab:FTM-trigger-list}. These first eleven words can only be read and not
414%written. The board ID is supposed to be the Xilinx device DNA \cite{ds557,
415% ds610, wp267, wp266}, the 57 bit device ID of the FPGA. When using the
416%'write static data block' command, the static data block must start with the
417%'general settings register' at address 0x00B. So there is an offset in the
418%addresses of 0x00B between the 'read-out-version' and the 'write-version' of
419%the static data block.
420
421\begin{longtable}[h]{|l|l|c|}\hline
422\centering
423word no & content & description\\\hline\hline
4240x000 & general settings & see table~\ref{tab:FTM-general-settings-register} and text\\\hline
4250x001 & on-board status LEDs & see table~\ref{tab:FTM-LED-register}\\\hline
4260x002 & light pulser and pedestal trigger period & see table~\ref{tab:FTM-frequency-register} and text\\\hline
4270x003 & sequence of LP1, LP2 and PED triggers & see table~\ref{tab:FTM-ratio-register} and text\\\hline
4280x004 & light pulser 1 amplitude & see table~\ref{tab:LP1-amplitude-register} and text\\\hline
4290x005 & light pulser 2 amplitude & see table~\ref{tab:LP2-amplitude-register} and text\\\hline
4300x006 & light pulser 1 delay & 8ns + delay value*4ns\\\hline
4310x007 & light pulser 2 delay & 8ns + delay value*4ns\\\hline
4320x008 & majority coincidence n (for physics) & see table~\ref{tab:FTM-majority} and text\\\hline
4330x009 & majority coincidence n (for calibration) & see table~\ref{tab:FTM-majority} and text\\\hline
4340x00A & trigger delay & 8ns + delay value*4ns, 10 bits used\\\hline
4350x00B & timemarker delay & 8ns + delay value*4ns, 10 bits used\\\hline
4360x00C & dead time & 8ns + value*4ns, 16 bits used\\\hline
4370x00D & clock conditioner R0 bits 31...16 & \\\hline
4380x00E & clock conditioner R0 bits 15...0 & \\\hline
4390x00F & clock conditioner R1 bits 31...16 & \\\hline
4400x010 & clock conditioner R1 bits 15...0 & \\\hline
4410x011 & clock conditioner R8 bits 31...16 & \\\hline
4420x012 & clock conditioner R8 bits 15...0 & \\\hline
4430x013 & clock conditioner R9 bits 31...16 & \\\hline
4440x014 & clock conditioner R9 bits 15...0 & \\\hline
4450x015 & clock conditioner R11 bits 31...16 & \\\hline
4460x016 & clock conditioner R11 bits 15...0 & \\\hline
4470x017 & clock conditioner R13 bits 31...16 & \\\hline
4480x018 & clock conditioner R13 bits 15...0 & \\\hline
4490x019 & clock conditioner R14 bits 31...16 & \\\hline
4500x01A & clock conditioner R14 bits 15...0 & \\\hline
4510x01B & clock conditioner R15 bits 31...16 & \\\hline
4520x01C & clock conditioner R15 bits 15...0 & \\\hline
4530x01D & maj. coinc. window (for physics) & 8ns + value*4ns, 4 bits used\\\hline
4540x01E & maj. coinc. window (for calibration) & 8ns + value*4ns, 4 bits used \\\hline
4550x01F & spare & \\\hline
4560x020 & enables patch 0 board 0 crate 0 & see FTU documentation\\\hline
4570x021 & enables patch 1 board 0 crate 0 & see FTU documentation\\\hline
4580x022 & enables patch 2 board 0 crate 0 & see FTU documentation\\\hline
4590x023 & enables patch 3 board 0 crate 0 & see FTU documentation\\\hline
4600x024 & DAC$\_$A board 0 crate 0 & see FTU documentation \\\hline
4610x025 & DAC$\_$B board 0 crate 0 & see FTU documentation \\\hline
4620x026 & DAC$\_$C board 0 crate 0 & see FTU documentation \\\hline
4630x027 & DAC$\_$D board 0 crate 0 & see FTU documentation \\\hline
4640x028 & DAC$\_$H board 0 crate 0 & see FTU documentation \\\hline
4650x029 & Prescaling board 0 crate 0 & (value+1)/2~[s], also autosend period \\\hline
4660x02A & enables patch 0 board 1 crate 0 & see FTU documentation \\\hline
4670x02B & enables patch 1 board 1 crate 0 & see FTU documentation \\\hline
4680x02C & enables patch 2 board 1 crate 0 & see FTU documentation \\\hline
4690x02D & enables patch 3 board 1 crate 0 & see FTU documentation \\\hline
4700x02E & DAC$\_$A board 1 crate 0 & see FTU documentation \\\hline
4710x02F & DAC$\_$B board 1 crate 0 & see FTU documentation \\\hline
4720x030 & DAC$\_$C board 1 crate 0 & see FTU documentation \\\hline
4730x031 & DAC$\_$D board 1 crate 0 & see FTU documentation \\\hline
4740x032 & DAC$\_$H board 1 crate 0 & see FTU documentation \\\hline
4750x033 & Prescaling board 1 crate 0 & see FTU documentation \\\hline
476... & ... & \\\hline
4770x1A6 & enables patch 0 board 9 crate 3 & see FTU documentation \\\hline
4780x1A7 & enables patch 1 board 9 crate 3 & see FTU documentation \\\hline
4790x1A8 & enables patch 2 board 9 crate 3 & see FTU documentation \\\hline
4800x1A9 & enables patch 3 board 9 crate 3 & see FTU documentation \\\hline
4810x1AA & DAC$\_$A board 9 crate 3 & see FTU documentation \\\hline
4820x1AB & DAC$\_$B board 9 crate 3 & see FTU documentation \\\hline
4830x1AC & DAC$\_$C board 9 crate 3 & see FTU documentation \\\hline
4840x1AD & DAC$\_$D board 9 crate 3 & see FTU documentation \\\hline
4850x1AE & DAC$\_$H board 9 crate 3 & see FTU documentation \\\hline
4860x1AF & Prescaling board 9 crate 3 & see FTU documentation \\\hline
4870x1B0 & active FTU list crate 0 & see FTU documentation \\\hline
4880x1B1 & active FTU list crate 1 & see FTU documentation \\\hline
4890x1B2 & active FTU list crate 2 & see FTU documentation \\\hline
4900x1B3 & active FTU list crate 3 & see FTU documentation \\\hline
491\caption{Overview of the FTM static data block}
492\label{tab:FTM-trigger-master-static-data-block}
493\end{longtable}
494
495The FTM general settings register is detailed in table
496\ref{tab:FTM-general-settings-register}. The 'TIM\_CLK' bit defines whether
497the time marker is generated by the FPGA ('TIM\_CLK' = 0, default for physics
498data taking), or whether it is generated by the clock conditioner ('TIM\_CLK'
499= 1, e.g. for DRS timing calibration). The 'ext\_veto', 'ext\_trig\_1' and
500'ext\_trig\_2' bits enable (1) or disable (0) the NIM inputs for the external
501veto and trigger signals, respectively. In order to select which trigger
502sources are active during a run, the bits 'LP1', 'LP2', 'ped' and 'trigger'
503are foreseen (0 disabled, 1 enabled). During a physics run, for example,
504'LP1', 'ped' and 'trigger' should all be set to generate interleaved
505calibration and pedestal events as well as activate the 'n-out-of-40' trigger
506input. For a didicated pedestal run only 'ped' should be set, since in this
507case the FTM sends directly a trigger to the FADs. For calibration runs it
508depends on whether the external (LP1) or internal (LP2) light pulser is used:
509For the first case 'LP1' and 'trigger' have to be set, since here the full
510trigger chain is involved and the camera triggers based on G-APD signals. For
511the second case only 'LP2' is needed, because the shutter is closed and the
512FTM sends directly the trigger signal to the FADs (like for pedestal
513events). Bits 8 to 15 of the general settings register are not used up to now.
514
515\begin{table}[h]
516\centering
517\begin{small}
518\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\hline
519Bit & 15...8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
520Content & x & trigger & ped & LP2 & LP1 & ext\_trig\_2 & ext\_trig\_1& ext\_veto & TIM\_CLK \\\hline
521\end{tabular}
522\end{small}
523\caption{FTM general settings register}
524\label{tab:FTM-general-settings-register}
525\end{table}
526
527%\begin{table}[!h]
528%\centering
529%\begin{tabular}{|l|l|}\hline
530%TIM\_CClk & description \\\hline\hline
531%0 & Time marker generated in the FPGA \\\hline
532%1 & Time marker generated by the clock conditioner \\\hline
533%\end{tabular}
534%\caption{FTM Time marker indication}
535%\label{tab:FTM-Time-marker-indication}
536%\end{table}
537
538%\begin{table}[!h]
539%\centering
540%\begin{tabular}{|l|l|}\hline
541%ena$\_$ext$\_$Veto & description \\\hline\hline
542%0 & disable external trigger veto\\\hline
543%1 & enable external trigger veto \\\hline
544%\end{tabular}
545%\caption{FTM external trigger}
546%\label{tab:FTM-external-trigger}
547%\end{table}
548
549%\begin{table}[!h]
550%\centering
551%\begin{tabular}{|l||l|}\hline
552%ena\_LP1 & description \\\hline\hline
553%0 & disable light pulser 1 \\\hline
554%1 & enable light pulser 1\\\hline
555%\end{tabular}
556%\caption{FTM light pulser 1}
557%\label{tab:FTM-light-pulser-1}
558%\end{table}
559
560%\begin{table}[!h]
561%\centering
562%\begin{tabular}{|l||l|}\hline
563%ena\_LP2 & description \\\hline\hline
564%0 & disable light pulser 2 \\\hline
565%1 & enable light pulser 2 \\\hline
566%\end{tabular}
567%\caption{FTM light pulser 2}
568%\label{tab:FTM-light-pulser-2}
569%\end{table}
570
571%\begin{table}[!h]
572%\centering
573%\begin{tabular}{|l||l|}\hline
574%ena\_Ped & description \\\hline\hline
575%0 & disable interleaved pedestal trigger \\\hline
576%1 & enable interleaved pedestal trigger \\\hline
577%\end{tabular}
578%\caption{FTM interleaved pedestals}
579%\label{tab:FTM-interleaved-pedestals}
580%\end{table}
581
582%\begin{table}[!h]
583%\centering
584%\begin{small}
585%\begin{tabular}{|l||l|}\hline
586%ena\_LLC & description \\\hline\hline
587%0 & disable low level calibration pulses \\\hline
588%1 & enable low level calibration pulses \\\hline
589%\end{tabular}
590%\end{small}
591%\caption{FTM low level calibration pulses}
592%\label{tab:FTM-low-level-calibration-pulses}
593%\end{table}
594
595The 'on-board status LEDs' register shown in table \ref{tab:FTM-LED-register}
596allows to switch a total of eight LEDs on the FTM board for debugging purposes
597by setting the corresponding bit high.
598
599\begin{table}[h]
600\centering
601\begin{small}
602\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\hline
603Bit & 15...8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
604Content & x & red$\_$3 & red$\_$2 & gn$\_$1 & ye$\_$1 & red$\_$1 & gn$\_$0 & ye$\_$0 & red$\_$0 \\\hline
605\end{tabular}
606\end{small}
607\caption{'on-board status LEDs' register}
608\label{tab:FTM-LED-register}
609\end{table}
610
611The period (time distance, see table \ref{tab:FTM-frequency-register}), with
612which light pulser and pedestal triggers are sent, is stored in the register
613at address 0x002. It is given in [ms] and adjustable between 1\,ms and
6141023\,ms (10 bits used). The next register defines the sequence of LP1, LP2
615and pedestal events (see table \ref{tab:FTM-ratio-register}).
616
617\begin{table}[h]
618\centering
619\begin{small}
620\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
621Bit & 15 - 10 & 9 & 8 & ... & 2 & 1 & 0 \\\hline
622Content & x & PERIOD\_9 & PERIOD\_8 & ... & PERIOD\_2 & PERIOD\_1 & PERIOD\_0 \\\hline
623\end{tabular}
624\end{small}
625\caption{Register for the period [ms] of calibration and pedestal events}
626\label{tab:FTM-frequency-register}
627\end{table}
628
629\begin{table}[h]
630\centering
631\begin{small}
632\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}\hline
633Bit & 15 & 14 & ... & 10 & 9 & ... & 5 & 4 & ... & 0 \\\hline
634Content & x & ped\_S4 & ... & ped\_S0 & LP2\_S4 & ... & LP2\_S0 & LP1\_S4 & ... & LP1\_S0 \\\hline
635\end{tabular}
636\end{small}
637\caption{Register defining the sequence of LP1, LP2 and pedestal events; 5
638 bits used per value. By setting e.g. LP1/LP2/PED = 3/2/1, the systems
639 generates 3 LP1 triggers, followed by 2 LP2 triggers, followed by 1 PED
640 trigger (if they are also activated in the 'general settings' register).
641 The distance between the triggers is defined with another register
642 (table~\ref{tab:FTM-frequency-register}).}
643\label{tab:FTM-ratio-register}
644\end{table}
645
646%\begin{table}[!h]
647%\centering
648%\begin{tiny}
649%\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline
650%Bit & 15 - 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
651%Function & x & LPR2\_9 & LPR2\_8 & LPR2\_7 & LPR2\_6 & LPR2\_5 & LPR2\_4 & LPR2\_3 & LPR2\_2 & LPR2\_1 & LPR2\_0 \\\hline
652%\end{tabular}
653%\end{tiny}
654%\caption{Light pulser 2 frequency register at address 0x00E: This register contains the pulse rate of the light
655% pulser 2 in Hz.}
656%\label{tab:Light-pulser-2-frequancy-register}
657%\end{table}
658
659In order to define the amplitude and characteristics of the light pulses that
660are generated by the LP1 and the LP2 system, the registers 'LP1 amplitude' and
661'LP2 amplitude' are used, respectively. These registers are presented in
662table~\ref{tab:LP1-amplitude-register} and
663table~\ref{tab:LP2-amplitude-register}. In general the light pulser systems
664are controlled from the FTM by means of four control lines: The first line
665defines the amplitude of the calibration events by sending a gate/pulse with
666an adjustable length (bits 0 to 3 in the amplitude registers). With the second
667and third line additional LEDs can be switched on in the calibration systems
668(bits 13 and 14). The fourth line is used to overdrive the LP systems and to
669generate a very fast timing pulse. To do so, bit 15 has to be set to 1.
670
671\begin{table}[!h]
672\centering
673\begin{small}
674\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
675Bit & 15 & 14 & 13 & 12...4 & 3 & ... & 0 \\\hline
676Content & FCP1 & add\_LEDs1\_1& add\_LEDs1\_0 & x & LP1A\_3 & ... & LP1A\_0 \\\hline
677\end{tabular}
678\end{small}
679\caption{Light pulser 1 amplitude register}
680\label{tab:LP1-amplitude-register}
681\end{table}
682
683\begin{table}[!h]
684\centering
685\begin{small}
686\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
687Bit & 15 & 14 & 13 & 12...4 & 3 & ... & 0 \\\hline
688Content & FCP2 & add\_LEDs2\_1 & add\_LEDs2\_0 & x & LP2A\_3 & ... & LP2A\_0 \\\hline
689\end{tabular}
690\end{small}
691\caption{Light pulser 2 amplitude register}
692\label{tab:LP2-amplitude-register}
693\end{table}
694
695The different settings of the 'n-out-of-40' logic (physics or calibration
696events) are stored in two separate registers, which both have a structure
697according to table~\ref{tab:FTM-majority}.
698
699\begin{table}[!h]
700\centering
701\begin{small}
702\begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
703Bit & 15...6 & 5 & 4 & 3 & 2 &1 & 0 \\\hline
704Content & x & n5 & n4 & n3 & n2 & n1 & n0 \\\hline
705\end{tabular}
706\end{small}
707\caption{Structure of the two majority coincidence (n-out-of-40) registers; the binary value
708 in these registers is the minimum number n of FTU trigger primitives required to trigger an event (physics or calibration)}
709\label{tab:FTM-majority}
710\end{table}
711
712In addition, there are several registers in the static data block to define
713delays (e.g. for the trigger). Also a general dead time to be applied after
714each trigger can be set (to compensate for the delay of the busy line). The
715clock conditioner settings are specified at address 0x00D to 0x01C (LMK03000
716from National Semiconductor, for more details see \cite{LMK03000}).
717
718Starting at address 0x020, the FTU settings are stored. The FTM always holds
719the complete FTU parameters in the static data block. For the meaning of these
720registers, please refer to the FTU firmware specifications document
721\cite{FTUspecs}. The register at address 0x029 is special in the sense that,
722in addition to its normal meaning, it also defines the time period with which
723the FTU rates are sent automatically to the FTMcontrol software. In case not
724all FTUs are connected during e.g. the testing phase, or a FTU is broken, the
725'active FTU list' registers can be used to disable certain boards. Bits 9...0
726of one of the active FTU lists (address 0x1B0 to 0x1B3, corresponding to crate
7270 to 3) contain the "active" flag for every FTU board. Setting a bit activates
728the corresponding FTU board while a "0" deactivates it.
729
730\section{Dynamic data block}
731\label{sec:Dynamic-data-block}
732The dynamic data block shown in table \ref{tab:FTM-dynamic-data-block}
733contains permanently updated data stored inside the FTM FPGA. It contains the
734actual on-time counter reading, the board temperatures and the trigger rates
735measured by the FTUs. This data block is updated and sent periodically by the
736FTM. Thus the FTMcontrol software receives periodically a corresponding data
737package via ethernet. The counting interval of the FTU board 0 on crate 0
738('prescaling' register) defines the period. The on-board 12-bit temperature
739sensors are MAX6662 chips from Maxim Products. For more information about
740these components and their data see \cite{MAX6662}. When sending the dynamic
741data block, the header defined in table~\ref{tab:FTM-header} is added at the
742beginning.
743
744\newpage
745
746% \begin{table}[h]
747% \centering
748\begin{longtable}[h]{|l|l|}\hline
749word no & content\\\hline\hline
7500x000 & on-time counter at read-out time bits 63...48, filled up with zeros \\\hline
7510x001 & on-time counter at read-out time bits 47...32 \\\hline
7520x002 & on-time counter at read-out time bits 31...16 \\\hline
7530x003 & on-time counter at read-out time bits 15...0 \\\hline
7540x004 & temperature sensor 0: component U45 on the FTM schematics \cite{FTM-Schematics}\\\hline
7550x005 & temperature sensor 1: U46 \\\hline
7560x006 & temperature sensor 2: U48 \\\hline
7570x007 & temperature sensor 3: U49 \\\hline
7580x008 & rate counter bit 29...16 patch 0 board 0 crate 0 \\\hline
7590x009 & rate counter bit 15...0 patch 0 board 0 crate 0 \\\hline
7600x00A & rate counter bit 29...16 patch 1 board 0 crate 0 \\\hline
7610x00B & rate counter bit 15...0 patch 1 board 0 crate 0 \\\hline
7620x00C & rate counter bit 29...16 patch 2 board 0 crate 0 \\\hline
7630x00D & rate counter bit 15...0 patch 2 board 0 crate 0 \\\hline
7640x00E & rate counter bit 29...16 patch 3 board 0 crate 0 \\\hline
7650x00F & rate counter bit 15...0 patch 3 board 0 crate 0 \\\hline
7660x010 & rate counter bit 29...16 total board 0 crate 0 \\\hline
7670x011 & rate counter bit 15...0 total board 0 crate 0\\\hline
7680x012 & Overflow register board 0 crate 0 \\\hline
7690x013 & CRC-error register board 0 crate 0 \\\hline
7700x014 & rate counter bit 29...16 patch 0 board 1 crate 0 \\\hline
7710x015 & rate counter bit 15...0 patch 0 board 1 crate 0 \\\hline
7720x016 & rate counter bit 29...16 patch 1 board 1 crate 0 \\\hline
7730x017 & rate counter bit 15...0 patch 1 board 1 crate 0 \\\hline
7740x018 & rate counter bit 29...16 patch 2 board 1 crate 0 \\\hline
7750x019 & rate counter bit 15...0 patch 2 board 1 crate 0 \\\hline
7760x01A & rate counter bit 29...16 patch 3 board 1 crate 0 \\\hline
7770x01B & rate counter bit 15...0 patch 3 board 1 crate 0 \\\hline
7780x01C & rate counter bit 29...16 total board 1 crate 0 \\\hline
7790x01D & rate counter bit 15...0 total board 1 crate 0 \\\hline
7800x01E & Overflow register board 1 crate 0 \\\hline
7810x01F & CRC-error register board 1 crate 0 \\\hline
782... & ... \\\hline
7830x1E7 & CRC-error register board 9 crate 3 \\\hline
784% \end{longtable}
785\caption{FTM dynamic data block}
786\label{tab:FTM-dynamic-data-block}
787\end{longtable}
788
789%\section{Trigger-list}
790%\label{sec:trigger-list}
791%The FTM board records all triggers in a list, the so-called trigger-list.
792%This trigger-list comprises a maximum of 50 triggers. The first eleven words
793%are the same as in the static- and dynamic data block. During data-taking-,
794%calibration- and trigger runs, the Trigger-list is automatically sent to the
795%main control each time the 50 triggers are reached or the run is finished. In
796%addition, the Trigger-list can also be read-out by the main control with the
797%according command. In case the run finishes or is terminated, as well as when
798%read out manually, the trigger list might be shorter than 50 events.
799
800%% \begin{table}[h]
801%% \centering
802%\begin{longtable}[h]{|l|l|}\hline
803%address & content\\\hline\hline
804%0x000 & board ID bit 63 - 48 \\\hline
805%0x001 & board ID bit 47 - 32\\\hline
806%0x002 & board ID bit 31 - 16\\\hline
807%0x003 & board ID bit 15 - 0\\\hline
808%0x004 & firmware ID \\\hline
809%0x005 & Trigger counter at read-out time bits 31 .. 16 \\\hline
810%0x006 & Trigger counter at read-out time bits 15 .. 0\\\hline
811%0x007 & Time stamp counter at read-out time bits 47 .. 32 \\\hline
812%0x008 & Time stamp counter at read-out time bits 31 .. 16 \\\hline
813%0x009 & Time stamp counter at read-out time bits 15 .. 0 \\\hline
814%0x00A & spare \\\hline
815
816%0x00B & on-time counter at read-out time bits 47 .. 32 \\\hline
817%0x00C & on-time counter at read-out time bits 31 .. 16 \\\hline
818%0x00D & on-time counter at read-out time bits 15 .. 0 \\\hline
819
820%0x00E & 1st event Trigger-ID \\\hline
821%0x00F & 1st event Trigger-ID \\\hline
822%0x010 & 1st event Trigger-ID \\\hline
823%0x011 & 1st event Trigger primitives crate 0 \\\hline
824%0x012 & 1st event Trigger primitives crate 1 \\\hline
825%0x013 & 1st event Trigger primitives crate 2 \\\hline
826%0x014 & 1st event Trigger primitives crate 3 \\\hline
827%0x015 & 1st event Time stamp counter at trigger time bits 47 .. 32 \\\hline
828%0x016 & 1st event Time stamp counter at trigger time bits 31 .. 16 \\\hline
829%0x017 & 1st event Time stamp counter at trigger time bits 15 .. 0 \\\hline
830
831%0x018 & 2nd event Trigger-ID \\\hline
832%0x019 & 2nd event Trigger-ID \\\hline
833%0x01A & 2nd event Trigger-ID \\\hline
834%0x01B & 2nd event Trigger primitives crate 0 \\\hline
835%0x01C & 2nd event Trigger primitives crate 1 \\\hline
836%0x01D & 2nd event Trigger primitives crate 2 \\\hline
837%0x01E & 2nd event Trigger primitives crate 3 \\\hline
838%0x01F & 2nd event Time stamp counter at trigger time bits 47 .. 32 \\\hline
839%0x020 & 2nd event Time stamp counter at trigger time bits 31 .. 16 \\\hline
840%0x021 & 2nd event Time stamp counter at trigger bits 15 .. 0 \\\hline
841%... & ...\\\hline
842%0x1F8 & 50th event Trigger-ID \\\hline
843%0x1F9 & 50th event Trigger-ID \\\hline
844%0x1FA & 50th event Trigger-ID \\\hline
845%0x1FB & 50th event Trigger primitives crate 0 \\\hline
846%0x1FC & 50th event Trigger primitives crate 1 \\\hline
847%0x1FD & 50th event Trigger primitives crate 2 \\\hline
848%0x1FE & 50th event Trigger primitives crate 3 \\\hline
849%0x1FF & 50th event Time stamp counter at trigger time bits 47 .. 32 \\\hline
850%0x200 & 50th event Time stamp counter at trigger time bits 31 .. 16 \\\hline
851%0x201 & 50th event Time stamp counter at trigger bits 15 .. 0 \\\hline
852
853%% \end{longtable}
854%\caption{FTM trigger list}
855%\label{tab:FTM-trigger-list}
856%\end{longtable}
857
858\section{FTU list}
859\label{sec:FTU-List}
860When the FTM board receives the 'ping all FTUs' instruction, it sends a ping
861command to all FTU boards and gathers the FTU boards responses to a list. This
862list is called 'FTU list' and shown in table \ref{tab:FTU-list}. When the FTU
863list is complete, it is sent back via ethernet with the header defined in
864table~\ref{tab:FTM-header}.
865
866\begin{longtable}[h]{|l|l|}\hline
867address & content\\\hline\hline
8680x000 & total number of responding FTU boards\\\hline
8690x001 & number of responding FTU boards belonging to crate 0 \\\hline
8700x002 & number of responding FTU boards belonging to crate 1 \\\hline
8710x003 & number of responding FTU boards belonging to crate 2 \\\hline
8720x004 & number of responding FTU boards belonging to crate 3 \\\hline
8730x005 & active FTU list crate 0 \\\hline
8740x006 & active FTU list crate 1 \\\hline
8750x007 & active FTU list crate 2 \\\hline
8760x008 & active FTU list crate 3 \\\hline
8770x009 & address of first FTU board and number of sent pings until response\\\hline
8780x00A & DNA of first FTU board bit 63 ... 48\\\hline
8790x00B & DNA of first FTU board bit 47 ... 32\\\hline
8800x00C & DNA of first FTU board bit 31 ... 16\\\hline
8810x00D & DNA of first FTU board bit 15 ... 0\\\hline
8820x00E & CRC error counter reading of first FTU board\\\hline
8830x00F & address of second FTU board and number of sent pings until response\\\hline
8840x010 & DNA of second FTU board bit 63 ... 48\\\hline
8850x011 & DNA of second FTU board bit 47 ... 32\\\hline
8860x012 & DNA of second FTU board bit 31 ... 16\\\hline
8870x013 & DNA of second FTU board bit 15 ... 0\\\hline
8880x014 & CRC error counter reading of second FTU board\\\hline
889... & ...\\\hline
8900x0F8 & CRC error counter reading of last FTU board\\\hline
891\caption{FTU list}
892\label{tab:FTU-list}
893\end{longtable}
894
895In case there is no response to a 'ping' for a certain FTU address, there are
896up to two repetitions. If there is still no answer, only zeros are written
897into the FTU list for this particular board. A responding FTU board gets a
898regular entry, including the number of 'ping' sent until response. The number
899of pings is coded together with the FTU board address as shown in table
900\ref{tab:FTU-crate-number-and-address}. The two bits 'pings\_0' and 'pings\_1'
901contain the number of 'pings' until response of an FTU board (coded in
902binary). The 'DNA' of the FTU board is the device DNA \cite{ds557, ds610,
903 wp267, wp266} of the FPGA on the responding FTU board. This is a unique 57
904bit serial number unambiguously identifying every Xilinx FPGA. In the most
905significant word (bit 63 ... 48) bits 63 down to 57 are filled with zeros.
906
907\begin{table}[h]
908\centering
909\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline
910Bit & 15 ... 10 & 9 & 8 & 7 & 6 & 5 & ... & 0 \\\hline
911Content & x ... x & pings\_1 & pings\_0 & x & x & A5 & ... & A0 \\\hline
912\end{tabular}
913\caption{Address of FTU board and number of pings until response. In case
914 there is no response at all, this number is set to 0.}
915\label{tab:FTU-crate-number-and-address}
916\end{table}
917
918\chapter{FTU communication error handling}
919\label{cha:Error-handling}
920
921When the FTM board is communicating with a FTU board via RS-485, the FTU board
922has to respond within 2\,ms (after the last byte was transmitted). If this
923timeout expires, or the response sent back by the FTU board is incorrect, the
924FTM resends the datapacket after the timeout. If this second attempt is still
925unsuccessful, a third and last attempt will be made by the FTM board. An error
926message will be sent to the FTMcontrol whenever a FTU board does not send a
927correct answer after the first call by the FTM board. This message (see
928table~\ref{tab:error-message}) contains, after the standard header (see
929table~\ref{tab:FTM-header}), the number of calls until response (0 if no
930response at all), and the corresponding data packet which was sent to the FTU
931board. In order to avoid massive error messages for e.g. test setups with
932single FTUs, the 'active FTU list' can be employed to disable FTUs from the
933bus. In that case the FTM will not try to contact the corresponding boards.
934
935\begin{table}[h]
936 \centering
937 \begin{tabular}{|l|l|}\hline
938 word no & content\\\hline\hline
939 0x000 & number of calls until response (0 if no response at all)\\\hline
940 0x001 ... 0x028 & slow control data packet sent to FTU (28 byte)\\\hline
941 \end{tabular}
942 \caption{FTU communication error message (after standard header); for a
943 description of the FTU data package, see \cite{FTUspecs}.}
944 \label{tab:error-message}
945\end{table}
946
947%---------------------------------------------------------------------------------
948
949\bibliographystyle{unsrt}
950%\bibliography{FTM-Com}
951
952\begin{thebibliography}{1}
953
954\bibitem{DRS4}
955Paul Scherrer Institut PSI.
956\newblock {\em DRS4 9 Channel, 5 GSPS Switched Capacitor Array}.
957\newblock datasheet.
958
959\bibitem{LMK03000}
960National Semiconductor Corporation.
961\newblock {\em LMK03000 Family Precision Clock Conditioner with integrated
962 VCO}, 2008.
963\newblock datasheet.
964
965\bibitem{FTM-Schematics}
966ETH Z{\"u}rich, IPP.
967\newblock {\em FTM Schematics}, 2010.
968
969\bibitem{W5300}
970WIZnet Co.Ltd.
971\newblock {\em W5300 Fully Hardwired Network protocol Embedded Ethernet
972 Controller}, 2008.
973\newblock datasheet.
974
975\bibitem{ds557}
976Xilinx.
977\newblock {\em Spartan-3AN FPGA Family Data Sheet}, 2009.
978
979\bibitem{ds610}
980Xilinx.
981\newblock {\em Spartan-3A DSP FPGA Family: Data Sheet}, 2009.
982
983\bibitem{wp267}
984Xilinx.
985\newblock {\em Advanced Security Schemes for Spartan-3A/3AN/3A DSP FPGAs},
986 2007.
987
988\bibitem{wp266}
989Xilinx.
990\newblock {\em Security Solutions Using Spartan-3 Generation FPGAs}, 2008.
991
992\bibitem{MAX6662}
993Maxim Integrated Products.
994\newblock {\em 12-Bit plus Sign Temperature Sensor with SPI-Compatible Serial
995 Interface MAX6662}, 2001.
996\newblock datasheet.
997
998\bibitem{FTUspecs}
999ETH Z{\"u}rich, IPP.
1000\newblock {\em FTU Firmware Specifications v3}, 2010.
1001
1002\end{thebibliography}
1003
1004\end{document}
Note: See TracBrowser for help on using the repository browser.