1 | \documentclass[a4paper,11pt]{report}
|
---|
2 |
|
---|
3 | \usepackage{float}
|
---|
4 | \usepackage{graphicx}
|
---|
5 | \usepackage{url}
|
---|
6 | \usepackage[T1]{fontenc}
|
---|
7 | \usepackage{amsmath}
|
---|
8 | \usepackage{longtable}
|
---|
9 | \usepackage{parskip}
|
---|
10 | \usepackage{pifont}
|
---|
11 | \usepackage{array}
|
---|
12 |
|
---|
13 | \setlength{\oddsidemargin}{0cm}
|
---|
14 | \setlength{\evensidemargin}{0cm}
|
---|
15 | \setlength{\topmargin}{0cm}
|
---|
16 |
|
---|
17 | \textwidth 6.2in
|
---|
18 | \textheight 9in
|
---|
19 | \columnsep 0.25in
|
---|
20 |
|
---|
21 | \pagestyle{plain}
|
---|
22 | \setcounter{tocdepth}{1}
|
---|
23 |
|
---|
24 | \title{\vspace*{-7cm} \Huge \bf FTM Firmware Specifications}
|
---|
25 | \author{\Large Patrick Vogler\footnote{Contact for questions and suggestions concerning this
|
---|
26 | document: {\tt patrick.vogler@phys.ethz.ch}}, Quirin Weitzel}
|
---|
27 | \date{\vspace*{0.5cm} \Large v4.3~~~-~~~May 2011}
|
---|
28 |
|
---|
29 | \begin{document}
|
---|
30 |
|
---|
31 | \maketitle
|
---|
32 |
|
---|
33 | \newpage
|
---|
34 |
|
---|
35 | \tableofcontents
|
---|
36 |
|
---|
37 | %---------------------------------------------------------------------------------
|
---|
38 |
|
---|
39 | \chapter{Introduction}
|
---|
40 | \label{cha:Introduction}
|
---|
41 |
|
---|
42 | The FTM (FACT Trigger Master) board collects the trigger primitives from all
|
---|
43 | 40 FTU boards (FACT Trigger Unit) and generates the trigger signal for the
|
---|
44 | FACT camera. The trigger logic is a 'n-out-of-40' majority coincidence of all
|
---|
45 | trigger primitives. Beside the trigger, the FTM board also generates a
|
---|
46 | trigger-ID (see chapter \ref{cha:Trigger-ID}). It is controlled from outside
|
---|
47 | via ethernet. Two auxiliary RS-485 interfaces are also available.
|
---|
48 |
|
---|
49 | In addition to the trigger, the FTM board also generates other fast control
|
---|
50 | signals: Time-Marker (TIM), DRS \cite{DRS4} reference clock (CLD) and
|
---|
51 | reset. These four fast control signals are distributed to the FAD (FACT Analog
|
---|
52 | to Digital) boards via two FFC (FACT Fast Control) boards. The FTM board also
|
---|
53 | provides via the TIM line the signal for the DRS timing calibration. In order
|
---|
54 | to generate the CLD DRS reference clock, as well as the time-marker signal for
|
---|
55 | DRS timing calibration, the FTM board uses a clock conditioner
|
---|
56 | \cite{LMK03000}.
|
---|
57 |
|
---|
58 | The FTM board has two time counters, the 'timestamp counter' and the 'on-time
|
---|
59 | counter'. While the 'timestamp counter' runs continuously, the 'on-time
|
---|
60 | counter' only counts when the camera trigger is enabled.
|
---|
61 |
|
---|
62 | The FTM board further serves as slow control master for the 40 FTU boards. The
|
---|
63 | slow control of the FTU boards and the distribution of the trigger-ID to the
|
---|
64 | FAD boards are performed via dedicated RS-485 buses. Because the FAD as well
|
---|
65 | as the FTU boards are arranged in crates of 10 boards each, the FTM board has
|
---|
66 | four connectors, one for each crate. Running over these connectors there are
|
---|
67 | two RS-485 buses (one for FTU slow control and one for the trigger-ID) besides
|
---|
68 | the busy signal from the FAD boards and the crate reset.
|
---|
69 |
|
---|
70 | In addition, the FTM board controls the two FLPs (FACT Light Pulser) via four
|
---|
71 | LVDS signals each. Light pulser~1 is located in the mirror dish, light
|
---|
72 | pulser~2 inside the camera shutter. There are also digital auxiliary in- and
|
---|
73 | outputs according to the NIM (Nuclear Instrumentation Module) standard, for
|
---|
74 | example for external triggers and veto, and to have the signals accessible.
|
---|
75 |
|
---|
76 | The main component of the FTM board is a FPGA (Xilinx Spartan
|
---|
77 | XC3SD3400A-4FGG676C), fulfilling the main functions within the board. The
|
---|
78 | purpose of this document is to provide specifications needed for the
|
---|
79 | development of the firmware of this FPGA and the software (called 'FTMcontrol'
|
---|
80 | in the following) controlling the FTM board. For further information about the
|
---|
81 | FTM board hardware please refer to \cite{FTM-Schematics}.
|
---|
82 |
|
---|
83 | \chapter{Trigger-ID}
|
---|
84 | \label{cha:Trigger-ID}
|
---|
85 |
|
---|
86 | For each processed trigger the FTM board generates a unique trigger-ID to be
|
---|
87 | broadcasted to all FAD boards and added to the event data. This trigger-ID
|
---|
88 | consists of a 32 bit trigger number, a two byte trigger type indicator and a
|
---|
89 | checksum. The transmission protocol for the trigger-ID broadcast is shown in
|
---|
90 | table \ref{tab:Trigger-ID broadcast}.
|
---|
91 |
|
---|
92 | \begin{table}[htbp]
|
---|
93 | \centering
|
---|
94 | \begin{tabular}{|l|l|}\hline
|
---|
95 | byte no & content\\\hline\hline
|
---|
96 | 0 & Trigger-No first byte (least significant byte) \\\hline
|
---|
97 | 1 & Trigger-No second byte\\\hline
|
---|
98 | 2 & Trigger-No third byte\\\hline
|
---|
99 | 3 & Trigger-No forth byte (most significant byte)\\\hline
|
---|
100 | 4 & Trigger-Type 1\\\hline
|
---|
101 | 5 & Trigger-Type 2\\\hline
|
---|
102 | 6 & CRC-8-CCITT (checksum)\\\hline
|
---|
103 | \end{tabular}
|
---|
104 | \caption{The transmission protocol to broadcast the trigger-ID to the FAD boards}
|
---|
105 | \label{tab:Trigger-ID broadcast}
|
---|
106 | \end{table}
|
---|
107 |
|
---|
108 | A Cyclic Redundancy Check (CRC) over byte 0 - 5 is used to evaluate the
|
---|
109 | integrity of the trigger-ID. An 8-CCITT CRC has been chosen which is based on
|
---|
110 | the polynomial $x^8 + x^2 + x + 1$ (00000111, omitting the most significant
|
---|
111 | bit). The resulting 1-byte checksum comprises the last byte of the trigger-ID.
|
---|
112 | The transmission of the trigger-ID to the FAD boards is done by means of
|
---|
113 | dedicated RS-485 buses (one per crate).
|
---|
114 |
|
---|
115 | In the first byte of the trigger type indicator (see table
|
---|
116 | \ref{tab:Trigger-Type 1}) n0 - n5 indicate the number of trigger primitives
|
---|
117 | required for a trigger, thus the 'n' of the 'n-out-of-40' majority
|
---|
118 | coincidence. The two flags 'external trigger 1' and 'external trigger 2',
|
---|
119 | when set, indicate a trigger from the corresponding NIM inputs. See also
|
---|
120 | section \ref{sec:Static-data-block} and table \ref{tab:FTM-majority} for
|
---|
121 | further information.
|
---|
122 |
|
---|
123 | \begin{table}[htbp]
|
---|
124 | \centering
|
---|
125 | %\begin{small}
|
---|
126 | \begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
|
---|
127 | Bit7 & Bit6 & Bit5 & Bit4 & Bit3 & Bit2 & Bit1 & Bit0\\\hline\hline
|
---|
128 | n5 & n4 & n3 & n2 & n1 & n0 & external trigger 2 & external trigger 1\\\hline
|
---|
129 | \end{tabular}
|
---|
130 | %\end{small}
|
---|
131 | \caption{Trigger-Type 1}
|
---|
132 | \label{tab:Trigger-Type 1}
|
---|
133 | \end{table}
|
---|
134 |
|
---|
135 | \begin{table}[htbp]
|
---|
136 | \centering
|
---|
137 | \begin{small}
|
---|
138 | \begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
|
---|
139 | Bit7 & Bit6 & Bit5 & Bit4 & Bit3 & Bit2 & Bit1 & Bit0\\\hline\hline
|
---|
140 | TIM source & LP\_set\_3 & LP\_set\_2 & LP\_set\_1 & LP\_set\_0 & pedestal & LP\_2 & LP\_1\\\hline
|
---|
141 | \end{tabular}
|
---|
142 | \end{small}
|
---|
143 | \caption{Trigger-Type 2}
|
---|
144 | \label{tab:Trigger-Type 2}
|
---|
145 | \end{table}
|
---|
146 |
|
---|
147 | The 'TIM source' bit in 'Trigger-Type 2' (see table \ref{tab:Trigger-Type 2})
|
---|
148 | indicates the source of the timemarker signal: a '0' indicates the timemarker
|
---|
149 | being produced in the FPGA while a '1' indicates the timemarker coming from
|
---|
150 | the clock conditioner. The flags 'LP\_1' and 'LP\_2' are set when the
|
---|
151 | corresponding lightpulser has flashed while the 'pedestal' flag is set in case
|
---|
152 | of a pedestal (random) trigger. An event having none of these flags set
|
---|
153 | indicates a physics event. The bits 'LP\_set\_0' to 'LP\_set\_3' are used to
|
---|
154 | code information about the light pulser settings. They only have a meaning in
|
---|
155 | case of calibration events.
|
---|
156 |
|
---|
157 | \chapter{FTM Commands}
|
---|
158 | \label{cha:FTM-Commands}
|
---|
159 |
|
---|
160 | The communication between the FTM board and the FTMcontrol software, including
|
---|
161 | the corresponding commands, protocols and data, is based on 16-bit words and
|
---|
162 | big-endian. This is to facilitate the data-transmission over the Wiznet W5300
|
---|
163 | ethernet interface \cite{W5300}.
|
---|
164 |
|
---|
165 | The basic structure of all commands is the same and given in table
|
---|
166 | \ref{tab:FTM-command-structure}. After a start delimiter, the second word
|
---|
167 | identifies the command. Next there is a parameter further refining the
|
---|
168 | command, e.g. what to read. The fourth and fifth words are spares and should
|
---|
169 | contain zeros. Starting from the sixth word, an optional data block of
|
---|
170 | variable size is following. This data block differs in length and content
|
---|
171 | depending on command and parameter. In case of 'read' instructions, the
|
---|
172 | corresponding data block is sent back.
|
---|
173 |
|
---|
174 | %The FTM board must answer every command by sending back the appropriate data
|
---|
175 | %block or by simply sending back the instruction where there is no datablock to
|
---|
176 | %be sent back. All 'read' commands to the FTM board do not contain any data
|
---|
177 | %blocks, but the FTM boards response does. In case of 'read' and 'write'
|
---|
178 | %instructions, the datablock is to be sent back. When 'start run' or 'stop run'
|
---|
179 | %commands are used, the FTM board 'mirrors' them, i.e. sends them back for
|
---|
180 | %confirmation.
|
---|
181 |
|
---|
182 | \begin{table}[p]
|
---|
183 | \centering
|
---|
184 | \begin{tabular}{|l|l|}\hline
|
---|
185 | word no & content\\\hline\hline
|
---|
186 | 0 & start delimiter (e.g. '@') \\\hline
|
---|
187 | 1 & command ID \\\hline
|
---|
188 | 2 & command parameter \\\hline
|
---|
189 | 3 & spare: containing 0x0000\\\hline
|
---|
190 | 4 & spare: containing 0x0000 \\\hline
|
---|
191 | 5 & data block (optional and of variable size)\\\hline
|
---|
192 | ... & ...\\\hline
|
---|
193 | X & data block\\\hline
|
---|
194 | \end{tabular}
|
---|
195 | \caption{FTM command structure}
|
---|
196 | \label{tab:FTM-command-structure}
|
---|
197 | \end{table}
|
---|
198 |
|
---|
199 | So far seven different commands are foreseen: 'read', 'write', 'start run',
|
---|
200 | 'stop run', 'ping FTUs', 'crate reset' and 'autosend on/off' (see table
|
---|
201 | \ref{tab:FTM-command-ID}). The command parameters of the 'read' and write
|
---|
202 | commands are shown in table~\ref{tab:FTM-read-command-param} and
|
---|
203 | table~\ref{tab:FTM-write-command-param}, respectively. With the 'autosend
|
---|
204 | on/off' command it is possible to switch off the automatic sending of trigger
|
---|
205 | rates and error messages (see table~\ref{tab:FTM-as-command-param}).
|
---|
206 |
|
---|
207 | \begin{table}[p]
|
---|
208 | \centering
|
---|
209 | \begin{tabular}{|r|r|}\hline
|
---|
210 | command-ID: bits & \\\cline{1-1}
|
---|
211 | 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command\\\hline\hline
|
---|
212 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & read \\\hline
|
---|
213 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & write \\\hline
|
---|
214 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & start run / take X events\\\hline
|
---|
215 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & stop run \\\hline
|
---|
216 | 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 & ping all FTUs \\\hline
|
---|
217 | 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & crate reset \\\hline
|
---|
218 | 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & autosend on/off \\\hline
|
---|
219 | \end{tabular}
|
---|
220 | \caption{FTM command ID listing}
|
---|
221 | \label{tab:FTM-command-ID}
|
---|
222 | \end{table}
|
---|
223 |
|
---|
224 | \begin{table}[p]
|
---|
225 | \centering
|
---|
226 | \begin{tabular}{|r|r|r|}\hline
|
---|
227 | command parameter: bits & & \\\cline{1-1}
|
---|
228 | 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
229 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & read complete static data block & no\\\hline
|
---|
230 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & read complete dynamic data block & no\\\hline
|
---|
231 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 &
|
---|
232 | read single address of static data block & address\\\hline
|
---|
233 | %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & read trigger list & no\\\hline
|
---|
234 | \end{tabular}
|
---|
235 | \caption{Command parameters for the 'read' command; only for the static data
|
---|
236 | block single addresses can be read.}
|
---|
237 | \label{tab:FTM-read-command-param}
|
---|
238 | \end{table}
|
---|
239 |
|
---|
240 | \begin{table}[p]
|
---|
241 | \centering
|
---|
242 | \begin{tabular}{|r|r|r|}\hline
|
---|
243 | command parameter: bits & & \\\cline{1-1}
|
---|
244 | 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
245 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & write complete static data block & all configuration data\\\hline
|
---|
246 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 &
|
---|
247 | write single address of static data block & address + data\\\hline
|
---|
248 | \end{tabular}
|
---|
249 | \caption{Command parameters for the 'write' command; only the static data
|
---|
250 | block can be written, therefore parameter value 0x2 is not used.}
|
---|
251 | \label{tab:FTM-write-command-param}
|
---|
252 | \end{table}
|
---|
253 |
|
---|
254 | \begin{table}[p]
|
---|
255 | \centering
|
---|
256 | \begin{tabular}{|r|r|r|}\hline
|
---|
257 | command parameter: bits & & \\\cline{1-1}
|
---|
258 | 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
259 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 & reports disabled & no\\\hline
|
---|
260 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & reports enabled & no\\\hline
|
---|
261 | \end{tabular}
|
---|
262 | \caption{Command parameters for the 'autosend on/off' command}
|
---|
263 | \label{tab:FTM-as-command-param}
|
---|
264 | \end{table}
|
---|
265 |
|
---|
266 | %\begin{table}[htbp]
|
---|
267 | %\centering
|
---|
268 | %\begin{tabular}{|r|r|r|}\hline
|
---|
269 | % command parameter: bits & & \\\cline{1-1}
|
---|
270 | % 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
271 | % 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline0 \vline 0 \vline0 \vline1 & write static data & static data block\\\hline
|
---|
272 | %\end{tabular}
|
---|
273 | %\caption{Command parameters for the 'write' command}
|
---|
274 | %\label{tab:FTM-write-command-param}
|
---|
275 | %\end{table}
|
---|
276 |
|
---|
277 | In table \ref{tab:FTM-start-command-param} the parameters to start a run are
|
---|
278 | listed. The type of the run is fully described in the FTM configuration
|
---|
279 | (static data block, see section~\ref{sec:Static-data-block}), which always has
|
---|
280 | to be sent by the FTMcontrol before starting a run. Therefore the only
|
---|
281 | option is to start an "endless" run or to take X events instead. In the latter
|
---|
282 | case X is defined by a two words (32 bit) long unsigned integer, making up the
|
---|
283 | command data block. The 'start run' command enables the transmission of
|
---|
284 | trigger signals (physics, calibration or pedestal) to the FAD boards and
|
---|
285 | resets the trigger and time counters. There is no parameter for stopping a
|
---|
286 | run. If a number of events has been specified ('take X events'), the run will
|
---|
287 | terminate if either the 'stop run' command is received or the requested number
|
---|
288 | of events is reached. In any case the trigger and time counters are reset,
|
---|
289 | too.
|
---|
290 |
|
---|
291 | \begin{table}[p]
|
---|
292 | \centering
|
---|
293 | \begin{tabular}{|r|r|r|}\hline
|
---|
294 | command parameter: bits & & \\\cline{1-1}
|
---|
295 | 15 ... 8 \vline7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
296 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & start run & no \\\hline
|
---|
297 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & take X events & number of events X \\\hline
|
---|
298 | %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & start taking pedestals & no \\\hline
|
---|
299 | %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 1 & take X pedestals events & number of events X \\\hline
|
---|
300 | %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & start calibration run & no \\\hline
|
---|
301 | %0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 1 & take X calibration events & number of events X \\\hline
|
---|
302 | \end{tabular}
|
---|
303 | \caption{Command parameters for the 'start run' command: "start run" means an
|
---|
304 | "endless" run, i.e. no pre-defined number of events; if a number of events X
|
---|
305 | is specified, this is done with a 32-bit unsigned long integer (big endian).}
|
---|
306 | \label{tab:FTM-start-command-param}
|
---|
307 | \end{table}
|
---|
308 |
|
---|
309 | %\begin{table}[htbp]
|
---|
310 | %\centering
|
---|
311 | %\begin{tabular}{|r|r|r|}\hline
|
---|
312 | % command parameter: bits & & \\\cline{1-1}
|
---|
313 | % 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
314 | % 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & stop run & no\\\hline
|
---|
315 | %\end{tabular}
|
---|
316 | %\caption{Command parameter for the 'stop run' command}
|
---|
317 | %\label{tab:FTM-stop-command-param}
|
---|
318 | %\end{table}
|
---|
319 |
|
---|
320 | In case of a 'ping FTUs' command the FTM will address the FTUs one by one and
|
---|
321 | readout their DNA. The results are collected in the FTU list (see section
|
---|
322 | \ref{sec:FTU-List}), which is sent back to the FTMcontrol. There are no
|
---|
323 | parameters for this command. With the 'crate reset' command the boards of a
|
---|
324 | particular crate can be rebooted, where the command parameter defines the
|
---|
325 | crate number (see table \ref{tab:FTM-reset-command-param}). Only one crate
|
---|
326 | reset at a time is possible, i.e. the FTM firmware does not allow to reset
|
---|
327 | multiple crates in one command.
|
---|
328 |
|
---|
329 | \begin{table}[p]
|
---|
330 | \centering
|
---|
331 | \begin{tabular}{|r|r|r|}\hline
|
---|
332 | command parameter: bits & & \\\cline{1-1}
|
---|
333 | 15 ... 8 \vline 7 \vline 6 \vline 5 \vline 4 \vline 3 \vline 2 \vline 1 \vline 0 & command & data block\\\hline\hline
|
---|
334 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 & reset crate 0 & no\\\hline
|
---|
335 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 & reset crate 1 & no\\\hline
|
---|
336 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 & reset crate 2 & no\\\hline
|
---|
337 | 0 \vline 0 \vline 0 \vline 0 \vline 0 \vline 1 \vline 0 \vline 0 \vline 0 & reset crate 3 & no\\\hline
|
---|
338 | \end{tabular}
|
---|
339 | \caption{Command parameters for the 'crate reset' command: the command parameter may only contain a single "1"
|
---|
340 | corresponding to only one crate reset at a time.}
|
---|
341 | \label{tab:FTM-reset-command-param}
|
---|
342 | \end{table}
|
---|
343 |
|
---|
344 | \chapter{FTM data blocks}
|
---|
345 | \label{cha:FTM-data-block}
|
---|
346 |
|
---|
347 | The trigger master features two main data blocks, named 'static data block'
|
---|
348 | and 'dynamic data block' in the following. They are implemented in the
|
---|
349 | firmware as block-RAM. In addition, there is the so-called 'FTU list', which
|
---|
350 | is filled only on request ('ping FTUs' command). If any of these blocks is
|
---|
351 | sent to the FTMcontrol (either automatically or on demand), a header with a
|
---|
352 | size of 14 words is added, and the whole data package is put between a start
|
---|
353 | and an end delimiter (see table~\ref{tab:FTM-package}). The header is
|
---|
354 | identical for all data blocks and contains solely read-only information: the
|
---|
355 | type and length of the package, the FTM status, the FTM board ID (57-bit
|
---|
356 | Xilinx device DNA \cite{ds557, ds610, wp267, wp266}), a firmware ID and the
|
---|
357 | readings of the trigger counter and time stamp counter (see
|
---|
358 | table~\ref{tab:FTM-header}).
|
---|
359 |
|
---|
360 | \begin{table}[h]
|
---|
361 | \centering
|
---|
362 | \begin{tabular}{|c|c|c|c|}\hline
|
---|
363 | start delimiter & header & data block & end delimiter \\\hline
|
---|
364 | 0xFB01 & 14 words & optional size & 0x04FE\\\hline
|
---|
365 | \end{tabular}
|
---|
366 | \caption{Structure of a data package as sent by the FTM to the FTMcontrol
|
---|
367 | software. The start and end delimiters are the same as used for the FAD boards.}
|
---|
368 | \label{tab:FTM-package}
|
---|
369 | \end{table}
|
---|
370 |
|
---|
371 | \begin{table}[h]
|
---|
372 | \centering
|
---|
373 | \begin{tabular}{|l|l|c|}\hline
|
---|
374 | word no & content & description\\\hline\hline
|
---|
375 | 0x000 & type of data package & 1: SD, 2: DD, 3: FTU-list, 4: error, 5: single SD-word\\\hline
|
---|
376 | 0x001 & length of data package & after header, including end delimiter\\\hline
|
---|
377 | 0x002 & status of FTM & 1: IDLE, 2: CONFIG, 3: RUNNING, 4: CALIB\\\hline
|
---|
378 | 0x003 & board ID bits 63...48 & FPGA device DNA\\\hline
|
---|
379 | 0x004 & board ID bits 47...32 & FPGA device DNA\\\hline
|
---|
380 | 0x005 & board ID bits 31...16 & FPGA device DNA\\\hline
|
---|
381 | 0x006 & board ID bits 15... 0 & FPGA device DNA\\\hline
|
---|
382 | 0x007 & firmware ID & defined as a VHDL constant\\\hline
|
---|
383 | 0x008 & trigger counter bits 31...16 & at read-out time\\\hline
|
---|
384 | 0x009 & trigger counter bits 15... 0 & at read-out time\\\hline
|
---|
385 | 0x00A & time stamp bits 63...48 & filled up with zeros\\\hline
|
---|
386 | 0x00B & time stamp bits 47...32 & at read-out time\\\hline
|
---|
387 | 0x00C & time stamp bits 31...16 & at read-out time\\\hline
|
---|
388 | 0x00D & time stamp bits 15... 0 & at read-out time\\\hline
|
---|
389 | \end{tabular}
|
---|
390 | \caption{Header structure for sending a data block or error message}
|
---|
391 | \label{tab:FTM-header}
|
---|
392 | \end{table}
|
---|
393 |
|
---|
394 | \section{Static data block}
|
---|
395 | \label{sec:Static-data-block}
|
---|
396 |
|
---|
397 | The static data block contains all the settings needed to configure and
|
---|
398 | operate the FTM. It has to be written by the FTMcontrol each time before a run
|
---|
399 | is started or, in general, some component has to be reprogrammed. Single
|
---|
400 | register access is possible, but not foreseen for the standard data taking. In
|
---|
401 | addition, whenever the FTM board receives a new static data block, it performs
|
---|
402 | a complete reconfiguration including a reprogramming of the
|
---|
403 | FTUs. Table~\ref{tab:FTM-trigger-master-static-data-block} summarizes the
|
---|
404 | static data block. More details about the individual registers can be found in
|
---|
405 | the subsequent tables.
|
---|
406 |
|
---|
407 | %These settings are readable and writable by the main control using the
|
---|
408 | %corresponding commands 'read static data block' or 'write static data block',
|
---|
409 | %respectively. There is one exception from writability: In case the static
|
---|
410 | %data block is read back, the first eleven words (address 0..A) are identical
|
---|
411 | %with the dynamic data block and the trigger list shown in
|
---|
412 | %\ref{tab:FTM-trigger-master-dynamic-data-block} and
|
---|
413 | %\ref{tab:FTM-trigger-list}. These first eleven words can only be read and not
|
---|
414 | %written. The board ID is supposed to be the Xilinx device DNA \cite{ds557,
|
---|
415 | % ds610, wp267, wp266}, the 57 bit device ID of the FPGA. When using the
|
---|
416 | %'write static data block' command, the static data block must start with the
|
---|
417 | %'general settings register' at address 0x00B. So there is an offset in the
|
---|
418 | %addresses of 0x00B between the 'read-out-version' and the 'write-version' of
|
---|
419 | %the static data block.
|
---|
420 |
|
---|
421 | \begin{longtable}[h]{|l|l|c|}\hline
|
---|
422 | \centering
|
---|
423 | word no & content & description\\\hline\hline
|
---|
424 | 0x000 & general settings & see table~\ref{tab:FTM-general-settings-register} and text\\\hline
|
---|
425 | 0x001 & on-board status LEDs & see table~\ref{tab:FTM-LED-register}\\\hline
|
---|
426 | 0x002 & light pulser and pedestal trigger period & see table~\ref{tab:FTM-frequency-register} and text\\\hline
|
---|
427 | 0x003 & sequence of LP1, LP2 and PED triggers & see table~\ref{tab:FTM-ratio-register} and text\\\hline
|
---|
428 |
|
---|
429 | 0x004 & light pulser 1 amplitude & see table~\ref{tab:LP1-amplitude-register} and text\\\hline
|
---|
430 | 0x005 & light pulser 2 amplitude & see table~\ref{tab:LP2-amplitude-register} and text\\\hline
|
---|
431 | 0x006 & light pulser 1 delay & 8ns + delay value*4ns\\\hline
|
---|
432 | 0x007 & light pulser 2 delay & 8ns + delay value*4ns\\\hline
|
---|
433 |
|
---|
434 | 0x008 & majority coincidence n (for physics) & see table~\ref{tab:FTM-majority} and text\\\hline
|
---|
435 | 0x009 & majority coincidence n (for calibration) & see table~\ref{tab:FTM-majority} and text\\\hline
|
---|
436 | 0x00A & trigger delay & 8ns + delay value*4ns, 10 bits used\\\hline
|
---|
437 | 0x00B & timemarker delay & 8ns + delay value*4ns, 10 bits used\\\hline
|
---|
438 | 0x00C & dead time & 8ns + value*4ns, 16 bits used\\\hline
|
---|
439 | 0x00D & clock conditioner R0 bits 31...16 & \\\hline
|
---|
440 | 0x00E & clock conditioner R0 bits 15...0 & \\\hline
|
---|
441 | 0x00F & clock conditioner R1 bits 31...16 & \\\hline
|
---|
442 | 0x010 & clock conditioner R1 bits 15...0 & \\\hline
|
---|
443 | 0x011 & clock conditioner R8 bits 31...16 & \\\hline
|
---|
444 | 0x012 & clock conditioner R8 bits 15...0 & \\\hline
|
---|
445 | 0x013 & clock conditioner R9 bits 31...16 & \\\hline
|
---|
446 | 0x014 & clock conditioner R9 bits 15...0 & \\\hline
|
---|
447 | 0x015 & clock conditioner R11 bits 31...16 & \\\hline
|
---|
448 | 0x016 & clock conditioner R11 bits 15...0 & \\\hline
|
---|
449 | 0x017 & clock conditioner R13 bits 31...16 & \\\hline
|
---|
450 | 0x018 & clock conditioner R13 bits 15...0 & \\\hline
|
---|
451 | 0x019 & clock conditioner R14 bits 31...16 & \\\hline
|
---|
452 | 0x01A & clock conditioner R14 bits 15...0 & \\\hline
|
---|
453 | 0x01B & clock conditioner R15 bits 31...16 & \\\hline
|
---|
454 | 0x01C & clock conditioner R15 bits 15...0 & \\\hline
|
---|
455 | 0x01D & maj. coinc. window (for physics) & 8ns + value*4ns, 4 bits used\\\hline
|
---|
456 | 0x01E & maj. coinc. window (for calibration) & 8ns + value*4ns, 4 bits used \\\hline
|
---|
457 | 0x01F & spare & \\\hline
|
---|
458 | 0x020 & enables patch 0 board 0 crate 0 & see FTU documentation\\\hline
|
---|
459 | 0x021 & enables patch 1 board 0 crate 0 & see FTU documentation\\\hline
|
---|
460 | 0x022 & enables patch 2 board 0 crate 0 & see FTU documentation\\\hline
|
---|
461 | 0x023 & enables patch 3 board 0 crate 0 & see FTU documentation\\\hline
|
---|
462 | 0x024 & DAC$\_$A board 0 crate 0 & see FTU documentation \\\hline
|
---|
463 | 0x025 & DAC$\_$B board 0 crate 0 & see FTU documentation \\\hline
|
---|
464 | 0x026 & DAC$\_$C board 0 crate 0 & see FTU documentation \\\hline
|
---|
465 | 0x027 & DAC$\_$D board 0 crate 0 & see FTU documentation \\\hline
|
---|
466 | 0x028 & DAC$\_$H board 0 crate 0 & see FTU documentation \\\hline
|
---|
467 | 0x029 & Prescaling board 0 crate 0 & (value+1)/2~[s], also autosend period \\\hline
|
---|
468 | 0x02A & enables patch 0 board 1 crate 0 & see FTU documentation \\\hline
|
---|
469 | 0x02B & enables patch 1 board 1 crate 0 & see FTU documentation \\\hline
|
---|
470 | 0x02C & enables patch 2 board 1 crate 0 & see FTU documentation \\\hline
|
---|
471 | 0x02D & enables patch 3 board 1 crate 0 & see FTU documentation \\\hline
|
---|
472 | 0x02E & DAC$\_$A board 1 crate 0 & see FTU documentation \\\hline
|
---|
473 | 0x02F & DAC$\_$B board 1 crate 0 & see FTU documentation \\\hline
|
---|
474 | 0x030 & DAC$\_$C board 1 crate 0 & see FTU documentation \\\hline
|
---|
475 | 0x031 & DAC$\_$D board 1 crate 0 & see FTU documentation \\\hline
|
---|
476 | 0x032 & DAC$\_$H board 1 crate 0 & see FTU documentation \\\hline
|
---|
477 | 0x033 & Prescaling board 1 crate 0 & see FTU documentation \\\hline
|
---|
478 | ... & ... & \\\hline
|
---|
479 | 0x1A6 & enables patch 0 board 9 crate 3 & see FTU documentation \\\hline
|
---|
480 | 0x1A7 & enables patch 1 board 9 crate 3 & see FTU documentation \\\hline
|
---|
481 | 0x1A8 & enables patch 2 board 9 crate 3 & see FTU documentation \\\hline
|
---|
482 | 0x1A9 & enables patch 3 board 9 crate 3 & see FTU documentation \\\hline
|
---|
483 | 0x1AA & DAC$\_$A board 9 crate 3 & see FTU documentation \\\hline
|
---|
484 | 0x1AB & DAC$\_$B board 9 crate 3 & see FTU documentation \\\hline
|
---|
485 | 0x1AC & DAC$\_$C board 9 crate 3 & see FTU documentation \\\hline
|
---|
486 | 0x1AD & DAC$\_$D board 9 crate 3 & see FTU documentation \\\hline
|
---|
487 | 0x1AE & DAC$\_$H board 9 crate 3 & see FTU documentation \\\hline
|
---|
488 | 0x1AF & Prescaling board 9 crate 3 & see FTU documentation \\\hline
|
---|
489 | 0x1B0 & active FTU list crate 0 & see FTU documentation \\\hline
|
---|
490 | 0x1B1 & active FTU list crate 1 & see FTU documentation \\\hline
|
---|
491 | 0x1B2 & active FTU list crate 2 & see FTU documentation \\\hline
|
---|
492 | 0x1B3 & active FTU list crate 3 & see FTU documentation \\\hline
|
---|
493 | \caption{Overview of the FTM static data block}
|
---|
494 | \label{tab:FTM-trigger-master-static-data-block}
|
---|
495 | \end{longtable}
|
---|
496 |
|
---|
497 | The FTM general settings register is detailed in table
|
---|
498 | \ref{tab:FTM-general-settings-register}. The 'TIM\_CLK' bit defines whether
|
---|
499 | the time marker is generated by the FPGA ('TIM\_CLK' = 0, default for physics
|
---|
500 | data taking), or whether it is generated by the clock conditioner ('TIM\_CLK'
|
---|
501 | = 1, e.g. for DRS timing calibration). The 'ext\_veto', 'ext\_trig\_1' and
|
---|
502 | 'ext\_trig\_2' bits enable (1) or disable (0) the NIM inputs for the external
|
---|
503 | veto and trigger signals, respectively. In order to select which trigger
|
---|
504 | sources are active during a run, the bits 'LP1', 'LP2', 'ped' and 'trigger'
|
---|
505 | are foreseen (0 disabled, 1 enabled). During a physics run, for example,
|
---|
506 | 'LP1', 'ped' and 'trigger' should all be set to generate interleaved
|
---|
507 | calibration and pedestal events as well as activate the 'n-out-of-40' trigger
|
---|
508 | input. For a didicated pedestal run only 'ped' should be set, since in this
|
---|
509 | case the FTM sends directly a trigger to the FADs. For calibration runs it
|
---|
510 | depends on whether the external (LP1) or internal (LP2) light pulser is used:
|
---|
511 | For the first case 'LP1' and 'trigger' have to be set, since here the full
|
---|
512 | trigger chain is involved and the camera triggers based on G-APD signals. For
|
---|
513 | the second case only 'LP2' is needed, because the shutter is closed and the
|
---|
514 | FTM sends directly the trigger signal to the FADs (like for pedestal
|
---|
515 | events). Bits 8 to 15 of the general settings register are not used up to now.
|
---|
516 |
|
---|
517 | \begin{table}[h]
|
---|
518 | \centering
|
---|
519 | \begin{small}
|
---|
520 | \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\hline
|
---|
521 | Bit & 15...8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
|
---|
522 | Content & x & trigger & ped & LP2 & LP1 & ext\_trig\_2 & ext\_trig\_1& ext\_veto & TIM\_CLK \\\hline
|
---|
523 | \end{tabular}
|
---|
524 | \end{small}
|
---|
525 | \caption{FTM general settings register}
|
---|
526 | \label{tab:FTM-general-settings-register}
|
---|
527 | \end{table}
|
---|
528 |
|
---|
529 | %\begin{table}[!h]
|
---|
530 | %\centering
|
---|
531 | %\begin{tabular}{|l|l|}\hline
|
---|
532 | %TIM\_CClk & description \\\hline\hline
|
---|
533 | %0 & Time marker generated in the FPGA \\\hline
|
---|
534 | %1 & Time marker generated by the clock conditioner \\\hline
|
---|
535 | %\end{tabular}
|
---|
536 | %\caption{FTM Time marker indication}
|
---|
537 | %\label{tab:FTM-Time-marker-indication}
|
---|
538 | %\end{table}
|
---|
539 |
|
---|
540 | %\begin{table}[!h]
|
---|
541 | %\centering
|
---|
542 | %\begin{tabular}{|l|l|}\hline
|
---|
543 | %ena$\_$ext$\_$Veto & description \\\hline\hline
|
---|
544 | %0 & disable external trigger veto\\\hline
|
---|
545 | %1 & enable external trigger veto \\\hline
|
---|
546 | %\end{tabular}
|
---|
547 | %\caption{FTM external trigger}
|
---|
548 | %\label{tab:FTM-external-trigger}
|
---|
549 | %\end{table}
|
---|
550 |
|
---|
551 | %\begin{table}[!h]
|
---|
552 | %\centering
|
---|
553 | %\begin{tabular}{|l||l|}\hline
|
---|
554 | %ena\_LP1 & description \\\hline\hline
|
---|
555 | %0 & disable light pulser 1 \\\hline
|
---|
556 | %1 & enable light pulser 1\\\hline
|
---|
557 | %\end{tabular}
|
---|
558 | %\caption{FTM light pulser 1}
|
---|
559 | %\label{tab:FTM-light-pulser-1}
|
---|
560 | %\end{table}
|
---|
561 |
|
---|
562 | %\begin{table}[!h]
|
---|
563 | %\centering
|
---|
564 | %\begin{tabular}{|l||l|}\hline
|
---|
565 | %ena\_LP2 & description \\\hline\hline
|
---|
566 | %0 & disable light pulser 2 \\\hline
|
---|
567 | %1 & enable light pulser 2 \\\hline
|
---|
568 | %\end{tabular}
|
---|
569 | %\caption{FTM light pulser 2}
|
---|
570 | %\label{tab:FTM-light-pulser-2}
|
---|
571 | %\end{table}
|
---|
572 |
|
---|
573 | %\begin{table}[!h]
|
---|
574 | %\centering
|
---|
575 | %\begin{tabular}{|l||l|}\hline
|
---|
576 | %ena\_Ped & description \\\hline\hline
|
---|
577 | %0 & disable interleaved pedestal trigger \\\hline
|
---|
578 | %1 & enable interleaved pedestal trigger \\\hline
|
---|
579 | %\end{tabular}
|
---|
580 | %\caption{FTM interleaved pedestals}
|
---|
581 | %\label{tab:FTM-interleaved-pedestals}
|
---|
582 | %\end{table}
|
---|
583 |
|
---|
584 | %\begin{table}[!h]
|
---|
585 | %\centering
|
---|
586 | %\begin{small}
|
---|
587 | %\begin{tabular}{|l||l|}\hline
|
---|
588 | %ena\_LLC & description \\\hline\hline
|
---|
589 | %0 & disable low level calibration pulses \\\hline
|
---|
590 | %1 & enable low level calibration pulses \\\hline
|
---|
591 | %\end{tabular}
|
---|
592 | %\end{small}
|
---|
593 | %\caption{FTM low level calibration pulses}
|
---|
594 | %\label{tab:FTM-low-level-calibration-pulses}
|
---|
595 | %\end{table}
|
---|
596 |
|
---|
597 | The 'on-board status LEDs' register shown in table \ref{tab:FTM-LED-register}
|
---|
598 | allows to switch a total of eight LEDs on the FTM board for debugging purposes
|
---|
599 | by setting the corresponding bit high.
|
---|
600 |
|
---|
601 | \begin{table}[h]
|
---|
602 | \centering
|
---|
603 | \begin{small}
|
---|
604 | \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}\hline
|
---|
605 | Bit & 15...8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
|
---|
606 | Content & x & red$\_$3 & red$\_$2 & gn$\_$1 & ye$\_$1 & red$\_$1 & gn$\_$0 & ye$\_$0 & red$\_$0 \\\hline
|
---|
607 | \end{tabular}
|
---|
608 | \end{small}
|
---|
609 | \caption{'on-board status LEDs' register}
|
---|
610 | \label{tab:FTM-LED-register}
|
---|
611 | \end{table}
|
---|
612 |
|
---|
613 | The period (time distance, see table \ref{tab:FTM-frequency-register}), with
|
---|
614 | which light pulser and pedestal triggers are sent, is stored in the register
|
---|
615 | at address 0x002. It is given in [ms] and adjustable between 1\,ms and
|
---|
616 | 1023\,ms (10 bits used). The next register defines the sequence of LP1, LP2
|
---|
617 | and pedestal events (see table \ref{tab:FTM-ratio-register}).
|
---|
618 |
|
---|
619 | \begin{table}[h]
|
---|
620 | \centering
|
---|
621 | \begin{small}
|
---|
622 | \begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
|
---|
623 | Bit & 15 - 10 & 9 & 8 & ... & 2 & 1 & 0 \\\hline
|
---|
624 | Content & x & PERIOD\_9 & PERIOD\_8 & ... & PERIOD\_2 & PERIOD\_1 & PERIOD\_0 \\\hline
|
---|
625 | \end{tabular}
|
---|
626 | \end{small}
|
---|
627 | \caption{Register for the period [ms] of calibration and pedestal events}
|
---|
628 | \label{tab:FTM-frequency-register}
|
---|
629 | \end{table}
|
---|
630 |
|
---|
631 | \begin{table}[h]
|
---|
632 | \centering
|
---|
633 | \begin{small}
|
---|
634 | \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}\hline
|
---|
635 | Bit & 15 & 14 & ... & 10 & 9 & ... & 5 & 4 & ... & 0 \\\hline
|
---|
636 | Content & x & ped\_S4 & ... & ped\_S0 & LP2\_S4 & ... & LP2\_S0 & LP1\_S4 & ... & LP1\_S0 \\\hline
|
---|
637 | \end{tabular}
|
---|
638 | \end{small}
|
---|
639 | \caption{Register defining the sequence of LP1, LP2 and pedestal events; 5
|
---|
640 | bits used per value. By setting e.g. LP1/LP2/PED = 3/2/1, the systems
|
---|
641 | generates 3 LP1 triggers, followed by 2 LP2 triggers, followed by 1 PED
|
---|
642 | trigger (if they are also activated in the 'general settings' register).
|
---|
643 | The distance between the triggers is defined with another register
|
---|
644 | (table~\ref{tab:FTM-frequency-register}).}
|
---|
645 | \label{tab:FTM-ratio-register}
|
---|
646 | \end{table}
|
---|
647 |
|
---|
648 | %\begin{table}[!h]
|
---|
649 | %\centering
|
---|
650 | %\begin{tiny}
|
---|
651 | %\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline
|
---|
652 | %Bit & 15 - 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\\hline
|
---|
653 | %Function & x & LPR2\_9 & LPR2\_8 & LPR2\_7 & LPR2\_6 & LPR2\_5 & LPR2\_4 & LPR2\_3 & LPR2\_2 & LPR2\_1 & LPR2\_0 \\\hline
|
---|
654 | %\end{tabular}
|
---|
655 | %\end{tiny}
|
---|
656 | %\caption{Light pulser 2 frequency register at address 0x00E: This register contains the pulse rate of the light
|
---|
657 | % pulser 2 in Hz.}
|
---|
658 | %\label{tab:Light-pulser-2-frequancy-register}
|
---|
659 | %\end{table}
|
---|
660 |
|
---|
661 |
|
---|
662 |
|
---|
663 |
|
---|
664 |
|
---|
665 |
|
---|
666 |
|
---|
667 |
|
---|
668 |
|
---|
669 |
|
---|
670 |
|
---|
671 | In order to define the amplitude and characteristics of the light pulses that
|
---|
672 | are generated by the LP1 and the LP2 system, the registers 'LP1 amplitude' and
|
---|
673 | 'LP2 amplitude' are used, respectively. These registers are presented in
|
---|
674 | table~\ref{tab:LP1-amplitude-register} and table~\ref{tab:LP2-amplitude-register}.
|
---|
675 | The two most significant bit allow to switch on additional LEDs, while the six
|
---|
676 | least significant bits are used for the FM (frequency modulation) on the
|
---|
677 | light pulser board. These six bits (FM1\_5 ... FM1\_0 and FM2\_5 ... FM2\_0
|
---|
678 | respectively) are frequency dividing factors and the resulting frequency for the
|
---|
679 | feedback is $ f_{FM} = \frac{5MHz}{25 + \mid FM1\_5 ... FM1\_0 \mid} $.
|
---|
680 |
|
---|
681 |
|
---|
682 |
|
---|
683 |
|
---|
684 | This FM signal is used for stabilizing the amplitude
|
---|
685 | of the light pulses, see the schematics \cite{FLD-Schematics}.
|
---|
686 |
|
---|
687 | The light pulser systems are controlled from the FTM by means of four LVDS control lines:
|
---|
688 | The first line goes directly to the LED driver circuit and triggers a lightpulse.
|
---|
689 | The FM signal is on the second line.
|
---|
690 | The third and forth line allow to switch on additional LEDs.
|
---|
691 |
|
---|
692 |
|
---|
693 |
|
---|
694 |
|
---|
695 |
|
---|
696 |
|
---|
697 |
|
---|
698 |
|
---|
699 | \begin{table}[!h]
|
---|
700 | \centering
|
---|
701 | \begin{small}
|
---|
702 | \begin{tabular}{|l|l|l|l|l|}\hline
|
---|
703 | Bit & 15 & 14 & 13 ... 6 & 5 ... 0 \\\hline
|
---|
704 | Content & add\_LEDs1\_1& add\_LEDs1\_0 & x & FM1\_5 ... FM1\_0 \\\hline
|
---|
705 | \end{tabular}
|
---|
706 | \end{small}
|
---|
707 | \caption{Light pulser 1 amplitude register}
|
---|
708 | \label{tab:LP1-amplitude-register}
|
---|
709 | \end{table}
|
---|
710 |
|
---|
711 |
|
---|
712 |
|
---|
713 |
|
---|
714 | \begin{table}[!h]
|
---|
715 | \centering
|
---|
716 | \begin{small}
|
---|
717 | \begin{tabular}{|l|l|l|l|l|}\hline
|
---|
718 | Bit & 15 & 14 & 13 ... 6 & 5 ... 0 \\\hline
|
---|
719 | Content & add\_LEDs2\_1& add\_LEDs2\_0 & x & FM2\_5 ... FM2\_0 \\\hline
|
---|
720 | \end{tabular}
|
---|
721 | \end{small}
|
---|
722 | \caption{Light pulser 2 amplitude register}
|
---|
723 | \label{tab:LP2-amplitude-register}
|
---|
724 | \end{table}
|
---|
725 |
|
---|
726 |
|
---|
727 |
|
---|
728 |
|
---|
729 |
|
---|
730 |
|
---|
731 |
|
---|
732 |
|
---|
733 |
|
---|
734 |
|
---|
735 |
|
---|
736 |
|
---|
737 |
|
---|
738 |
|
---|
739 |
|
---|
740 |
|
---|
741 |
|
---|
742 | The different settings of the 'n-out-of-40' logic (physics or calibration
|
---|
743 | events) are stored in two separate registers, which both have a structure
|
---|
744 | according to table~\ref{tab:FTM-majority}.
|
---|
745 |
|
---|
746 | \begin{table}[!h]
|
---|
747 | \centering
|
---|
748 | \begin{small}
|
---|
749 | \begin{tabular}{|l|l|l|l|l|l|l|l|}\hline
|
---|
750 | Bit & 15...6 & 5 & 4 & 3 & 2 &1 & 0 \\\hline
|
---|
751 | Content & x & n5 & n4 & n3 & n2 & n1 & n0 \\\hline
|
---|
752 | \end{tabular}
|
---|
753 | \end{small}
|
---|
754 | \caption{Structure of the two majority coincidence (n-out-of-40) registers; the binary value
|
---|
755 | in these registers is the minimum number n of FTU trigger primitives required to trigger an event (physics or calibration)}
|
---|
756 | \label{tab:FTM-majority}
|
---|
757 | \end{table}
|
---|
758 |
|
---|
759 | In addition, there are several registers in the static data block to define
|
---|
760 | delays (e.g. for the trigger). Also a general dead time to be applied after
|
---|
761 | each trigger can be set (to compensate for the delay of the busy line). The
|
---|
762 | clock conditioner settings are specified at address 0x00D to 0x01C (LMK03000
|
---|
763 | from National Semiconductor, for more details see \cite{LMK03000}).
|
---|
764 |
|
---|
765 | Starting at address 0x020, the FTU settings are stored. The FTM always holds
|
---|
766 | the complete FTU parameters in the static data block. For the meaning of these
|
---|
767 | registers, please refer to the FTU firmware specifications document
|
---|
768 | \cite{FTUspecs}. The register at address 0x029 is special in the sense that,
|
---|
769 | in addition to its normal meaning, it also defines the time period with which
|
---|
770 | the FTU rates are sent automatically to the FTMcontrol software. In case not
|
---|
771 | all FTUs are connected during e.g. the testing phase, or a FTU is broken, the
|
---|
772 | 'active FTU list' registers can be used to disable certain boards. Bits 9...0
|
---|
773 | of one of the active FTU lists (address 0x1B0 to 0x1B3, corresponding to crate
|
---|
774 | 0 to 3) contain the "active" flag for every FTU board. Setting a bit activates
|
---|
775 | the corresponding FTU board while a "0" deactivates it.
|
---|
776 |
|
---|
777 | \section{Dynamic data block}
|
---|
778 | \label{sec:Dynamic-data-block}
|
---|
779 | The dynamic data block shown in table \ref{tab:FTM-dynamic-data-block}
|
---|
780 | contains permanently updated data stored inside the FTM FPGA. It contains the
|
---|
781 | actual on-time counter reading, the board temperatures and the trigger rates
|
---|
782 | measured by the FTUs. This data block is updated and sent periodically by the
|
---|
783 | FTM. Thus the FTMcontrol software receives periodically a corresponding data
|
---|
784 | package via ethernet. The counting interval of the FTU board 0 on crate 0
|
---|
785 | ('prescaling' register) defines the period. The on-board 12-bit temperature
|
---|
786 | sensors are MAX6662 chips from Maxim Products. For more information about
|
---|
787 | these components and their data see \cite{MAX6662}. When sending the dynamic
|
---|
788 | data block, the header defined in table~\ref{tab:FTM-header} is added at the
|
---|
789 | beginning.
|
---|
790 |
|
---|
791 | \newpage
|
---|
792 |
|
---|
793 | % \begin{table}[h]
|
---|
794 | % \centering
|
---|
795 | \begin{longtable}[h]{|l|l|}\hline
|
---|
796 | word no & content\\\hline\hline
|
---|
797 | 0x000 & on-time counter at read-out time bits 63...48, filled up with zeros \\\hline
|
---|
798 | 0x001 & on-time counter at read-out time bits 47...32 \\\hline
|
---|
799 | 0x002 & on-time counter at read-out time bits 31...16 \\\hline
|
---|
800 | 0x003 & on-time counter at read-out time bits 15...0 \\\hline
|
---|
801 | 0x004 & temperature sensor 0: component U45 on the FTM schematics \cite{FTM-Schematics}\\\hline
|
---|
802 | 0x005 & temperature sensor 1: U46 \\\hline
|
---|
803 | 0x006 & temperature sensor 2: U48 \\\hline
|
---|
804 | 0x007 & temperature sensor 3: U49 \\\hline
|
---|
805 | 0x008 & rate counter bit 29...16 patch 0 board 0 crate 0 \\\hline
|
---|
806 | 0x009 & rate counter bit 15...0 patch 0 board 0 crate 0 \\\hline
|
---|
807 | 0x00A & rate counter bit 29...16 patch 1 board 0 crate 0 \\\hline
|
---|
808 | 0x00B & rate counter bit 15...0 patch 1 board 0 crate 0 \\\hline
|
---|
809 | 0x00C & rate counter bit 29...16 patch 2 board 0 crate 0 \\\hline
|
---|
810 | 0x00D & rate counter bit 15...0 patch 2 board 0 crate 0 \\\hline
|
---|
811 | 0x00E & rate counter bit 29...16 patch 3 board 0 crate 0 \\\hline
|
---|
812 | 0x00F & rate counter bit 15...0 patch 3 board 0 crate 0 \\\hline
|
---|
813 | 0x010 & rate counter bit 29...16 total board 0 crate 0 \\\hline
|
---|
814 | 0x011 & rate counter bit 15...0 total board 0 crate 0\\\hline
|
---|
815 | 0x012 & Overflow register board 0 crate 0 \\\hline
|
---|
816 | 0x013 & CRC-error register board 0 crate 0 \\\hline
|
---|
817 | 0x014 & rate counter bit 29...16 patch 0 board 1 crate 0 \\\hline
|
---|
818 | 0x015 & rate counter bit 15...0 patch 0 board 1 crate 0 \\\hline
|
---|
819 | 0x016 & rate counter bit 29...16 patch 1 board 1 crate 0 \\\hline
|
---|
820 | 0x017 & rate counter bit 15...0 patch 1 board 1 crate 0 \\\hline
|
---|
821 | 0x018 & rate counter bit 29...16 patch 2 board 1 crate 0 \\\hline
|
---|
822 | 0x019 & rate counter bit 15...0 patch 2 board 1 crate 0 \\\hline
|
---|
823 | 0x01A & rate counter bit 29...16 patch 3 board 1 crate 0 \\\hline
|
---|
824 | 0x01B & rate counter bit 15...0 patch 3 board 1 crate 0 \\\hline
|
---|
825 | 0x01C & rate counter bit 29...16 total board 1 crate 0 \\\hline
|
---|
826 | 0x01D & rate counter bit 15...0 total board 1 crate 0 \\\hline
|
---|
827 | 0x01E & Overflow register board 1 crate 0 \\\hline
|
---|
828 | 0x01F & CRC-error register board 1 crate 0 \\\hline
|
---|
829 | ... & ... \\\hline
|
---|
830 | 0x1E7 & CRC-error register board 9 crate 3 \\\hline
|
---|
831 | % \end{longtable}
|
---|
832 | \caption{FTM dynamic data block}
|
---|
833 | \label{tab:FTM-dynamic-data-block}
|
---|
834 | \end{longtable}
|
---|
835 |
|
---|
836 | %\section{Trigger-list}
|
---|
837 | %\label{sec:trigger-list}
|
---|
838 | %The FTM board records all triggers in a list, the so-called trigger-list.
|
---|
839 | %This trigger-list comprises a maximum of 50 triggers. The first eleven words
|
---|
840 | %are the same as in the static- and dynamic data block. During data-taking-,
|
---|
841 | %calibration- and trigger runs, the Trigger-list is automatically sent to the
|
---|
842 | %main control each time the 50 triggers are reached or the run is finished. In
|
---|
843 | %addition, the Trigger-list can also be read-out by the main control with the
|
---|
844 | %according command. In case the run finishes or is terminated, as well as when
|
---|
845 | %read out manually, the trigger list might be shorter than 50 events.
|
---|
846 |
|
---|
847 | %% \begin{table}[h]
|
---|
848 | %% \centering
|
---|
849 | %\begin{longtable}[h]{|l|l|}\hline
|
---|
850 | %address & content\\\hline\hline
|
---|
851 | %0x000 & board ID bit 63 - 48 \\\hline
|
---|
852 | %0x001 & board ID bit 47 - 32\\\hline
|
---|
853 | %0x002 & board ID bit 31 - 16\\\hline
|
---|
854 | %0x003 & board ID bit 15 - 0\\\hline
|
---|
855 | %0x004 & firmware ID \\\hline
|
---|
856 | %0x005 & Trigger counter at read-out time bits 31 .. 16 \\\hline
|
---|
857 | %0x006 & Trigger counter at read-out time bits 15 .. 0\\\hline
|
---|
858 | %0x007 & Time stamp counter at read-out time bits 47 .. 32 \\\hline
|
---|
859 | %0x008 & Time stamp counter at read-out time bits 31 .. 16 \\\hline
|
---|
860 | %0x009 & Time stamp counter at read-out time bits 15 .. 0 \\\hline
|
---|
861 | %0x00A & spare \\\hline
|
---|
862 |
|
---|
863 | %0x00B & on-time counter at read-out time bits 47 .. 32 \\\hline
|
---|
864 | %0x00C & on-time counter at read-out time bits 31 .. 16 \\\hline
|
---|
865 | %0x00D & on-time counter at read-out time bits 15 .. 0 \\\hline
|
---|
866 |
|
---|
867 | %0x00E & 1st event Trigger-ID \\\hline
|
---|
868 | %0x00F & 1st event Trigger-ID \\\hline
|
---|
869 | %0x010 & 1st event Trigger-ID \\\hline
|
---|
870 | %0x011 & 1st event Trigger primitives crate 0 \\\hline
|
---|
871 | %0x012 & 1st event Trigger primitives crate 1 \\\hline
|
---|
872 | %0x013 & 1st event Trigger primitives crate 2 \\\hline
|
---|
873 | %0x014 & 1st event Trigger primitives crate 3 \\\hline
|
---|
874 | %0x015 & 1st event Time stamp counter at trigger time bits 47 .. 32 \\\hline
|
---|
875 | %0x016 & 1st event Time stamp counter at trigger time bits 31 .. 16 \\\hline
|
---|
876 | %0x017 & 1st event Time stamp counter at trigger time bits 15 .. 0 \\\hline
|
---|
877 |
|
---|
878 | %0x018 & 2nd event Trigger-ID \\\hline
|
---|
879 | %0x019 & 2nd event Trigger-ID \\\hline
|
---|
880 | %0x01A & 2nd event Trigger-ID \\\hline
|
---|
881 | %0x01B & 2nd event Trigger primitives crate 0 \\\hline
|
---|
882 | %0x01C & 2nd event Trigger primitives crate 1 \\\hline
|
---|
883 | %0x01D & 2nd event Trigger primitives crate 2 \\\hline
|
---|
884 | %0x01E & 2nd event Trigger primitives crate 3 \\\hline
|
---|
885 | %0x01F & 2nd event Time stamp counter at trigger time bits 47 .. 32 \\\hline
|
---|
886 | %0x020 & 2nd event Time stamp counter at trigger time bits 31 .. 16 \\\hline
|
---|
887 | %0x021 & 2nd event Time stamp counter at trigger bits 15 .. 0 \\\hline
|
---|
888 | %... & ...\\\hline
|
---|
889 | %0x1F8 & 50th event Trigger-ID \\\hline
|
---|
890 | %0x1F9 & 50th event Trigger-ID \\\hline
|
---|
891 | %0x1FA & 50th event Trigger-ID \\\hline
|
---|
892 | %0x1FB & 50th event Trigger primitives crate 0 \\\hline
|
---|
893 | %0x1FC & 50th event Trigger primitives crate 1 \\\hline
|
---|
894 | %0x1FD & 50th event Trigger primitives crate 2 \\\hline
|
---|
895 | %0x1FE & 50th event Trigger primitives crate 3 \\\hline
|
---|
896 | %0x1FF & 50th event Time stamp counter at trigger time bits 47 .. 32 \\\hline
|
---|
897 | %0x200 & 50th event Time stamp counter at trigger time bits 31 .. 16 \\\hline
|
---|
898 | %0x201 & 50th event Time stamp counter at trigger bits 15 .. 0 \\\hline
|
---|
899 |
|
---|
900 | %% \end{longtable}
|
---|
901 | %\caption{FTM trigger list}
|
---|
902 | %\label{tab:FTM-trigger-list}
|
---|
903 | %\end{longtable}
|
---|
904 |
|
---|
905 | \section{FTU list}
|
---|
906 | \label{sec:FTU-List}
|
---|
907 | When the FTM board receives the 'ping all FTUs' instruction, it sends a ping
|
---|
908 | command to all FTU boards and gathers the FTU boards responses to a list. This
|
---|
909 | list is called 'FTU list' and shown in table \ref{tab:FTU-list}. When the FTU
|
---|
910 | list is complete, it is sent back via ethernet with the header defined in
|
---|
911 | table~\ref{tab:FTM-header}.
|
---|
912 |
|
---|
913 | \begin{longtable}[h]{|l|l|}\hline
|
---|
914 | address & content\\\hline\hline
|
---|
915 | 0x000 & total number of responding FTU boards\\\hline
|
---|
916 | 0x001 & number of responding FTU boards belonging to crate 0 \\\hline
|
---|
917 | 0x002 & number of responding FTU boards belonging to crate 1 \\\hline
|
---|
918 | 0x003 & number of responding FTU boards belonging to crate 2 \\\hline
|
---|
919 | 0x004 & number of responding FTU boards belonging to crate 3 \\\hline
|
---|
920 | 0x005 & active FTU list crate 0 \\\hline
|
---|
921 | 0x006 & active FTU list crate 1 \\\hline
|
---|
922 | 0x007 & active FTU list crate 2 \\\hline
|
---|
923 | 0x008 & active FTU list crate 3 \\\hline
|
---|
924 | 0x009 & address of first FTU board and number of sent pings until response\\\hline
|
---|
925 | 0x00A & DNA of first FTU board bit 63 ... 48\\\hline
|
---|
926 | 0x00B & DNA of first FTU board bit 47 ... 32\\\hline
|
---|
927 | 0x00C & DNA of first FTU board bit 31 ... 16\\\hline
|
---|
928 | 0x00D & DNA of first FTU board bit 15 ... 0\\\hline
|
---|
929 | 0x00E & CRC error counter reading of first FTU board\\\hline
|
---|
930 | 0x00F & address of second FTU board and number of sent pings until response\\\hline
|
---|
931 | 0x010 & DNA of second FTU board bit 63 ... 48\\\hline
|
---|
932 | 0x011 & DNA of second FTU board bit 47 ... 32\\\hline
|
---|
933 | 0x012 & DNA of second FTU board bit 31 ... 16\\\hline
|
---|
934 | 0x013 & DNA of second FTU board bit 15 ... 0\\\hline
|
---|
935 | 0x014 & CRC error counter reading of second FTU board\\\hline
|
---|
936 | ... & ...\\\hline
|
---|
937 | 0x0F8 & CRC error counter reading of last FTU board\\\hline
|
---|
938 | \caption{FTU list}
|
---|
939 | \label{tab:FTU-list}
|
---|
940 | \end{longtable}
|
---|
941 |
|
---|
942 | In case there is no response to a 'ping' for a certain FTU address, there are
|
---|
943 | up to two repetitions. If there is still no answer, only zeros are written
|
---|
944 | into the FTU list for this particular board. A responding FTU board gets a
|
---|
945 | regular entry, including the number of 'ping' sent until response. The number
|
---|
946 | of pings is coded together with the FTU board address as shown in table
|
---|
947 | \ref{tab:FTU-crate-number-and-address}. The two bits 'pings\_0' and 'pings\_1'
|
---|
948 | contain the number of 'pings' until response of an FTU board (coded in
|
---|
949 | binary). The 'DNA' of the FTU board is the device DNA \cite{ds557, ds610,
|
---|
950 | wp267, wp266} of the FPGA on the responding FTU board. This is a unique 57
|
---|
951 | bit serial number unambiguously identifying every Xilinx FPGA. In the most
|
---|
952 | significant word (bit 63 ... 48) bits 63 down to 57 are filled with zeros.
|
---|
953 |
|
---|
954 | \begin{table}[h]
|
---|
955 | \centering
|
---|
956 | \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline
|
---|
957 | Bit & 15 ... 10 & 9 & 8 & 7 & 6 & 5 & ... & 0 \\\hline
|
---|
958 | Content & x ... x & pings\_1 & pings\_0 & x & x & A5 & ... & A0 \\\hline
|
---|
959 | \end{tabular}
|
---|
960 | \caption{Address of FTU board and number of pings until response. In case
|
---|
961 | there is no response at all, this number is set to 0.}
|
---|
962 | \label{tab:FTU-crate-number-and-address}
|
---|
963 | \end{table}
|
---|
964 |
|
---|
965 | \chapter{FTU communication error handling}
|
---|
966 | \label{cha:Error-handling}
|
---|
967 |
|
---|
968 | When the FTM board is communicating with a FTU board via RS-485, the FTU board
|
---|
969 | has to respond within 2\,ms (after the last byte was transmitted). If this
|
---|
970 | timeout expires, or the response sent back by the FTU board is incorrect, the
|
---|
971 | FTM resends the datapacket after the timeout. If this second attempt is still
|
---|
972 | unsuccessful, a third and last attempt will be made by the FTM board. An error
|
---|
973 | message will be sent to the FTMcontrol whenever a FTU board does not send a
|
---|
974 | correct answer after the first call by the FTM board. This message (see
|
---|
975 | table~\ref{tab:error-message}) contains, after the standard header (see
|
---|
976 | table~\ref{tab:FTM-header}), the number of calls until response (0 if no
|
---|
977 | response at all), and the corresponding data packet which was sent to the FTU
|
---|
978 | board. In order to avoid massive error messages for e.g. test setups with
|
---|
979 | single FTUs, the 'active FTU list' can be employed to disable FTUs from the
|
---|
980 | bus. In that case the FTM will not try to contact the corresponding boards.
|
---|
981 |
|
---|
982 | \begin{table}[h]
|
---|
983 | \centering
|
---|
984 | \begin{tabular}{|l|l|}\hline
|
---|
985 | word no & content\\\hline\hline
|
---|
986 | 0x000 & number of calls until response (0 if no response at all)\\\hline
|
---|
987 | 0x001 ... 0x01C & slow control data packet sent to FTU (28 words/bytes)\\\hline
|
---|
988 | \end{tabular}
|
---|
989 | \caption{FTU communication error message (after standard header); for a
|
---|
990 | description of the FTU data package, see \cite{FTUspecs}.}
|
---|
991 | \label{tab:error-message}
|
---|
992 | \end{table}
|
---|
993 |
|
---|
994 | %---------------------------------------------------------------------------------
|
---|
995 |
|
---|
996 | \bibliographystyle{unsrt}
|
---|
997 | %\bibliography{FTM-Com}
|
---|
998 |
|
---|
999 | \begin{thebibliography}{1}
|
---|
1000 |
|
---|
1001 | \bibitem{DRS4}
|
---|
1002 | Paul Scherrer Institut PSI.
|
---|
1003 | \newblock {\em DRS4 9 Channel, 5 GSPS Switched Capacitor Array}.
|
---|
1004 | \newblock datasheet.
|
---|
1005 |
|
---|
1006 | \bibitem{LMK03000}
|
---|
1007 | National Semiconductor Corporation.
|
---|
1008 | \newblock {\em LMK03000 Family Precision Clock Conditioner with integrated
|
---|
1009 | VCO}, 2008.
|
---|
1010 | \newblock datasheet.
|
---|
1011 |
|
---|
1012 | \bibitem{FTM-Schematics}
|
---|
1013 | ETH Z{\"u}rich, IPP.
|
---|
1014 | \newblock {\em FTM Schematics}, 2010.
|
---|
1015 |
|
---|
1016 | \bibitem{W5300}
|
---|
1017 | WIZnet Co.Ltd.
|
---|
1018 | \newblock {\em W5300 Fully Hardwired Network protocol Embedded Ethernet
|
---|
1019 | Controller}, 2008.
|
---|
1020 | \newblock datasheet.
|
---|
1021 |
|
---|
1022 | \bibitem{ds557}
|
---|
1023 | Xilinx.
|
---|
1024 | \newblock {\em Spartan-3AN FPGA Family Data Sheet}, 2009.
|
---|
1025 |
|
---|
1026 | \bibitem{ds610}
|
---|
1027 | Xilinx.
|
---|
1028 | \newblock {\em Spartan-3A DSP FPGA Family: Data Sheet}, 2009.
|
---|
1029 |
|
---|
1030 | \bibitem{wp267}
|
---|
1031 | Xilinx.
|
---|
1032 | \newblock {\em Advanced Security Schemes for Spartan-3A/3AN/3A DSP FPGAs},
|
---|
1033 | 2007.
|
---|
1034 |
|
---|
1035 | \bibitem{wp266}
|
---|
1036 | Xilinx.
|
---|
1037 | \newblock {\em Security Solutions Using Spartan-3 Generation FPGAs}, 2008.
|
---|
1038 |
|
---|
1039 | \bibitem{MAX6662}
|
---|
1040 | Maxim Integrated Products.
|
---|
1041 | \newblock {\em 12-Bit plus Sign Temperature Sensor with SPI-Compatible Serial
|
---|
1042 | Interface MAX6662}, 2001.
|
---|
1043 | \newblock datasheet.
|
---|
1044 |
|
---|
1045 | \bibitem{FTUspecs}
|
---|
1046 | ETH Z{\"u}rich, IPP.
|
---|
1047 | \newblock {\em FTU Firmware Specifications v3}, 2010.
|
---|
1048 |
|
---|
1049 |
|
---|
1050 | \bibitem{FLD-Schematics}
|
---|
1051 | ETH Z{\"u}rich, IPP.
|
---|
1052 | \newblock {\em FLD Schematics, FACT light driver}, 2010.
|
---|
1053 |
|
---|
1054 |
|
---|
1055 | \end{thebibliography}
|
---|
1056 |
|
---|
1057 | \end{document}
|
---|