-- -- VHDL Architecture FACT_FAD_lib.rs485_interface.beha -- -- Created: -- by - Benjamin Krumm.UNKNOWN (EEPC8) -- at - 13:24:23 08.06.2010 -- -- using Mentor Graphics HDL Designer(TM) 2009.1 (Build 12) -- -- -- modified for FTM design by Q. Weitzel, 13 April 2011 -- LIBRARY ieee; USE ieee.std_logic_1164.all; USE ieee.std_logic_arith.all; library ftm_definitions; USE ftm_definitions.ftm_array_types.all; USE ftm_definitions.ftm_constants.all; ENTITY FTM_fad_rs485_interface IS GENERIC( CLOCK_FREQUENCY : integer := INT_CLK_FREQUENCY_1; BAUD_RATE : integer := FAD_RS485_BAUD_RATE ); PORT( clk : IN std_logic; -- RS485 rx_d : IN std_logic; rx_en : OUT std_logic; tx_d : OUT std_logic; tx_en : OUT std_logic; -- FPGA rx_data : OUT std_logic_vector (7 DOWNTO 0); rx_busy : OUT std_logic := '0'; rx_valid : OUT std_logic := '0'; tx_data : IN std_logic_vector (7 DOWNTO 0); tx_busy : OUT std_logic := '0'; tx_start : IN std_logic ); END FTM_fad_rs485_interface; ARCHITECTURE beha OF FTM_fad_rs485_interface IS signal flow_ctrl : std_logic := '0'; -- '0' -> RX enable, '1' -> TX enable --transmit signal tx_start_f : std_logic := '0'; signal tx_sr : std_logic_vector(10 downto 0) := (others => '1'); -- start bit, 8 data bits, 2 stop bits signal tx_bitcnt : integer range 0 to 11 := 11; signal tx_cnt : integer range 0 to ((CLOCK_FREQUENCY / BAUD_RATE) - 1); --receive signal rx_dsr : std_logic_vector(3 downto 0) := (others => '1'); signal rx_sr : std_logic_vector(7 downto 0) := (others => '0'); signal rx_bitcnt : integer range 0 to 11 := 11; signal rx_cnt : integer range 0 to ((CLOCK_FREQUENCY / BAUD_RATE) - 1); BEGIN -- Senden tx_data_proc: process(clk) begin if rising_edge(clk) then tx_start_f <= tx_start; if (tx_start = '1' or tx_bitcnt < 11) then flow_ctrl <= '1'; else flow_ctrl <= '0'; end if; if (tx_start = '1' and tx_start_f = '0') then -- steigende Flanke, los gehts tx_cnt <= 0; -- Zaehler initialisieren tx_bitcnt <= 0; tx_sr <= "11" & tx_data & '0'; -- 2 x Stopbit, 8 Datenbits, Startbit, rechts gehts los else if (tx_cnt < (CLOCK_FREQUENCY/BAUD_RATE) - 1) then tx_cnt <= tx_cnt + 1; else -- naechstes Bit ausgeben if (tx_bitcnt < 11) then tx_cnt <= 0; tx_bitcnt <= tx_bitcnt + 1; tx_sr <= '1' & tx_sr(tx_sr'left downto 1); end if; end if; end if; end if; end process; tx_en <= flow_ctrl; tx_d <= tx_sr(0); -- LSB first tx_busy <= '1' when (tx_start = '1' or tx_bitcnt < 11) else '0'; -- Empfangen rx_data_proc: process(clk) begin if rising_edge(clk) then rx_dsr <= rx_dsr(rx_dsr'left - 1 downto 0) & rx_d; if (rx_bitcnt < 11) then -- Empfang laeuft if (rx_cnt < (CLOCK_FREQUENCY/BAUD_RATE) - 1) then rx_cnt <= rx_cnt + 1; else rx_cnt <= 0; rx_bitcnt <= rx_bitcnt + 1; if (rx_bitcnt < 9) then rx_sr <= rx_dsr(rx_dsr'left - 1) & rx_sr(rx_sr'left downto 1); -- rechts schieben, weil LSB first else rx_valid <= '1'; end if; end if; else if (rx_dsr(3 downto 2) = "10") then -- warten auf Start bit rx_valid <= '0'; rx_cnt <= ((CLOCK_FREQUENCY / BAUD_RATE) - 1) / 2; rx_bitcnt <= 0; end if; end if; end if; end process; rx_en <= flow_ctrl; rx_data <= rx_sr; rx_busy <= '1' when (rx_bitcnt < 11) else '0'; END ARCHITECTURE beha;