1 | ----------------------------------------------------------------------------------
|
---|
2 | -- Company: ETH Zurich, Institute for Particle Physics
|
---|
3 | -- Engineer: Q. Weitzel, P. Vogler
|
---|
4 | --
|
---|
5 | -- Create Date: 08/06/2010
|
---|
6 | -- Design Name:
|
---|
7 | -- Module Name: FTU_control - Behavioral
|
---|
8 | -- Project Name:
|
---|
9 | -- Target Devices:
|
---|
10 | -- Tool versions:
|
---|
11 | -- Description: Control FSM of FACT FTU board
|
---|
12 | --
|
---|
13 | -- Dependencies:
|
---|
14 | --
|
---|
15 | -- Revision:
|
---|
16 | -- Revision 0.01 - File Created
|
---|
17 | -- Revision 0.02 - change-over to 64 byte RAM, 19.10.2010, Q. Weitzel
|
---|
18 | -- Additional Comments:
|
---|
19 | --
|
---|
20 | ----------------------------------------------------------------------------------
|
---|
21 |
|
---|
22 | library IEEE;
|
---|
23 | use IEEE.STD_LOGIC_1164.ALL;
|
---|
24 | use IEEE.STD_LOGIC_ARITH.ALL;
|
---|
25 | use IEEE.STD_LOGIC_UNSIGNED.ALL;
|
---|
26 |
|
---|
27 | library ftu_definitions;
|
---|
28 | USE ftu_definitions.ftu_array_types.all;
|
---|
29 | USE ftu_definitions.ftu_constants.all;
|
---|
30 |
|
---|
31 | ---- Uncomment the following library declaration if instantiating
|
---|
32 | ---- any Xilinx primitives in this code.
|
---|
33 | --library UNISIM;
|
---|
34 | --use UNISIM.VComponents.all;
|
---|
35 |
|
---|
36 | entity FTU_control is
|
---|
37 | port(
|
---|
38 | clk_50MHz : IN std_logic;
|
---|
39 | clk_ready : IN std_logic; -- from DCM
|
---|
40 | config_started : IN std_logic; -- from DAC/SPI
|
---|
41 | config_ready : IN std_logic; -- from DAC/SPI
|
---|
42 | ram_doa : IN STD_LOGIC_VECTOR(7 downto 0);
|
---|
43 | ram_dob : IN STD_LOGIC_VECTOR(15 downto 0);
|
---|
44 | rate_array : IN rate_array_type; -- from counters
|
---|
45 | overflow_array : IN STD_LOGIC_VECTOR(7 downto 0); -- from counters
|
---|
46 | new_rates : IN std_logic; -- from counters
|
---|
47 | new_DACs : IN std_logic; -- from RS485 module
|
---|
48 | new_enables : IN std_logic; -- from RS485 module
|
---|
49 | new_prescaling : IN std_logic; -- from RS485 module
|
---|
50 | read_rates : IN std_logic; -- from RS485 module
|
---|
51 | read_DACs : IN std_logic; -- from RS485 module
|
---|
52 | read_enables : IN std_logic; -- from RS485 module
|
---|
53 | read_prescaling : IN std_logic; -- from RS485 module
|
---|
54 | ping_pong : IN std_logic; -- from RS485 module
|
---|
55 | dac_array_rs485_out : IN dac_array_type; -- from RS485 module
|
---|
56 | enable_array_rs485_out : IN enable_array_type; -- from RS485 module
|
---|
57 | prescaling_rs485_out : IN STD_LOGIC_VECTOR(7 downto 0); -- from RS485 module
|
---|
58 | dna_ready : IN std_logic; -- from FTU_dna_gen
|
---|
59 | reset : OUT std_logic;
|
---|
60 | config_start : OUT std_logic;
|
---|
61 | ram_ena : OUT std_logic;
|
---|
62 | ram_enb : OUT std_logic;
|
---|
63 | ram_wea : OUT STD_LOGIC_VECTOR(0 downto 0);
|
---|
64 | ram_web : OUT STD_LOGIC_VECTOR(0 downto 0);
|
---|
65 | ram_ada : OUT STD_LOGIC_VECTOR(5 downto 0);
|
---|
66 | ram_adb : OUT STD_LOGIC_VECTOR(4 downto 0);
|
---|
67 | ram_dia : OUT STD_LOGIC_VECTOR(7 downto 0);
|
---|
68 | ram_dib : OUT STD_LOGIC_VECTOR(15 downto 0);
|
---|
69 | rate_array_rs485 : OUT rate_array_type := (0,0,0,0,0); -- to RS485 module
|
---|
70 | overflow_array_rs485_in : OUT STD_LOGIC_VECTOR(7 downto 0) := "00000000"; -- to RS485 module
|
---|
71 | rates_ready : OUT std_logic := '0'; -- to RS485 module
|
---|
72 | DACs_ready : OUT std_logic := '0'; -- to RS485 module
|
---|
73 | enables_ready : OUT std_logic := '0'; -- to RS485 module
|
---|
74 | prescaling_ready : OUT std_logic := '0'; -- to RS485 module
|
---|
75 | ping_pong_ready : OUT std_logic := '0'; -- to RS485 module
|
---|
76 | dac_array : OUT dac_array_type;
|
---|
77 | enable_array : OUT enable_array_type;
|
---|
78 | cntr_reset : OUT STD_LOGIC;
|
---|
79 | prescaling : OUT STD_LOGIC_VECTOR(7 downto 0);
|
---|
80 | dna_start : OUT std_logic := '0' -- to FTU_dna_gen
|
---|
81 | );
|
---|
82 | end FTU_control;
|
---|
83 |
|
---|
84 | architecture Behavioral of FTU_control is
|
---|
85 |
|
---|
86 | signal new_rates_sr : std_logic_vector(1 downto 0) := (others => '0');
|
---|
87 |
|
---|
88 | signal reset_sig : STD_LOGIC := '0'; --initialize reset to 0 at power up
|
---|
89 |
|
---|
90 | --DAC/SPI interface, default DACs come from RAM during INIT
|
---|
91 | signal config_start_sig : STD_LOGIC := '0';
|
---|
92 | signal dac_array_sig : dac_array_type := (0,0,0,0,0,0,0,0);
|
---|
93 |
|
---|
94 | --enable signals for pixels in trigger, default values come from RAM during INIT
|
---|
95 | signal enable_array_sig : enable_array_type := ("0000000000000000", --patch A
|
---|
96 | "0000000000000000", --patch B
|
---|
97 | "0000000000000000", --patch C
|
---|
98 | "0000000000000000");--patch D
|
---|
99 |
|
---|
100 | signal rate_array_sig : rate_array_type; -- initialized in FTU_top
|
---|
101 | signal cntr_reset_sig : STD_LOGIC := '0';
|
---|
102 | signal prescaling_sig : STD_LOGIC_VECTOR(7 downto 0) := "00011101"; -- 29
|
---|
103 |
|
---|
104 | signal ram_ena_sig : STD_LOGIC := '0'; -- RAM enable for port A
|
---|
105 | signal ram_enb_sig : STD_LOGIC := '0'; -- RAM enable for port B
|
---|
106 | signal ram_wea_sig : STD_LOGIC_VECTOR(0 downto 0) := "0"; -- RAM write enable for port A
|
---|
107 | signal ram_web_sig : STD_LOGIC_VECTOR(0 downto 0) := "0"; -- RAM write enable for port B
|
---|
108 | signal ram_ada_sig : STD_LOGIC_VECTOR(5 downto 0) := (others => '0'); --RAM port A address
|
---|
109 | signal ram_adb_sig : STD_LOGIC_VECTOR(4 downto 0) := (others => '0'); --RAM port B address
|
---|
110 | signal ram_dia_sig : STD_LOGIC_VECTOR(7 downto 0) := (others => '0'); --RAM data in A
|
---|
111 | signal ram_dib_sig : STD_LOGIC_VECTOR(15 downto 0) := (others => '0'); --RAM data in B
|
---|
112 |
|
---|
113 | --counter to loop through RAM
|
---|
114 | signal ram_ada_cntr : INTEGER range 0 to 2**RAM_ADDR_WIDTH_A := 0;
|
---|
115 | signal ram_dac_cntr : INTEGER range 0 to (NO_OF_DAC - NO_OF_DAC_NOT_USED + 2) := 0;
|
---|
116 | signal ram_enable_cntr : INTEGER range 0 to (NO_OF_ENABLE + 1) := 0;
|
---|
117 | signal ram_counter_cntr : INTEGER range 0 to (NO_OF_COUNTER*RAM_CEF + 2) := 0; --includes overflow register
|
---|
118 |
|
---|
119 | signal wait_cntr : INTEGER range 0 to 2**RAM_ADDR_WIDTH_A := 0;
|
---|
120 |
|
---|
121 | signal new_rates_sig : STD_LOGIC := '0';
|
---|
122 | signal new_rates_busy : STD_LOGIC := '1'; -- veto the writing of new rates until in RUNNING
|
---|
123 |
|
---|
124 | signal new_DACs_in_RAM : STD_LOGIC := '0';
|
---|
125 | signal new_enables_in_RAM : STD_LOGIC := '0';
|
---|
126 | signal new_prescaling_in_RAM : STD_LOGIC := '0';
|
---|
127 |
|
---|
128 | signal ram_buffer_sig : STD_LOGIC_VECTOR(29 downto 0) := (others => '0');
|
---|
129 |
|
---|
130 | type FTU_control_StateType is (IDLE, INIT_RAM, INIT_DNA, RUNNING,
|
---|
131 | CONFIG_ENABLE, CONFIG_DAC, CONFIG_DAC_WAIT, CONFIG_COUNTER,
|
---|
132 | WRITE_RATES, WRITE_DAC, WRITE_ENABLE, WRITE_PRESCALING,
|
---|
133 | READOUT_RATES, READOUT_DAC, READOUT_ENABLE, READOUT_PRESCALING,
|
---|
134 | DO_PING_PONG);
|
---|
135 | signal FTU_control_State : FTU_control_StateType;
|
---|
136 |
|
---|
137 | begin
|
---|
138 |
|
---|
139 | --FTU control finite state machine
|
---|
140 |
|
---|
141 | FTU_control_FSM: process (clk_50MHz)
|
---|
142 |
|
---|
143 | begin
|
---|
144 |
|
---|
145 | reset_sig <= '0';
|
---|
146 |
|
---|
147 | if Rising_edge(clk_50MHz) then
|
---|
148 |
|
---|
149 | case FTU_control_State is
|
---|
150 |
|
---|
151 | when IDLE => -- wait for DCMs to lock
|
---|
152 | if (clk_ready = '1') then
|
---|
153 | FTU_control_State <= INIT_DNA;
|
---|
154 | else
|
---|
155 | FTU_control_State <= IDLE;
|
---|
156 | end if;
|
---|
157 |
|
---|
158 | when INIT_DNA => -- determine FPGA DNA
|
---|
159 | if (dna_ready = '1') then
|
---|
160 | FTU_control_State <= INIT_RAM;
|
---|
161 | dna_start <= '0';
|
---|
162 | else
|
---|
163 | dna_start <= '1';
|
---|
164 | FTU_control_State <= INIT_DNA;
|
---|
165 | end if;
|
---|
166 |
|
---|
167 | when INIT_RAM => -- load default config data to RAM, see also ftu_definitions.vhd for more info
|
---|
168 | ram_ena_sig <= '1';
|
---|
169 | ram_wea_sig <= "1";
|
---|
170 | ram_ada_cntr <= ram_ada_cntr + 1;
|
---|
171 | ram_ada_sig <= conv_std_logic_vector(ram_ada_cntr, RAM_ADDR_WIDTH_A);
|
---|
172 | if (ram_ada_cntr < NO_OF_ENABLE*RAM_ADDR_RATIO) then -- default enables
|
---|
173 | if (ram_ada_cntr mod 2 = 0) then
|
---|
174 | ram_dia_sig <= DEFAULT_ENABLE(ram_ada_cntr / 2)(7 downto 0);
|
---|
175 | else
|
---|
176 | ram_dia_sig <= DEFAULT_ENABLE(ram_ada_cntr / 2)(15 downto 8);
|
---|
177 | end if;
|
---|
178 | FTU_control_State <= INIT_RAM;
|
---|
179 | elsif (ram_ada_cntr < (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF)) then -- default counter values
|
---|
180 | ram_dia_sig <= (others => '0');
|
---|
181 | FTU_control_State <= INIT_RAM;
|
---|
182 | elsif (ram_ada_cntr < (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO)) then -- default DACs
|
---|
183 | if (ram_ada_cntr < (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED - 1)*RAM_ADDR_RATIO)) then
|
---|
184 | if (ram_ada_cntr mod 2 = 0) then
|
---|
185 | ram_dia_sig <= conv_std_logic_vector(DEFAULT_DAC((ram_ada_cntr - (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF)) / 2),16)(7 downto 0);
|
---|
186 | else
|
---|
187 | ram_dia_sig <= conv_std_logic_vector(DEFAULT_DAC((ram_ada_cntr - (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF)) / 2),16)(15 downto 8);
|
---|
188 | end if;
|
---|
189 | else
|
---|
190 | if (ram_ada_cntr mod 2 = 0) then
|
---|
191 | ram_dia_sig <= conv_std_logic_vector(DEFAULT_DAC(((ram_ada_cntr - (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF)) / 2) + NO_OF_DAC_NOT_USED),16)(7 downto 0);
|
---|
192 | else
|
---|
193 | ram_dia_sig <= conv_std_logic_vector(DEFAULT_DAC(((ram_ada_cntr - (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF)) / 2) + NO_OF_DAC_NOT_USED),16)(15 downto 8);
|
---|
194 | end if;
|
---|
195 | end if;
|
---|
196 | FTU_control_State <= INIT_RAM;
|
---|
197 | elsif (ram_ada_cntr = (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO)) then -- default prescaling
|
---|
198 | ram_dia_sig <= conv_std_logic_vector(DEFAULT_PRESCALING,8);
|
---|
199 | FTU_control_State <= INIT_RAM;
|
---|
200 | elsif (ram_ada_cntr = (NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO) + 1) then -- default overflow register
|
---|
201 | ram_dia_sig <= (others => '0');
|
---|
202 | FTU_control_State <= INIT_RAM;
|
---|
203 | elsif (ram_ada_cntr < 2**RAM_ADDR_WIDTH_A) then -- empty RAM cells
|
---|
204 | ram_dia_sig <= (others => '0');
|
---|
205 | FTU_control_State <= INIT_RAM;
|
---|
206 | else
|
---|
207 | ram_dia_sig <= (others => '0');
|
---|
208 | ram_ada_cntr <= 0;
|
---|
209 | ram_ada_sig <= (others => '0');
|
---|
210 | ram_ena_sig <= '0';
|
---|
211 | ram_wea_sig <= "0";
|
---|
212 | new_DACs_in_RAM <= '1';
|
---|
213 | new_enables_in_RAM <= '1';
|
---|
214 | new_prescaling_in_RAM <= '1';
|
---|
215 | cntr_reset_sig <= '1';
|
---|
216 | new_rates_busy <= '0';
|
---|
217 | FTU_control_State <= RUNNING;
|
---|
218 | end if;
|
---|
219 |
|
---|
220 | when RUNNING => -- count triggers and react to commands from FTM
|
---|
221 | cntr_reset_sig <= '0';
|
---|
222 | config_start_sig <= '0';
|
---|
223 | if (new_rates_sig = '1') then -- counters have finished a period
|
---|
224 | FTU_control_State <= WRITE_RATES;
|
---|
225 | else -- update FTU settings if necessary
|
---|
226 | if (new_DACs_in_RAM = '1') then
|
---|
227 | ram_enb_sig <= '1';
|
---|
228 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF), RAM_ADDR_WIDTH_B);
|
---|
229 | FTU_control_State <= CONFIG_DAC;
|
---|
230 | elsif (new_DACs_in_RAM = '0' and new_enables_in_RAM = '1') then
|
---|
231 | ram_enb_sig <= '1';
|
---|
232 | ram_adb_sig <= conv_std_logic_vector(0, RAM_ADDR_WIDTH_B);
|
---|
233 | FTU_control_State <= CONFIG_ENABLE;
|
---|
234 | elsif (new_DACs_in_RAM = '0' and new_enables_in_RAM = '0' and new_prescaling_in_RAM = '1') then
|
---|
235 | ram_ena_sig <= '1';
|
---|
236 | ram_ada_sig <= conv_std_logic_vector((NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO), RAM_ADDR_WIDTH_A);
|
---|
237 | FTU_control_State <= CONFIG_COUNTER;
|
---|
238 | else -- nothing to be updated, check new commands from RS485
|
---|
239 | if (new_DACs = '1') then
|
---|
240 | FTU_control_State <= WRITE_DAC;
|
---|
241 | elsif (new_DACs = '0' and new_enables = '1') then
|
---|
242 | FTU_control_State <= WRITE_ENABLE;
|
---|
243 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '1') then
|
---|
244 | FTU_control_State <= WRITE_PRESCALING;
|
---|
245 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '0' and
|
---|
246 | read_rates = '1') then
|
---|
247 | ram_enb_sig <= '1';
|
---|
248 | ram_adb_sig <= conv_std_logic_vector(NO_OF_ENABLE, RAM_ADDR_WIDTH_B);
|
---|
249 | FTU_control_State <= READOUT_RATES;
|
---|
250 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '0' and
|
---|
251 | read_rates = '0' and read_DACs = '1') then
|
---|
252 | ram_enb_sig <= '1';
|
---|
253 | ram_adb_sig <= conv_std_logic_vector(NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF, RAM_ADDR_WIDTH_B);
|
---|
254 | FTU_control_State <= READOUT_DAC;
|
---|
255 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '0' and
|
---|
256 | read_rates = '0' and read_DACs = '0' and read_enables = '1') then
|
---|
257 | ram_enb_sig <= '1';
|
---|
258 | ram_adb_sig <= conv_std_logic_vector(0, RAM_ADDR_WIDTH_B);
|
---|
259 | FTU_control_State <= READOUT_ENABLE;
|
---|
260 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '0' and
|
---|
261 | read_rates = '0' and read_DACs = '0' and read_enables = '0' and read_prescaling = '1') then
|
---|
262 | ram_ena_sig <= '1';
|
---|
263 | ram_ada_sig <= conv_std_logic_vector((NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO), RAM_ADDR_WIDTH_A);
|
---|
264 | FTU_control_State <= READOUT_PRESCALING;
|
---|
265 | elsif (new_DACs = '0' and new_enables = '0' and new_prescaling = '0' and
|
---|
266 | read_rates = '0' and read_DACs = '0' and read_enables = '0' and read_prescaling = '0' and
|
---|
267 | ping_pong = '1') then
|
---|
268 | FTU_control_State <= DO_PING_PONG;
|
---|
269 | else
|
---|
270 | FTU_control_State <= RUNNING; --no commands from RS485 -> stay running
|
---|
271 | end if;
|
---|
272 | end if;
|
---|
273 | end if;
|
---|
274 |
|
---|
275 | when CONFIG_COUNTER => -- set prescaling value for counters
|
---|
276 | wait_cntr <= wait_cntr + 1;
|
---|
277 | new_rates_busy <= '1';
|
---|
278 | if (wait_cntr = 0) then
|
---|
279 | FTU_control_State <= CONFIG_COUNTER;
|
---|
280 | elsif (wait_cntr = 1) then
|
---|
281 | prescaling_sig <= ram_doa;
|
---|
282 | FTU_control_State <= CONFIG_COUNTER;
|
---|
283 | prescaling_ready <= '1';
|
---|
284 | else
|
---|
285 | cntr_reset_sig <= '1';
|
---|
286 | ram_ada_sig <= (others => '0');
|
---|
287 | wait_cntr <= 0;
|
---|
288 | new_prescaling_in_RAM <= '0';
|
---|
289 | ram_ena_sig <= '0';
|
---|
290 | new_rates_busy <= '0';
|
---|
291 | prescaling_ready <= '0';
|
---|
292 | FTU_control_State <= RUNNING;
|
---|
293 | end if;
|
---|
294 |
|
---|
295 | when CONFIG_ENABLE => -- set enable patterns for sum trigger stage
|
---|
296 | ram_enable_cntr <= ram_enable_cntr + 1;
|
---|
297 | new_rates_busy <= '1';
|
---|
298 | if (ram_enable_cntr = 0) then
|
---|
299 | ram_adb_sig <= conv_std_logic_vector(ram_enable_cntr + 1, RAM_ADDR_WIDTH_B);
|
---|
300 | FTU_control_State <= CONFIG_ENABLE;
|
---|
301 | elsif (ram_enable_cntr < NO_OF_ENABLE) then
|
---|
302 | ram_adb_sig <= conv_std_logic_vector(ram_enable_cntr + 1, RAM_ADDR_WIDTH_B);
|
---|
303 | enable_array_sig(ram_enable_cntr - 1) <= ram_dob;
|
---|
304 | FTU_control_State <= CONFIG_ENABLE;
|
---|
305 | elsif (ram_enable_cntr = NO_OF_ENABLE) then
|
---|
306 | ram_adb_sig <= conv_std_logic_vector(ram_enable_cntr + 1, RAM_ADDR_WIDTH_B);
|
---|
307 | enable_array_sig(ram_enable_cntr - 1) <= ram_dob;
|
---|
308 | enables_ready <= '1';
|
---|
309 | FTU_control_State <= CONFIG_ENABLE;
|
---|
310 | else
|
---|
311 | ram_adb_sig <= (others => '0');
|
---|
312 | ram_enable_cntr <= 0;
|
---|
313 | new_enables_in_RAM <= '0';
|
---|
314 | ram_enb_sig <= '0';
|
---|
315 | cntr_reset_sig <= '1';
|
---|
316 | new_rates_busy <= '0';
|
---|
317 | enables_ready <= '0';
|
---|
318 | FTU_control_State <= RUNNING;
|
---|
319 | end if;
|
---|
320 |
|
---|
321 | when CONFIG_DAC => -- start to set thresholds for sum trigger patches
|
---|
322 | new_rates_busy <= '1';
|
---|
323 | ram_dac_cntr <= ram_dac_cntr + 1;
|
---|
324 | if (ram_dac_cntr = 0) then
|
---|
325 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
326 | FTU_control_State <= CONFIG_DAC;
|
---|
327 | elsif (ram_dac_cntr < (NO_OF_DAC - NO_OF_DAC_NOT_USED)) then
|
---|
328 | dac_array_sig(ram_dac_cntr - 1) <= conv_integer(unsigned(ram_dob(11 downto 0)));
|
---|
329 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
330 | FTU_control_State <= CONFIG_DAC;
|
---|
331 | elsif (ram_dac_cntr < (NO_OF_DAC - NO_OF_DAC_NOT_USED + 1)) then
|
---|
332 | dac_array_sig(4) <= 0;
|
---|
333 | dac_array_sig(5) <= 0;
|
---|
334 | dac_array_sig(6) <= 0;
|
---|
335 | dac_array_sig(ram_dac_cntr - 1 + NO_OF_DAC_NOT_USED) <= conv_integer(unsigned(ram_dob(11 downto 0)));
|
---|
336 | ram_adb_sig <= (others => '0');
|
---|
337 | FTU_control_State <= CONFIG_DAC;
|
---|
338 | DACs_ready <= '1';
|
---|
339 | else
|
---|
340 | ram_adb_sig <= (others => '0');
|
---|
341 | ram_enb_sig <= '0';
|
---|
342 | config_start_sig <= '1';
|
---|
343 | ram_dac_cntr <= 0;
|
---|
344 | DACs_ready <= '0';
|
---|
345 | FTU_control_State <= CONFIG_DAC_WAIT;
|
---|
346 | end if;
|
---|
347 |
|
---|
348 | when CONFIG_DAC_WAIT => -- wait until setting of thresholds has finished
|
---|
349 | if (config_ready = '1') then
|
---|
350 | new_DACs_in_RAM <= '0';
|
---|
351 | cntr_reset_sig <= '1';
|
---|
352 | new_rates_busy <= '0';
|
---|
353 | config_start_sig <= '0';
|
---|
354 | FTU_control_State <= RUNNING;
|
---|
355 | elsif (config_ready = '0' and config_started = '1') then
|
---|
356 | new_rates_busy <= '1';
|
---|
357 | config_start_sig <= '0';
|
---|
358 | FTU_control_State <= CONFIG_DAC_WAIT;
|
---|
359 | else
|
---|
360 | new_rates_busy <= '1';
|
---|
361 | config_start_sig <= '1';
|
---|
362 | FTU_control_State <= CONFIG_DAC_WAIT;
|
---|
363 | end if;
|
---|
364 |
|
---|
365 | when WRITE_RATES => -- write trigger/patch rates to RAM B and overflow register to RAM A
|
---|
366 | new_rates_busy <= '1';
|
---|
367 | ram_counter_cntr <= ram_counter_cntr + 1;
|
---|
368 | if (ram_counter_cntr < NO_OF_COUNTER*RAM_CEF) then
|
---|
369 | ram_enb_sig <= '1';
|
---|
370 | ram_web_sig <= "1";
|
---|
371 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + ram_counter_cntr), RAM_ADDR_WIDTH_B);
|
---|
372 | if (ram_counter_cntr mod 2 = 0) then
|
---|
373 | ram_dib_sig <= conv_std_logic_vector(rate_array_sig(ram_counter_cntr / 2), 32)(15 downto 0);
|
---|
374 | else
|
---|
375 | ram_dib_sig <= conv_std_logic_vector(rate_array_sig(ram_counter_cntr / 2), 32)(31 downto 16);
|
---|
376 | end if;
|
---|
377 | FTU_control_State <= WRITE_RATES;
|
---|
378 | elsif (ram_counter_cntr = NO_Of_COUNTER*RAM_CEF) then
|
---|
379 | ram_dib_sig <= (others => '0');
|
---|
380 | ram_adb_sig <= (others => '0');
|
---|
381 | ram_enb_sig <= '0';
|
---|
382 | ram_web_sig <= "0";
|
---|
383 | ram_ena_sig <= '1';
|
---|
384 | ram_wea_sig <= "1";
|
---|
385 | ram_ada_sig <= conv_std_logic_vector(NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO + 1, RAM_ADDR_WIDTH_A);
|
---|
386 | ram_dia_sig <= overflow_array;
|
---|
387 | FTU_control_State <= WRITE_RATES;
|
---|
388 | else
|
---|
389 | ram_ena_sig <= '0';
|
---|
390 | ram_wea_sig <= "0";
|
---|
391 | ram_counter_cntr <= 0;
|
---|
392 | new_rates_busy <= '0';
|
---|
393 | FTU_control_State <= RUNNING;
|
---|
394 | end if;
|
---|
395 |
|
---|
396 | when WRITE_DAC => -- write new DAC values from RS485 to RAM
|
---|
397 | ram_dac_cntr <= ram_dac_cntr + 1;
|
---|
398 | if (ram_dac_cntr < (NO_OF_DAC - NO_OF_DAC_NOT_USED - 1)) then
|
---|
399 | ram_enb_sig <= '1';
|
---|
400 | ram_web_sig <= "1";
|
---|
401 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr), RAM_ADDR_WIDTH_B);
|
---|
402 | ram_dib_sig <= conv_std_logic_vector(dac_array_rs485_out(ram_dac_cntr), 16);
|
---|
403 | FTU_control_State <= WRITE_DAC;
|
---|
404 | elsif (ram_dac_cntr = (NO_OF_DAC - NO_OF_DAC_NOT_USED - 1)) then
|
---|
405 | ram_enb_sig <= '1';
|
---|
406 | ram_web_sig <= "1";
|
---|
407 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr), RAM_ADDR_WIDTH_B);
|
---|
408 | ram_dib_sig <= conv_std_logic_vector(dac_array_rs485_out(ram_dac_cntr + NO_OF_DAC_NOT_USED), 16);
|
---|
409 | FTU_control_State <= WRITE_DAC;
|
---|
410 | else
|
---|
411 | ram_enb_sig <= '0';
|
---|
412 | ram_web_sig <= "0";
|
---|
413 | new_DACs_in_RAM <= '1';
|
---|
414 | ram_dib_sig <= (others => '0');
|
---|
415 | ram_adb_sig <= (others => '0');
|
---|
416 | ram_dac_cntr <= 0;
|
---|
417 | FTU_control_State <= RUNNING;
|
---|
418 | end if;
|
---|
419 |
|
---|
420 | when WRITE_ENABLE => -- write new enable patterns from RS485 to RAM
|
---|
421 | ram_enable_cntr <= ram_enable_cntr + 1;
|
---|
422 | if (ram_enable_cntr < NO_OF_ENABLE) then
|
---|
423 | ram_enb_sig <= '1';
|
---|
424 | ram_web_sig <= "1";
|
---|
425 | ram_adb_sig <= conv_std_logic_vector(ram_enable_cntr, RAM_ADDR_WIDTH_B);
|
---|
426 | ram_dib_sig <= enable_array_rs485_out(ram_enable_cntr);
|
---|
427 | else
|
---|
428 | ram_enb_sig <= '0';
|
---|
429 | ram_web_sig <= "0";
|
---|
430 | new_enables_in_RAM <= '1';
|
---|
431 | ram_dib_sig <= (others => '0');
|
---|
432 | ram_adb_sig <= (others => '0');
|
---|
433 | ram_enable_cntr <= 0;
|
---|
434 | FTU_control_State <= RUNNING;
|
---|
435 | end if;
|
---|
436 |
|
---|
437 | when WRITE_PRESCALING => -- write new prescaling from RS485 to RAM
|
---|
438 | wait_cntr <= wait_cntr + 1;
|
---|
439 | if (wait_cntr = 0) then
|
---|
440 | ram_ena_sig <= '1';
|
---|
441 | ram_wea_sig <= "1";
|
---|
442 | ram_ada_sig <= conv_std_logic_vector((NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO), RAM_ADDR_WIDTH_A);
|
---|
443 | ram_dia_sig <= prescaling_rs485_out;
|
---|
444 | else
|
---|
445 | ram_ena_sig <= '0';
|
---|
446 | ram_wea_sig <= "0";
|
---|
447 | new_prescaling_in_RAM <= '1';
|
---|
448 | ram_dia_sig <= (others => '0');
|
---|
449 | ram_ada_sig <= (others => '0');
|
---|
450 | wait_cntr <= 0;
|
---|
451 | FTU_control_State <= RUNNING;
|
---|
452 | end if;
|
---|
453 |
|
---|
454 | when READOUT_RATES => -- read most recent rate values from RAM and send them to RS485 module
|
---|
455 | ram_counter_cntr <= ram_counter_cntr + 1;
|
---|
456 | if (ram_counter_cntr = 0) then
|
---|
457 | ram_enb_sig <= '1';
|
---|
458 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + ram_counter_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
459 | FTU_control_State <= READOUT_RATES;
|
---|
460 | elsif (ram_counter_cntr < 3) then
|
---|
461 | ram_ena_sig <= '1';
|
---|
462 | ram_ada_sig <= conv_std_logic_vector(((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO + 1), RAM_ADDR_WIDTH_A);
|
---|
463 | ram_enb_sig <= '1';
|
---|
464 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + ram_counter_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
465 | if (ram_counter_cntr = 1) then
|
---|
466 | ram_buffer_sig(15 downto 0) <= ram_dob;
|
---|
467 | else
|
---|
468 | ram_buffer_sig(29 downto 16) <= ram_dob(13 downto 0);
|
---|
469 | end if;
|
---|
470 | FTU_control_State <= READOUT_RATES;
|
---|
471 | elsif (ram_counter_cntr < NO_OF_COUNTER*RAM_CEF) then
|
---|
472 | ram_ena_sig <= '1';
|
---|
473 | ram_ada_sig <= conv_std_logic_vector(((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO + 1), RAM_ADDR_WIDTH_A);
|
---|
474 | ram_enb_sig <= '1';
|
---|
475 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + ram_counter_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
476 | if (ram_counter_cntr mod 2 = 1) then
|
---|
477 | ram_buffer_sig(15 downto 0) <= ram_dob;
|
---|
478 | rate_array_rs485((ram_counter_cntr / 2) - 1) <= conv_integer(unsigned(ram_buffer_sig));
|
---|
479 | else
|
---|
480 | ram_buffer_sig(29 downto 16) <= ram_dob(13 downto 0);
|
---|
481 | end if;
|
---|
482 | FTU_control_State <= READOUT_RATES;
|
---|
483 | elsif (ram_counter_cntr = NO_Of_COUNTER*RAM_CEF) then
|
---|
484 | ram_enb_sig <= '0';
|
---|
485 | ram_adb_sig <= (others => '0');
|
---|
486 | ram_buffer_sig(29 downto 16) <= ram_dob(13 downto 0);
|
---|
487 | ram_ena_sig <= '1';
|
---|
488 | ram_ada_sig <= conv_std_logic_vector(((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO + 1), RAM_ADDR_WIDTH_A);
|
---|
489 | FTU_control_State <= READOUT_RATES;
|
---|
490 | elsif (ram_counter_cntr = NO_Of_COUNTER*RAM_CEF + 1) then
|
---|
491 | rate_array_rs485((ram_counter_cntr / 2) - 1) <= conv_integer(unsigned(ram_buffer_sig));
|
---|
492 | ram_buffer_sig <= (others => '0');
|
---|
493 | ram_enb_sig <= '0';
|
---|
494 | ram_adb_sig <= (others => '0');
|
---|
495 | ram_ena_sig <= '0';
|
---|
496 | ram_ada_sig <= (others => '0');
|
---|
497 | overflow_array_rs485_in <= ram_doa;
|
---|
498 | rates_ready <= '1';
|
---|
499 | FTU_control_State <= READOUT_RATES;
|
---|
500 | else
|
---|
501 | ram_enb_sig <= '0';
|
---|
502 | ram_adb_sig <= (others => '0');
|
---|
503 | ram_ena_sig <= '0';
|
---|
504 | ram_ada_sig <= (others => '0');
|
---|
505 | ram_counter_cntr <= 0;
|
---|
506 | rates_ready <= '0';
|
---|
507 | FTU_control_State <= RUNNING;
|
---|
508 | end if;
|
---|
509 |
|
---|
510 | when READOUT_DAC => -- read most recent DAC values from RAM and send them to RS485 module
|
---|
511 | ram_dac_cntr <= ram_dac_cntr + 1;
|
---|
512 | if (ram_dac_cntr = 0) then
|
---|
513 | ram_enb_sig <= '1';
|
---|
514 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
515 | FTU_control_State <= READOUT_DAC;
|
---|
516 | elsif (ram_dac_cntr < (NO_OF_DAC - NO_OF_DAC_NOT_USED)) then
|
---|
517 | ram_enb_sig <= '1';
|
---|
518 | ram_adb_sig <= conv_std_logic_vector((NO_OF_ENABLE + NO_OF_COUNTER*RAM_CEF + ram_dac_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
519 | dac_array_sig(ram_dac_cntr - 1) <= conv_integer(unsigned(ram_dob(11 downto 0)));
|
---|
520 | FTU_control_State <= READOUT_DAC;
|
---|
521 | elsif (ram_dac_cntr = (NO_OF_DAC - NO_OF_DAC_NOT_USED)) then
|
---|
522 | ram_enb_sig <= '0';
|
---|
523 | ram_adb_sig <= (others => '0');
|
---|
524 | dac_array_sig(ram_dac_cntr + NO_OF_DAC_NOT_USED - 1) <= conv_integer(unsigned(ram_dob(11 downto 0)));
|
---|
525 | DACs_ready <= '1';
|
---|
526 | FTU_control_State <= READOUT_DAC;
|
---|
527 | else
|
---|
528 | ram_enb_sig <= '0';
|
---|
529 | ram_adb_sig <= (others => '0');
|
---|
530 | DACs_ready <= '0';
|
---|
531 | ram_dac_cntr <= 0;
|
---|
532 | FTU_control_State <= RUNNING;
|
---|
533 | end if;
|
---|
534 |
|
---|
535 | when READOUT_ENABLE => -- read most recent enable patterns from RAM and send them to RS485 module
|
---|
536 | ram_enable_cntr <= ram_enable_cntr + 1;
|
---|
537 | if (ram_enable_cntr = 0) then
|
---|
538 | ram_enb_sig <= '1';
|
---|
539 | ram_adb_sig <= conv_std_logic_vector((ram_enable_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
540 | FTU_control_State <= READOUT_ENABLE;
|
---|
541 | elsif (ram_enable_cntr < NO_OF_ENABLE) then
|
---|
542 | ram_enb_sig <= '1';
|
---|
543 | ram_adb_sig <= conv_std_logic_vector((ram_enable_cntr + 1), RAM_ADDR_WIDTH_B);
|
---|
544 | enable_array_sig(ram_enable_cntr - 1) <= ram_dob;
|
---|
545 | FTU_control_State <= READOUT_ENABLE;
|
---|
546 | elsif (ram_enable_cntr = NO_OF_ENABLE) then
|
---|
547 | ram_enb_sig <= '0';
|
---|
548 | ram_adb_sig <= (others => '0');
|
---|
549 | enable_array_sig(ram_enable_cntr - 1) <= ram_dob;
|
---|
550 | enables_ready <= '1';
|
---|
551 | FTU_control_State <= READOUT_ENABLE;
|
---|
552 | else
|
---|
553 | ram_enb_sig <= '0';
|
---|
554 | ram_adb_sig <= (others => '0');
|
---|
555 | enables_ready <= '0';
|
---|
556 | ram_enable_cntr <= 0;
|
---|
557 | FTU_control_State <= RUNNING;
|
---|
558 | end if;
|
---|
559 |
|
---|
560 | when READOUT_PRESCALING => -- read most recent prescaling value from RAM and send it to RS485 module
|
---|
561 | wait_cntr <= wait_cntr + 1;
|
---|
562 | if (wait_cntr = 0) then
|
---|
563 | ram_ena_sig <= '1';
|
---|
564 | ram_ada_sig <= conv_std_logic_vector((NO_OF_ENABLE*RAM_ADDR_RATIO + NO_OF_COUNTER*RAM_ADDR_RATIO*RAM_CEF + (NO_OF_DAC - NO_OF_DAC_NOT_USED)*RAM_ADDR_RATIO) + 1, RAM_ADDR_WIDTH_A);
|
---|
565 | FTU_control_State <= READOUT_PRESCALING;
|
---|
566 | elsif (wait_cntr = 1) then
|
---|
567 | ram_ena_sig <= '1';
|
---|
568 | ram_ada_sig <= (others => '0');
|
---|
569 | prescaling_sig <= ram_doa;
|
---|
570 | FTU_control_State <= READOUT_PRESCALING;
|
---|
571 | elsif (wait_cntr = 2) then
|
---|
572 | ram_ena_sig <= '0';
|
---|
573 | ram_ada_sig <= (others => '0');
|
---|
574 | overflow_array_rs485_in <= ram_doa;
|
---|
575 | prescaling_ready <= '1';
|
---|
576 | FTU_control_State <= READOUT_PRESCALING;
|
---|
577 | else
|
---|
578 | ram_ena_sig <= '0';
|
---|
579 | ram_ada_sig <= (others => '0');
|
---|
580 | prescaling_ready <= '0';
|
---|
581 | wait_cntr <= 0;
|
---|
582 | FTU_control_State <= RUNNING;
|
---|
583 | end if;
|
---|
584 |
|
---|
585 | when DO_PING_PONG => -- answer to FTM and send DNA
|
---|
586 | wait_cntr <= wait_cntr + 1;
|
---|
587 | if (wait_cntr = 0) then
|
---|
588 | ping_pong_ready <= '1';
|
---|
589 | FTU_control_State <= DO_PING_PONG;
|
---|
590 | else
|
---|
591 | ping_pong_ready <= '0';
|
---|
592 | wait_cntr <= 0;
|
---|
593 | FTU_control_State <= RUNNING;
|
---|
594 | end if;
|
---|
595 |
|
---|
596 | end case;
|
---|
597 | end if;
|
---|
598 | end process FTU_control_FSM;
|
---|
599 |
|
---|
600 | detect_new_rates: process(clk_50MHz)
|
---|
601 | begin
|
---|
602 | if rising_edge(clk_50MHz) then
|
---|
603 | new_rates_sr <= new_rates_sr(new_rates_sr'left - 1 downto 0) & new_rates;
|
---|
604 | if(new_rates_busy = '1') then
|
---|
605 | new_rates_sig <= '0';
|
---|
606 | else
|
---|
607 | if (new_rates_sr(1 downto 0) = "01") then
|
---|
608 | new_rates_sig <= '1';
|
---|
609 | end if;
|
---|
610 | end if;
|
---|
611 | end if;
|
---|
612 | end process detect_new_rates;
|
---|
613 |
|
---|
614 | reset <= reset_sig;
|
---|
615 |
|
---|
616 | config_start <= config_start_sig;
|
---|
617 | dac_array <= dac_array_sig;
|
---|
618 |
|
---|
619 | enable_array <= enable_array_sig;
|
---|
620 | prescaling <= prescaling_sig;
|
---|
621 |
|
---|
622 | rate_array_sig <= rate_array;
|
---|
623 | cntr_reset <= cntr_reset_sig;
|
---|
624 |
|
---|
625 | ram_ena <= ram_ena_sig;
|
---|
626 | ram_enb <= ram_enb_sig;
|
---|
627 | ram_wea <= ram_wea_sig;
|
---|
628 | ram_web <= ram_web_sig;
|
---|
629 | ram_ada <= ram_ada_sig;
|
---|
630 | ram_adb <= ram_adb_sig;
|
---|
631 | ram_dia <= ram_dia_sig;
|
---|
632 | ram_dib <= ram_dib_sig;
|
---|
633 |
|
---|
634 | end Behavioral;
|
---|