1 | ---------------------------------------------------------------------------------------------
|
---|
2 | ---------------------------------------------------------------------------------------------
|
---|
3 | -- File: spi_control_sm_16.vhd
|
---|
4 | --
|
---|
5 | --
|
---|
6 | -- Original file: spi_control_sm.vhd
|
---|
7 | --
|
---|
8 | -- Created: 8-23-00 ALS
|
---|
9 | -- This file contains the overall control of the SPI interface. It generates the slave
|
---|
10 | -- select signals and the masks so that the SCK signals output to the SPI bus align properly
|
---|
11 | -- with the data. It generates the control signals to the shift register and the receive
|
---|
12 | -- data register.
|
---|
13 | --
|
---|
14 | -- This SPI interface operates on bytes of data. When the START signal from the uC is
|
---|
15 | -- asserted the byte-wide data in the SPI transmit register is transmitted on the SPI bus.
|
---|
16 | -- When this transfer is complete, the BUSY signal is negated and the START signal is
|
---|
17 | -- sampled. If the START signal is still asserted indicating that the uC has put new
|
---|
18 | -- data in the SPI transmit register, the data in the transmit register will be transmitted.
|
---|
19 | -- Each byte of data received from the SPI bus is captured in the receive register.The uC can
|
---|
20 | -- read this data once the BUSY signal has negated.
|
---|
21 | --
|
---|
22 | -- Revised: 9-6-00 ALS
|
---|
23 | -- Revised: 9-12-00 ALS
|
---|
24 | -- Revised: 10-17-00 ALS
|
---|
25 | -- Revised: 10-19-00 ALS
|
---|
26 | -- Revised: 10-27-00 ALS
|
---|
27 | -- Revised: 12-12-02 JRH
|
---|
28 |
|
---|
29 | ---------------------------------------------------------------------------------------------
|
---|
30 | ---------------------------------------------------------------------------------------------
|
---|
31 | -- Modified from 8 to 16 bit word size by Patrick Vogler
|
---|
32 | -- 18th November 2009
|
---|
33 | --
|
---|
34 | -- Modifications are marked by: *Mod: <modification>
|
---|
35 | --
|
---|
36 | -- Cleaned up by Quirin Weitzel
|
---|
37 | -- 21th January 2010
|
---|
38 | ---------------------------------------------------------------------------------------------
|
---|
39 | ---------------------------------------------------------------------------------------------
|
---|
40 | library IEEE;
|
---|
41 | use IEEE.std_logic_1164.all;
|
---|
42 | use IEEE.std_logic_arith.all;
|
---|
43 |
|
---|
44 | entity spi_control_sm is
|
---|
45 | port(
|
---|
46 | -- internal uC interface signals
|
---|
47 | start : in std_logic; -- start transfer
|
---|
48 | done : out std_logic; -- byte transfer is complete
|
---|
49 | rcv_load : in std_logic; -- load control signal to spi receive register
|
---|
50 | ss_mask_reg : in std_logic_vector(7 downto 0); -- uc slave select register, Caution! No modification, not word size
|
---|
51 | ss_in_int : inout std_logic; -- internal sampled version of ss_in_n needed by uc to generate an interrupt
|
---|
52 | xmit_empty : inout std_logic; -- flag indicating that spitr is empty
|
---|
53 | xmit_empty_reset : in std_logic; -- xmit empty flag reset when spitr is written
|
---|
54 | rcv_full : out std_logic; -- flag indicating that spirr has new data
|
---|
55 | rcv_full_reset : in std_logic; -- rcv full flag reset when spirr is read
|
---|
56 | cpha : in std_logic; -- clock phase from uc
|
---|
57 | cpol : in std_logic; -- clock polarity from uc
|
---|
58 |
|
---|
59 | -- spi interface signals
|
---|
60 | ss_n : out std_logic_vector(7 downto 0); -- slave select signals Caution! NO modification slave select, not word size
|
---|
61 | ss_in_n : in std_logic; -- input slave select indicating master bus contention
|
---|
62 | ss_n_int : inout std_logic; -- internal ss_n that is masked with slave select register
|
---|
63 |
|
---|
64 | -- internal interface signals
|
---|
65 | sck_int : in std_logic; -- internal version of sck with cpha=1
|
---|
66 | sck_int_re : in std_logic; -- indicates rising edge on internal sck
|
---|
67 | sck_int_fe : in std_logic; -- indicates falling edge on internal sck
|
---|
68 | sck_re : in std_logic; -- indicates rising edge on external sck
|
---|
69 | sck_fe : in std_logic; -- indicates falling edge on external sck
|
---|
70 | xmit_shift : out std_logic; -- shift control signal to spi xmit shift register
|
---|
71 | xmit_load : inout std_logic; -- load control signal to the spi xmit shift register
|
---|
72 | clk1_mask : out std_logic; -- masks cpha=1 version of sck
|
---|
73 | clk0_mask : out std_logic; -- masks cpha=0 version of sck
|
---|
74 |
|
---|
75 | -- clock and reset
|
---|
76 | reset : in std_logic; -- active low reset
|
---|
77 | clk : in std_logic -- clock
|
---|
78 | );
|
---|
79 | end spi_control_sm;
|
---|
80 |
|
---|
81 | architecture DEFINITION of spi_control_sm is
|
---|
82 |
|
---|
83 | --**************************** Constants ***************************************
|
---|
84 |
|
---|
85 | constant RESET_ACTIVE : std_logic := '0';
|
---|
86 |
|
---|
87 | constant SIXTEEN : std_logic_vector(4 downto 0) := "10000"; -- *Mod: width changed from 4 to 5 bits, Caution! bit counter
|
---|
88 |
|
---|
89 | --**************************** Signals ***************************************
|
---|
90 |
|
---|
91 | type SPI_STATE_TYPE is (IDLE, ASSERT_SSN1, ASSERT_SSN2, UNMASK_SCK, XFER_BIT,
|
---|
92 | ASSERT_DONE, CHK_START, MASK_SCK, HOLD_SSN1, HOLD_SSN2,
|
---|
93 | NEGATE_SSN);
|
---|
94 |
|
---|
95 | signal spi_state, next_spi_state : SPI_STATE_TYPE;
|
---|
96 |
|
---|
97 | signal bit_cnt : STD_LOGIC_VECTOR(4 downto 0); -- Caution! bit counter output *Mod: width changed from 4 to 5 bits
|
---|
98 | signal bit_cnt_en : STD_LOGIC; -- count enable for bit counter
|
---|
99 | signal bit_cnt_rst : STD_LOGIC; -- reset for bit counter from SPI control state machine
|
---|
100 | signal bit_cnt_reset : STD_LOGIC; -- reset to bit counter that includes SS_IN_INT
|
---|
101 | signal ss_in_neg : STD_LOGIC; -- SS_IN_N sampled with rising edge of clk
|
---|
102 | signal ss_in_pos : STD_LOGIC; -- SS_IN_N sampled with negative edge of clk
|
---|
103 | signal ss_n_out : STD_LOGIC_VECTOR(7 downto 0); -- output SS_N that are 3-stated if SS_IN_INT is asserted indicating another master slave select,
|
---|
104 | -- do not change width
|
---|
105 |
|
---|
106 | --**************************** Component Definitions ********************************
|
---|
107 | -- 5-bit counter for bit counter
|
---|
108 | component upcnt5 --*Mod: 5 instead of 4 bit counter
|
---|
109 | port(
|
---|
110 | cnt_en : in STD_LOGIC; -- Count enable
|
---|
111 | clr : in STD_LOGIC; -- Active high clear
|
---|
112 | clk : in STD_LOGIC; -- Clock
|
---|
113 | qout : inout STD_LOGIC_VECTOR (4 downto 0) -- *Mod: 5 instead of 4 bit counter
|
---|
114 | );
|
---|
115 | end component;
|
---|
116 |
|
---|
117 | begin
|
---|
118 |
|
---|
119 | --************************** Bit Counter Instantiation ********************************
|
---|
120 | BIT_CNTR : upcnt5 --*Mod: 5 instead of 4 bit counter
|
---|
121 | port map(
|
---|
122 | cnt_en => bit_cnt_en,
|
---|
123 | clr => bit_cnt_reset,
|
---|
124 | clk => sck_int,
|
---|
125 | qout => bit_cnt
|
---|
126 | );
|
---|
127 |
|
---|
128 | --************************** SS_IN_N Input synchronization *******************************
|
---|
129 | -- When the SS_IN_N input is asserted, it indicates that there is another master on the bus
|
---|
130 | -- that has selected this master as a slave. When this signal asserts, the SPI master needs
|
---|
131 | -- to reset and tristate outputs. Therefore, the SS_IN_N input should be synchronized with the
|
---|
132 | -- system clock to prevent glitches on this signal from reseting the SPI master. The proces
|
---|
133 | -- below first samples SS_IN_N with the rising edge of the system clock and the falling edge
|
---|
134 | -- of the system clock. If both of these samples show that the signal is asserted, then the
|
---|
135 | -- internal SS_IN_INT signal will assert. SS_IN_INT is passed to the uC logic to generate an
|
---|
136 | -- interrupt if interrupts have been enabled. It is also passed to the SCK logic and the
|
---|
137 | -- SPI Xmit shift register to tri-state the SCK and MOSI outputs.
|
---|
138 |
|
---|
139 | ss_in_rising: process(clk, reset)
|
---|
140 | begin
|
---|
141 | if reset = RESET_ACTIVE then
|
---|
142 | ss_in_pos <= '1';
|
---|
143 | elsif clk'event and clk = '1' then
|
---|
144 | ss_in_pos <= ss_in_n;
|
---|
145 | end if;
|
---|
146 | end process;
|
---|
147 |
|
---|
148 | ss_in_falling: process (clk, reset)
|
---|
149 | begin
|
---|
150 | if reset = RESET_ACTIVE then
|
---|
151 | ss_in_neg <= '1';
|
---|
152 | elsif clk'event and clk = '0' then
|
---|
153 | ss_in_neg <= ss_in_n;
|
---|
154 | end if;
|
---|
155 | end process;
|
---|
156 |
|
---|
157 | ss_in_sample: process(clk,reset)
|
---|
158 | begin
|
---|
159 | if reset = RESET_ACTIVE then
|
---|
160 | ss_in_int <= '1';
|
---|
161 | elsif clk'event and clk = '1' then
|
---|
162 | if ss_in_pos = '0' and ss_in_neg = '0' then
|
---|
163 | ss_in_int <= '0';
|
---|
164 | else
|
---|
165 | ss_in_int <= '1';
|
---|
166 | end if;
|
---|
167 | end if;
|
---|
168 | end process;
|
---|
169 |
|
---|
170 | --************************** Bit Counter reset ***************************************
|
---|
171 | -- The bit counter needs to be reset when the reset signal is asserted from the SPI control
|
---|
172 | -- state machine is asserted and when SS_IN_INT is asserted
|
---|
173 | -- is asserted
|
---|
174 | bit_cnt_reset <= RESET_ACTIVE when bit_cnt_rst = RESET_ACTIVE or ss_in_int = '0'
|
---|
175 | else not(RESET_ACTIVE);
|
---|
176 |
|
---|
177 | --************************** SPI Control State Machine *******************************
|
---|
178 | -- Register process registers next state signals
|
---|
179 | -- Return to IDLE state whenever SS_IN_INT is asserted
|
---|
180 |
|
---|
181 | spi_sm_reg:process(clk, reset, ss_in_int)
|
---|
182 | begin
|
---|
183 | -- Set state to IDLE upon reset
|
---|
184 | if (reset = RESET_ACTIVE or ss_in_int = '0') then
|
---|
185 | spi_state <= IDLE;
|
---|
186 | elsif clk'event and clk = '1' then
|
---|
187 | spi_state <= next_spi_state;
|
---|
188 | end if;
|
---|
189 | end process;
|
---|
190 |
|
---|
191 | -- Combinatorial process determines next state logic
|
---|
192 |
|
---|
193 | spi_sm_comb: process(spi_state, start,bit_cnt, sck_re, sck_fe, sck_int_re, sck_int_fe,
|
---|
194 | xmit_empty, cpha, cpol)
|
---|
195 |
|
---|
196 | begin
|
---|
197 |
|
---|
198 | -- set defaults
|
---|
199 | clk0_mask <= '0';
|
---|
200 | clk1_mask <= '0';
|
---|
201 | bit_cnt_en <= '0';
|
---|
202 | bit_cnt_rst <= RESET_ACTIVE;
|
---|
203 | next_spi_state <= spi_state;
|
---|
204 | done <= '0';
|
---|
205 | xmit_shift <= '0';
|
---|
206 | xmit_load <= '0';
|
---|
207 |
|
---|
208 | case spi_state is
|
---|
209 |
|
---|
210 | --********************* IDLE State *****************
|
---|
211 | when IDLE =>
|
---|
212 | if start = '1' and xmit_empty = '0' then
|
---|
213 | next_spi_state <= ASSERT_SSN1;
|
---|
214 | end if;
|
---|
215 |
|
---|
216 | --********************* ASSERT_SSN1 State *****************
|
---|
217 | when ASSERT_SSN1 =>
|
---|
218 | -- this state asserts SS_N and waits for first edge of SCK_INT
|
---|
219 | -- SS_N must be asserted ~1 SCK before SCK is output from chip
|
---|
220 | if sck_int_re = '1' then
|
---|
221 | next_spi_state <= ASSERT_SSN2;
|
---|
222 | end if;
|
---|
223 |
|
---|
224 | --********************* ASSERT_SSN2 State *****************
|
---|
225 | when ASSERT_SSN2 =>
|
---|
226 | -- this state asserts SS_N and waits for next edge of SCK_INT
|
---|
227 | -- SS_N must be asserted ~1 SCK before SCK is output from chip
|
---|
228 | if sck_int_fe = '1' then
|
---|
229 | next_spi_state <= UNMASK_SCK;
|
---|
230 | end if;
|
---|
231 |
|
---|
232 | --********************* UNMASK_SCK State *****************
|
---|
233 | when UNMASK_SCK =>
|
---|
234 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
---|
235 | bit_cnt_en <= '1'; -- enable bit counter
|
---|
236 | clk1_mask <= '1'; -- unmask sck_1
|
---|
237 | xmit_load <= '1'; -- load SPI shift register
|
---|
238 |
|
---|
239 | if sck_int_re = '1' then
|
---|
240 | -- first rising edge of CPHA=1 clock with SS_N asserted
|
---|
241 | -- transition to XFER_BIT state and unmask CPHA=0 clk
|
---|
242 | next_spi_state <= XFER_BIT;
|
---|
243 | end if;
|
---|
244 |
|
---|
245 | --********************* XFER_BIT State *****************
|
---|
246 | when XFER_BIT =>
|
---|
247 | clk0_mask <= '1'; -- unmask CPHA=0 clock
|
---|
248 | clk1_mask <= '1'; -- unmask CPHA=1 clock
|
---|
249 | bit_cnt_en <= '1'; -- enable bit counter
|
---|
250 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
---|
251 |
|
---|
252 | xmit_shift <= '1'; -- enable shifting of SPI shift registers
|
---|
253 |
|
---|
254 | if bit_cnt = SIXTEEN then -- *Mod: SIXTEEN instead of EIGHT bit
|
---|
255 | -- all 16 bits have transferred
|
---|
256 | next_spi_state <= ASSERT_DONE;
|
---|
257 | end if;
|
---|
258 |
|
---|
259 | --********************* ASSERT_DONE State *****************
|
---|
260 | when ASSERT_DONE =>
|
---|
261 | -- this state asserts done to the uC so that new data
|
---|
262 | -- can be written into the transmit register or data
|
---|
263 | -- can be read from the receive register
|
---|
264 | done <= '1';
|
---|
265 | clk0_mask <= '1';
|
---|
266 | clk1_mask <= '1';
|
---|
267 | xmit_shift <= '1';
|
---|
268 | if sck_int_fe = '1' then
|
---|
269 | next_spi_state <= CHK_START;
|
---|
270 | end if;
|
---|
271 |
|
---|
272 | --********************* CHK_START State *****************
|
---|
273 | when CHK_START =>
|
---|
274 | clk0_mask <= '1';
|
---|
275 | clk1_mask <= '1';
|
---|
276 | done <= '1';
|
---|
277 | bit_cnt_en <= '1';
|
---|
278 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
---|
279 | if cpha = '0' then
|
---|
280 | -- when CPHA = 0, have to negate slave select and then
|
---|
281 | -- re-assert it. Need to wait for last SCK pulse to complete
|
---|
282 | -- and mask SCK before negating SS_N.
|
---|
283 | if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then
|
---|
284 | clk0_mask <= '0';
|
---|
285 | clk1_mask <= '0';
|
---|
286 | next_spi_state <= MASK_SCK;
|
---|
287 | end if;
|
---|
288 | elsif start = '1' and xmit_empty = '0' then
|
---|
289 | -- CPHA=1 and have more data to transfer, go back to
|
---|
290 | -- UNMASK_CK state
|
---|
291 | clk1_mask <= '1';
|
---|
292 | xmit_load <= '1'; -- load SPI shift register
|
---|
293 | next_spi_state <= UNMASK_SCK;
|
---|
294 | else
|
---|
295 | -- CPHA=1 and no more data to transfer
|
---|
296 | -- wait for last SCKs and then mask SCK
|
---|
297 | if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then
|
---|
298 | clk0_mask <= '0';
|
---|
299 | clk1_mask <= '0';
|
---|
300 | next_spi_state <= MASK_SCK;
|
---|
301 | end if;
|
---|
302 | clk0_mask <= '0';
|
---|
303 | clk1_mask <= '1';
|
---|
304 | end if;
|
---|
305 |
|
---|
306 | --********************* MASK_SCK State *****************
|
---|
307 | when MASK_SCK =>
|
---|
308 | done <= '1';
|
---|
309 | -- wait for next internal SCK edge
|
---|
310 | -- to help provide SS_N hold time
|
---|
311 | if sck_int_fe <= '1' then
|
---|
312 | next_spi_state <= HOLD_SSN1;
|
---|
313 | end if;
|
---|
314 |
|
---|
315 | --********************* HOLD_SSN1 State *****************
|
---|
316 | when HOLD_SSN1 =>
|
---|
317 | -- This state waits for another SCK edge
|
---|
318 | -- to provide SS_N hold time
|
---|
319 | if sck_int_fe = '1' then
|
---|
320 | next_spi_state <= HOLD_SSN2;
|
---|
321 | end if;
|
---|
322 |
|
---|
323 | --********************* HOLD_SSN2 State *****************
|
---|
324 | when HOLD_SSN2 =>
|
---|
325 | -- This state waits for another SCK edge
|
---|
326 | -- to provide SS_N hold time
|
---|
327 | if sck_int_fe = '1' then
|
---|
328 | next_spi_state <= NEGATE_SSN;
|
---|
329 | end if;
|
---|
330 |
|
---|
331 | --********************* NEGATE_SSN State *****************
|
---|
332 | when NEGATE_SSN =>
|
---|
333 | -- SS_N should negate for an entire SCK
|
---|
334 | -- This state waits for an SCK edge
|
---|
335 | if sck_int_fe = '1' then
|
---|
336 | next_spi_state <= IDLE;
|
---|
337 | end if;
|
---|
338 |
|
---|
339 | --********************* Default State *****************
|
---|
340 | when others =>
|
---|
341 | next_spi_state <= IDLE;
|
---|
342 | end case;
|
---|
343 | end process;
|
---|
344 |
|
---|
345 | -- assert slave select when spi_state machine is in any state but IDLE or NEGATE_SSN
|
---|
346 | ss_n_int <= '1' when (spi_state = IDLE or spi_state = NEGATE_SSN) else '0';
|
---|
347 |
|
---|
348 | --xmit_load <= '1' when (spi_state = UNMASK_SCK) else '0';
|
---|
349 |
|
---|
350 |
|
---|
351 | --************************** Register Full/Empty flags *******************************
|
---|
352 | -- When data is loaded into the SPI transmit shift register from SPITR, the XMIT_EMPTY
|
---|
353 | -- flag is set, indicating to the uC that new data can be written into SPITR. Note that
|
---|
354 | -- the SPI transmit shift register is clocked from SCK, therefore, this flag is clocked
|
---|
355 | -- from SCK.
|
---|
356 | mt_flag_process: process (sck_int, xmit_empty_reset, reset)
|
---|
357 | begin
|
---|
358 | if xmit_empty_reset = RESET_ACTIVE or reset = RESET_ACTIVE then
|
---|
359 | xmit_empty <= '0';
|
---|
360 | elsif sck_int'event and sck_int = '1' then
|
---|
361 | if xmit_empty_reset = RESET_ACTIVE then
|
---|
362 | -- reset empty flag because uC has written data to SPITR
|
---|
363 | xmit_empty <= '0';
|
---|
364 | elsif xmit_load = '1' then
|
---|
365 | -- set empty flag because SPITR data has been loaded into
|
---|
366 | -- SPI transmit shift register
|
---|
367 | xmit_empty <= '1';
|
---|
368 | end if;
|
---|
369 | end if;
|
---|
370 | end process;
|
---|
371 |
|
---|
372 | -- When data is loaded into SPIRR, the RCV_FULL flag is set, indicating to the uC that
|
---|
373 | -- new data from the SPI bus has been received.
|
---|
374 | full_flag_process: process (reset, clk)
|
---|
375 | begin
|
---|
376 | if reset = RESET_ACTIVE then
|
---|
377 | rcv_full <= '0';
|
---|
378 | elsif clk'event and clk = '1' then
|
---|
379 | if rcv_full_reset = RESET_ACTIVE then
|
---|
380 | -- reset the full flag because the spirr has been read
|
---|
381 | rcv_full <= '0';
|
---|
382 | elsif rcv_load = '1' then
|
---|
383 | -- set the full flag because data has been loaded in spirr
|
---|
384 | rcv_full <= '1';
|
---|
385 | end if;
|
---|
386 | end if;
|
---|
387 | end process;
|
---|
388 |
|
---|
389 | --************************** Slave Selects *******************************
|
---|
390 | -- The internal slave select signal generated by the SPI Control state machine
|
---|
391 | -- is masked by the uC slave select register. The SS_N outputs are clocked on the
|
---|
392 | -- falling edge of the system clock.
|
---|
393 | ss_n_process: process ( reset, clk)
|
---|
394 | variable i : integer;
|
---|
395 |
|
---|
396 | begin
|
---|
397 | if reset = RESET_ACTIVE then
|
---|
398 | ss_n_out <= (others => '1');
|
---|
399 | elsif clk'event and clk = '0' then
|
---|
400 | for i in 0 to 7 loop
|
---|
401 | if ss_n_int = '0' and ss_mask_reg (i) = '1' then
|
---|
402 | ss_n_out(i) <= '0'; -- assert corresponding slave select
|
---|
403 | else
|
---|
404 | ss_n_out(i) <= '1';
|
---|
405 | end if;
|
---|
406 | end loop;
|
---|
407 | end if;
|
---|
408 | end process;
|
---|
409 |
|
---|
410 | -- Slave selects are 3-stated if SS_IN_INT is asserted
|
---|
411 | ss_n <= ss_n_out when ss_in_int = '1'
|
---|
412 | else (others => 'Z');
|
---|
413 |
|
---|
414 | end DEFINITION;
|
---|