| 1 | ---------------------------------------------------------------------------------------------
|
|---|
| 2 | ---------------------------------------------------------------------------------------------
|
|---|
| 3 | -- File: spi_control_sm_16.vhd
|
|---|
| 4 | --
|
|---|
| 5 | --
|
|---|
| 6 | -- Original file: spi_control_sm.vhd
|
|---|
| 7 | --
|
|---|
| 8 | -- Created: 8-23-00 ALS
|
|---|
| 9 | -- This file contains the overall control of the SPI interface. It generates the slave
|
|---|
| 10 | -- select signals and the masks so that the SCK signals output to the SPI bus align properly
|
|---|
| 11 | -- with the data. It generates the control signals to the shift register and the receive
|
|---|
| 12 | -- data register.
|
|---|
| 13 | --
|
|---|
| 14 | -- This SPI interface operates on bytes of data. When the START signal from the uC is
|
|---|
| 15 | -- asserted the byte-wide data in the SPI transmit register is transmitted on the SPI bus.
|
|---|
| 16 | -- When this transfer is complete, the BUSY signal is negated and the START signal is
|
|---|
| 17 | -- sampled. If the START signal is still asserted indicating that the uC has put new
|
|---|
| 18 | -- data in the SPI transmit register, the data in the transmit register will be transmitted.
|
|---|
| 19 | -- Each byte of data received from the SPI bus is captured in the receive register.The uC can
|
|---|
| 20 | -- read this data once the BUSY signal has negated.
|
|---|
| 21 | --
|
|---|
| 22 | -- Revised: 9-6-00 ALS
|
|---|
| 23 | -- Revised: 9-12-00 ALS
|
|---|
| 24 | -- Revised: 10-17-00 ALS
|
|---|
| 25 | -- Revised: 10-19-00 ALS
|
|---|
| 26 | -- Revised: 10-27-00 ALS
|
|---|
| 27 | -- Revised: 12-12-02 JRH
|
|---|
| 28 |
|
|---|
| 29 | ---------------------------------------------------------------------------------------------
|
|---|
| 30 | ---------------------------------------------------------------------------------------------
|
|---|
| 31 | -- Modified from 8 to 16 bit word size by Patrick Vogler
|
|---|
| 32 | -- 18th November 2009
|
|---|
| 33 | --
|
|---|
| 34 | -- Modifications are marked by: *Mod: <modification>
|
|---|
| 35 | --
|
|---|
| 36 | -- Cleaned up by Quirin Weitzel
|
|---|
| 37 | -- 21th January 2010
|
|---|
| 38 | ---------------------------------------------------------------------------------------------
|
|---|
| 39 | ---------------------------------------------------------------------------------------------
|
|---|
| 40 | library IEEE;
|
|---|
| 41 | use IEEE.std_logic_1164.all;
|
|---|
| 42 | use IEEE.std_logic_arith.all;
|
|---|
| 43 |
|
|---|
| 44 | entity spi_control_sm is
|
|---|
| 45 | port(
|
|---|
| 46 | -- internal uC interface signals
|
|---|
| 47 | start : in std_logic; -- start transfer
|
|---|
| 48 | done : out std_logic; -- byte transfer is complete
|
|---|
| 49 | rcv_load : in std_logic; -- load control signal to spi receive register
|
|---|
| 50 | ss_mask_reg : in std_logic_vector(7 downto 0); -- uc slave select register, Caution! No modification, not word size
|
|---|
| 51 | ss_in_int : inout std_logic; -- internal sampled version of ss_in_n needed by uc to generate an interrupt
|
|---|
| 52 | xmit_empty : inout std_logic; -- flag indicating that spitr is empty
|
|---|
| 53 | xmit_empty_reset : in std_logic; -- xmit empty flag reset when spitr is written
|
|---|
| 54 | rcv_full : out std_logic; -- flag indicating that spirr has new data
|
|---|
| 55 | rcv_full_reset : in std_logic; -- rcv full flag reset when spirr is read
|
|---|
| 56 | cpha : in std_logic; -- clock phase from uc
|
|---|
| 57 | cpol : in std_logic; -- clock polarity from uc
|
|---|
| 58 |
|
|---|
| 59 | -- spi interface signals
|
|---|
| 60 | ss_n : out std_logic_vector(7 downto 0); -- slave select signals Caution! NO modification slave select, not word size
|
|---|
| 61 | ss_in_n : in std_logic; -- input slave select indicating master bus contention
|
|---|
| 62 | ss_n_int : inout std_logic; -- internal ss_n that is masked with slave select register
|
|---|
| 63 |
|
|---|
| 64 | -- internal interface signals
|
|---|
| 65 | sck_int : in std_logic; -- internal version of sck with cpha=1
|
|---|
| 66 | sck_int_re : in std_logic; -- indicates rising edge on internal sck
|
|---|
| 67 | sck_int_fe : in std_logic; -- indicates falling edge on internal sck
|
|---|
| 68 | sck_re : in std_logic; -- indicates rising edge on external sck
|
|---|
| 69 | sck_fe : in std_logic; -- indicates falling edge on external sck
|
|---|
| 70 | xmit_shift : out std_logic; -- shift control signal to spi xmit shift register
|
|---|
| 71 | xmit_load : inout std_logic; -- load control signal to the spi xmit shift register
|
|---|
| 72 | clk1_mask : out std_logic; -- masks cpha=1 version of sck
|
|---|
| 73 | clk0_mask : out std_logic; -- masks cpha=0 version of sck
|
|---|
| 74 |
|
|---|
| 75 | -- clock and reset
|
|---|
| 76 | reset : in std_logic; -- active low reset
|
|---|
| 77 | clk : in std_logic -- clock
|
|---|
| 78 | );
|
|---|
| 79 | end spi_control_sm;
|
|---|
| 80 |
|
|---|
| 81 | architecture DEFINITION of spi_control_sm is
|
|---|
| 82 |
|
|---|
| 83 | --**************************** Constants ***************************************
|
|---|
| 84 |
|
|---|
| 85 | constant RESET_ACTIVE : std_logic := '0';
|
|---|
| 86 |
|
|---|
| 87 | constant SIXTEEN : std_logic_vector(4 downto 0) := "10000"; -- *Mod: width changed from 4 to 5 bits, Caution! bit counter
|
|---|
| 88 |
|
|---|
| 89 | --**************************** Signals ***************************************
|
|---|
| 90 |
|
|---|
| 91 | type SPI_STATE_TYPE is (IDLE, ASSERT_SSN1, ASSERT_SSN2, UNMASK_SCK, XFER_BIT,
|
|---|
| 92 | ASSERT_DONE, CHK_START, MASK_SCK, HOLD_SSN1, HOLD_SSN2,
|
|---|
| 93 | NEGATE_SSN);
|
|---|
| 94 |
|
|---|
| 95 | signal spi_state, next_spi_state : SPI_STATE_TYPE;
|
|---|
| 96 |
|
|---|
| 97 | signal bit_cnt : STD_LOGIC_VECTOR(4 downto 0); -- Caution! bit counter output *Mod: width changed from 4 to 5 bits
|
|---|
| 98 | signal bit_cnt_en : STD_LOGIC; -- count enable for bit counter
|
|---|
| 99 | signal bit_cnt_rst : STD_LOGIC; -- reset for bit counter from SPI control state machine
|
|---|
| 100 | signal bit_cnt_reset : STD_LOGIC; -- reset to bit counter that includes SS_IN_INT
|
|---|
| 101 | signal ss_in_neg : STD_LOGIC; -- SS_IN_N sampled with rising edge of clk
|
|---|
| 102 | signal ss_in_pos : STD_LOGIC; -- SS_IN_N sampled with negative edge of clk
|
|---|
| 103 | signal ss_n_out : STD_LOGIC_VECTOR(7 downto 0); -- output SS_N that are 3-stated if SS_IN_INT is asserted indicating another master slave select,
|
|---|
| 104 | -- do not change width
|
|---|
| 105 |
|
|---|
| 106 | --**************************** Component Definitions ********************************
|
|---|
| 107 | -- 5-bit counter for bit counter
|
|---|
| 108 | component upcnt5 --*Mod: 5 instead of 4 bit counter
|
|---|
| 109 | port(
|
|---|
| 110 | cnt_en : in STD_LOGIC; -- Count enable
|
|---|
| 111 | clr : in STD_LOGIC; -- Active high clear
|
|---|
| 112 | clk : in STD_LOGIC; -- Clock
|
|---|
| 113 | qout : inout STD_LOGIC_VECTOR (4 downto 0) -- *Mod: 5 instead of 4 bit counter
|
|---|
| 114 | );
|
|---|
| 115 | end component;
|
|---|
| 116 |
|
|---|
| 117 | begin
|
|---|
| 118 |
|
|---|
| 119 | --************************** Bit Counter Instantiation ********************************
|
|---|
| 120 | BIT_CNTR : upcnt5 --*Mod: 5 instead of 4 bit counter
|
|---|
| 121 | port map(
|
|---|
| 122 | cnt_en => bit_cnt_en,
|
|---|
| 123 | clr => bit_cnt_reset,
|
|---|
| 124 | clk => sck_int,
|
|---|
| 125 | qout => bit_cnt
|
|---|
| 126 | );
|
|---|
| 127 |
|
|---|
| 128 | --************************** SS_IN_N Input synchronization *******************************
|
|---|
| 129 | -- When the SS_IN_N input is asserted, it indicates that there is another master on the bus
|
|---|
| 130 | -- that has selected this master as a slave. When this signal asserts, the SPI master needs
|
|---|
| 131 | -- to reset and tristate outputs. Therefore, the SS_IN_N input should be synchronized with the
|
|---|
| 132 | -- system clock to prevent glitches on this signal from reseting the SPI master. The proces
|
|---|
| 133 | -- below first samples SS_IN_N with the rising edge of the system clock and the falling edge
|
|---|
| 134 | -- of the system clock. If both of these samples show that the signal is asserted, then the
|
|---|
| 135 | -- internal SS_IN_INT signal will assert. SS_IN_INT is passed to the uC logic to generate an
|
|---|
| 136 | -- interrupt if interrupts have been enabled. It is also passed to the SCK logic and the
|
|---|
| 137 | -- SPI Xmit shift register to tri-state the SCK and MOSI outputs.
|
|---|
| 138 |
|
|---|
| 139 | ss_in_rising: process(clk, reset)
|
|---|
| 140 | begin
|
|---|
| 141 | if reset = RESET_ACTIVE then
|
|---|
| 142 | ss_in_pos <= '1';
|
|---|
| 143 | elsif clk'event and clk = '1' then
|
|---|
| 144 | ss_in_pos <= ss_in_n;
|
|---|
| 145 | end if;
|
|---|
| 146 | end process;
|
|---|
| 147 |
|
|---|
| 148 | ss_in_falling: process (clk, reset)
|
|---|
| 149 | begin
|
|---|
| 150 | if reset = RESET_ACTIVE then
|
|---|
| 151 | ss_in_neg <= '1';
|
|---|
| 152 | elsif clk'event and clk = '0' then
|
|---|
| 153 | ss_in_neg <= ss_in_n;
|
|---|
| 154 | end if;
|
|---|
| 155 | end process;
|
|---|
| 156 |
|
|---|
| 157 | ss_in_sample: process(clk,reset)
|
|---|
| 158 | begin
|
|---|
| 159 | if reset = RESET_ACTIVE then
|
|---|
| 160 | ss_in_int <= '1';
|
|---|
| 161 | elsif clk'event and clk = '1' then
|
|---|
| 162 | if ss_in_pos = '0' and ss_in_neg = '0' then
|
|---|
| 163 | ss_in_int <= '0';
|
|---|
| 164 | else
|
|---|
| 165 | ss_in_int <= '1';
|
|---|
| 166 | end if;
|
|---|
| 167 | end if;
|
|---|
| 168 | end process;
|
|---|
| 169 |
|
|---|
| 170 | --************************** Bit Counter reset ***************************************
|
|---|
| 171 | -- The bit counter needs to be reset when the reset signal is asserted from the SPI control
|
|---|
| 172 | -- state machine is asserted and when SS_IN_INT is asserted
|
|---|
| 173 | -- is asserted
|
|---|
| 174 | bit_cnt_reset <= RESET_ACTIVE when bit_cnt_rst = RESET_ACTIVE or ss_in_int = '0'
|
|---|
| 175 | else not(RESET_ACTIVE);
|
|---|
| 176 |
|
|---|
| 177 | --************************** SPI Control State Machine *******************************
|
|---|
| 178 | -- Register process registers next state signals
|
|---|
| 179 | -- Return to IDLE state whenever SS_IN_INT is asserted
|
|---|
| 180 |
|
|---|
| 181 | spi_sm_reg:process(clk, reset, ss_in_int)
|
|---|
| 182 | begin
|
|---|
| 183 | -- Set state to IDLE upon reset
|
|---|
| 184 | if (reset = RESET_ACTIVE or ss_in_int = '0') then
|
|---|
| 185 | spi_state <= IDLE;
|
|---|
| 186 | elsif clk'event and clk = '1' then
|
|---|
| 187 | spi_state <= next_spi_state;
|
|---|
| 188 | end if;
|
|---|
| 189 | end process;
|
|---|
| 190 |
|
|---|
| 191 | -- Combinatorial process determines next state logic
|
|---|
| 192 |
|
|---|
| 193 | spi_sm_comb: process(spi_state, start,bit_cnt, sck_re, sck_fe, sck_int_re, sck_int_fe,
|
|---|
| 194 | xmit_empty, cpha, cpol)
|
|---|
| 195 |
|
|---|
| 196 | begin
|
|---|
| 197 |
|
|---|
| 198 | -- set defaults
|
|---|
| 199 | clk0_mask <= '0';
|
|---|
| 200 | clk1_mask <= '0';
|
|---|
| 201 | bit_cnt_en <= '0';
|
|---|
| 202 | bit_cnt_rst <= RESET_ACTIVE;
|
|---|
| 203 | next_spi_state <= spi_state;
|
|---|
| 204 | done <= '0';
|
|---|
| 205 | xmit_shift <= '0';
|
|---|
| 206 | xmit_load <= '0';
|
|---|
| 207 |
|
|---|
| 208 | case spi_state is
|
|---|
| 209 |
|
|---|
| 210 | --********************* IDLE State *****************
|
|---|
| 211 | when IDLE =>
|
|---|
| 212 | if start = '1' and xmit_empty = '0' then
|
|---|
| 213 | next_spi_state <= ASSERT_SSN1;
|
|---|
| 214 | end if;
|
|---|
| 215 |
|
|---|
| 216 | --********************* ASSERT_SSN1 State *****************
|
|---|
| 217 | when ASSERT_SSN1 =>
|
|---|
| 218 | -- this state asserts SS_N and waits for first edge of SCK_INT
|
|---|
| 219 | -- SS_N must be asserted ~1 SCK before SCK is output from chip
|
|---|
| 220 | if sck_int_re = '1' then
|
|---|
| 221 | next_spi_state <= ASSERT_SSN2;
|
|---|
| 222 | end if;
|
|---|
| 223 |
|
|---|
| 224 | --********************* ASSERT_SSN2 State *****************
|
|---|
| 225 | when ASSERT_SSN2 =>
|
|---|
| 226 | -- this state asserts SS_N and waits for next edge of SCK_INT
|
|---|
| 227 | -- SS_N must be asserted ~1 SCK before SCK is output from chip
|
|---|
| 228 | if sck_int_fe = '1' then
|
|---|
| 229 | next_spi_state <= UNMASK_SCK;
|
|---|
| 230 | end if;
|
|---|
| 231 |
|
|---|
| 232 | --********************* UNMASK_SCK State *****************
|
|---|
| 233 | when UNMASK_SCK =>
|
|---|
| 234 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
|---|
| 235 | bit_cnt_en <= '1'; -- enable bit counter
|
|---|
| 236 | clk1_mask <= '1'; -- unmask sck_1
|
|---|
| 237 | xmit_load <= '1'; -- load SPI shift register
|
|---|
| 238 |
|
|---|
| 239 | if sck_int_re = '1' then
|
|---|
| 240 | -- first rising edge of CPHA=1 clock with SS_N asserted
|
|---|
| 241 | -- transition to XFER_BIT state and unmask CPHA=0 clk
|
|---|
| 242 | next_spi_state <= XFER_BIT;
|
|---|
| 243 | end if;
|
|---|
| 244 |
|
|---|
| 245 | --********************* XFER_BIT State *****************
|
|---|
| 246 | when XFER_BIT =>
|
|---|
| 247 | clk0_mask <= '1'; -- unmask CPHA=0 clock
|
|---|
| 248 | clk1_mask <= '1'; -- unmask CPHA=1 clock
|
|---|
| 249 | bit_cnt_en <= '1'; -- enable bit counter
|
|---|
| 250 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
|---|
| 251 |
|
|---|
| 252 | xmit_shift <= '1'; -- enable shifting of SPI shift registers
|
|---|
| 253 |
|
|---|
| 254 | if bit_cnt = SIXTEEN then -- *Mod: SIXTEEN instead of EIGHT bit
|
|---|
| 255 | -- all 16 bits have transferred
|
|---|
| 256 | next_spi_state <= ASSERT_DONE;
|
|---|
| 257 | end if;
|
|---|
| 258 |
|
|---|
| 259 | --********************* ASSERT_DONE State *****************
|
|---|
| 260 | when ASSERT_DONE =>
|
|---|
| 261 | -- this state asserts done to the uC so that new data
|
|---|
| 262 | -- can be written into the transmit register or data
|
|---|
| 263 | -- can be read from the receive register
|
|---|
| 264 | done <= '1';
|
|---|
| 265 | clk0_mask <= '1';
|
|---|
| 266 | clk1_mask <= '1';
|
|---|
| 267 | xmit_shift <= '1';
|
|---|
| 268 | if sck_int_fe = '1' then
|
|---|
| 269 | next_spi_state <= CHK_START;
|
|---|
| 270 | end if;
|
|---|
| 271 |
|
|---|
| 272 | --********************* CHK_START State *****************
|
|---|
| 273 | when CHK_START =>
|
|---|
| 274 | clk0_mask <= '1';
|
|---|
| 275 | clk1_mask <= '1';
|
|---|
| 276 | done <= '1';
|
|---|
| 277 | bit_cnt_en <= '1';
|
|---|
| 278 | bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset
|
|---|
| 279 | if cpha = '0' then
|
|---|
| 280 | -- when CPHA = 0, have to negate slave select and then
|
|---|
| 281 | -- re-assert it. Need to wait for last SCK pulse to complete
|
|---|
| 282 | -- and mask SCK before negating SS_N.
|
|---|
| 283 | if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then
|
|---|
| 284 | clk0_mask <= '0';
|
|---|
| 285 | clk1_mask <= '0';
|
|---|
| 286 | next_spi_state <= MASK_SCK;
|
|---|
| 287 | end if;
|
|---|
| 288 | elsif start = '1' and xmit_empty = '0' then
|
|---|
| 289 | -- CPHA=1 and have more data to transfer, go back to
|
|---|
| 290 | -- UNMASK_CK state
|
|---|
| 291 | clk1_mask <= '1';
|
|---|
| 292 | xmit_load <= '1'; -- load SPI shift register
|
|---|
| 293 | next_spi_state <= UNMASK_SCK;
|
|---|
| 294 | else
|
|---|
| 295 | -- CPHA=1 and no more data to transfer
|
|---|
| 296 | -- wait for last SCKs and then mask SCK
|
|---|
| 297 | if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then
|
|---|
| 298 | clk0_mask <= '0';
|
|---|
| 299 | clk1_mask <= '0';
|
|---|
| 300 | next_spi_state <= MASK_SCK;
|
|---|
| 301 | end if;
|
|---|
| 302 | clk0_mask <= '0';
|
|---|
| 303 | clk1_mask <= '1';
|
|---|
| 304 | end if;
|
|---|
| 305 |
|
|---|
| 306 | --********************* MASK_SCK State *****************
|
|---|
| 307 | when MASK_SCK =>
|
|---|
| 308 | done <= '1';
|
|---|
| 309 | -- wait for next internal SCK edge
|
|---|
| 310 | -- to help provide SS_N hold time
|
|---|
| 311 | if sck_int_fe <= '1' then
|
|---|
| 312 | next_spi_state <= HOLD_SSN1;
|
|---|
| 313 | end if;
|
|---|
| 314 |
|
|---|
| 315 | --********************* HOLD_SSN1 State *****************
|
|---|
| 316 | when HOLD_SSN1 =>
|
|---|
| 317 | -- This state waits for another SCK edge
|
|---|
| 318 | -- to provide SS_N hold time
|
|---|
| 319 | if sck_int_fe = '1' then
|
|---|
| 320 | next_spi_state <= HOLD_SSN2;
|
|---|
| 321 | end if;
|
|---|
| 322 |
|
|---|
| 323 | --********************* HOLD_SSN2 State *****************
|
|---|
| 324 | when HOLD_SSN2 =>
|
|---|
| 325 | -- This state waits for another SCK edge
|
|---|
| 326 | -- to provide SS_N hold time
|
|---|
| 327 | if sck_int_fe = '1' then
|
|---|
| 328 | next_spi_state <= NEGATE_SSN;
|
|---|
| 329 | end if;
|
|---|
| 330 |
|
|---|
| 331 | --********************* NEGATE_SSN State *****************
|
|---|
| 332 | when NEGATE_SSN =>
|
|---|
| 333 | -- SS_N should negate for an entire SCK
|
|---|
| 334 | -- This state waits for an SCK edge
|
|---|
| 335 | if sck_int_fe = '1' then
|
|---|
| 336 | next_spi_state <= IDLE;
|
|---|
| 337 | end if;
|
|---|
| 338 |
|
|---|
| 339 | --********************* Default State *****************
|
|---|
| 340 | when others =>
|
|---|
| 341 | next_spi_state <= IDLE;
|
|---|
| 342 | end case;
|
|---|
| 343 | end process;
|
|---|
| 344 |
|
|---|
| 345 | -- assert slave select when spi_state machine is in any state but IDLE or NEGATE_SSN
|
|---|
| 346 | ss_n_int <= '1' when (spi_state = IDLE or spi_state = NEGATE_SSN) else '0';
|
|---|
| 347 |
|
|---|
| 348 | --xmit_load <= '1' when (spi_state = UNMASK_SCK) else '0';
|
|---|
| 349 |
|
|---|
| 350 |
|
|---|
| 351 | --************************** Register Full/Empty flags *******************************
|
|---|
| 352 | -- When data is loaded into the SPI transmit shift register from SPITR, the XMIT_EMPTY
|
|---|
| 353 | -- flag is set, indicating to the uC that new data can be written into SPITR. Note that
|
|---|
| 354 | -- the SPI transmit shift register is clocked from SCK, therefore, this flag is clocked
|
|---|
| 355 | -- from SCK.
|
|---|
| 356 | mt_flag_process: process (sck_int, xmit_empty_reset, reset)
|
|---|
| 357 | begin
|
|---|
| 358 | if xmit_empty_reset = RESET_ACTIVE or reset = RESET_ACTIVE then
|
|---|
| 359 | xmit_empty <= '0';
|
|---|
| 360 | elsif sck_int'event and sck_int = '1' then
|
|---|
| 361 | if xmit_empty_reset = RESET_ACTIVE then
|
|---|
| 362 | -- reset empty flag because uC has written data to SPITR
|
|---|
| 363 | xmit_empty <= '0';
|
|---|
| 364 | elsif xmit_load = '1' then
|
|---|
| 365 | -- set empty flag because SPITR data has been loaded into
|
|---|
| 366 | -- SPI transmit shift register
|
|---|
| 367 | xmit_empty <= '1';
|
|---|
| 368 | end if;
|
|---|
| 369 | end if;
|
|---|
| 370 | end process;
|
|---|
| 371 |
|
|---|
| 372 | -- When data is loaded into SPIRR, the RCV_FULL flag is set, indicating to the uC that
|
|---|
| 373 | -- new data from the SPI bus has been received.
|
|---|
| 374 | full_flag_process: process (reset, clk)
|
|---|
| 375 | begin
|
|---|
| 376 | if reset = RESET_ACTIVE then
|
|---|
| 377 | rcv_full <= '0';
|
|---|
| 378 | elsif clk'event and clk = '1' then
|
|---|
| 379 | if rcv_full_reset = RESET_ACTIVE then
|
|---|
| 380 | -- reset the full flag because the spirr has been read
|
|---|
| 381 | rcv_full <= '0';
|
|---|
| 382 | elsif rcv_load = '1' then
|
|---|
| 383 | -- set the full flag because data has been loaded in spirr
|
|---|
| 384 | rcv_full <= '1';
|
|---|
| 385 | end if;
|
|---|
| 386 | end if;
|
|---|
| 387 | end process;
|
|---|
| 388 |
|
|---|
| 389 | --************************** Slave Selects *******************************
|
|---|
| 390 | -- The internal slave select signal generated by the SPI Control state machine
|
|---|
| 391 | -- is masked by the uC slave select register. The SS_N outputs are clocked on the
|
|---|
| 392 | -- falling edge of the system clock.
|
|---|
| 393 | ss_n_process: process ( reset, clk)
|
|---|
| 394 | variable i : integer;
|
|---|
| 395 |
|
|---|
| 396 | begin
|
|---|
| 397 | if reset = RESET_ACTIVE then
|
|---|
| 398 | ss_n_out <= (others => '1');
|
|---|
| 399 | elsif clk'event and clk = '0' then
|
|---|
| 400 | for i in 0 to 7 loop
|
|---|
| 401 | if ss_n_int = '0' and ss_mask_reg (i) = '1' then
|
|---|
| 402 | ss_n_out(i) <= '0'; -- assert corresponding slave select
|
|---|
| 403 | else
|
|---|
| 404 | ss_n_out(i) <= '1';
|
|---|
| 405 | end if;
|
|---|
| 406 | end loop;
|
|---|
| 407 | end if;
|
|---|
| 408 | end process;
|
|---|
| 409 |
|
|---|
| 410 | -- Slave selects are 3-stated if SS_IN_INT is asserted
|
|---|
| 411 | ss_n <= ss_n_out when ss_in_int = '1'
|
|---|
| 412 | else (others => 'Z');
|
|---|
| 413 |
|
|---|
| 414 | end DEFINITION;
|
|---|