1 | \documentclass{article}
|
---|
2 | \usepackage{listings}
|
---|
3 | \usepackage{color}
|
---|
4 |
|
---|
5 |
|
---|
6 | \definecolor{dkgreen}{rgb}{0,0.6,0}
|
---|
7 | \definecolor{gray}{rgb}{0.5,0.5,0.5}
|
---|
8 | \definecolor{mauve}{rgb}{0.58,0,0.82}
|
---|
9 |
|
---|
10 | \lstset{ %
|
---|
11 | language=C++, % the language of the code
|
---|
12 | basicstyle=\footnotesize, % the size of the fonts that are used for the code
|
---|
13 | numbers=left, % where to put the line-numbers
|
---|
14 | numberstyle=\tiny\color{gray}, % the style that is used for the line-numbers
|
---|
15 | stepnumber=2, % the step between two line-numbers. If it's 1, each line
|
---|
16 | % will be numbered
|
---|
17 | numbersep=5pt, % how far the line-numbers are from the code
|
---|
18 | backgroundcolor=\color{white}, % choose the background color. You must add \usepackage{color}
|
---|
19 | showspaces=false, % show spaces adding particular underscores
|
---|
20 | showstringspaces=false, % underline spaces within strings
|
---|
21 | showtabs=false, % show tabs within strings adding particular underscores
|
---|
22 | frame=single, % adds a frame around the code
|
---|
23 | rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. commens (green here))
|
---|
24 | tabsize=2, % sets default tabsize to 2 spaces
|
---|
25 | captionpos=b, % sets the caption-position to bottom
|
---|
26 | breaklines=true, % sets automatic line breaking
|
---|
27 | breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace
|
---|
28 | title=\lstname, % show the filename of files included with \lstinputlisting;
|
---|
29 | % also try caption instead of title
|
---|
30 | keywordstyle=\color{blue}, % keyword style
|
---|
31 | commentstyle=\color{dkgreen}, % comment style
|
---|
32 | stringstyle=\color{mauve}, % string literal style
|
---|
33 | escapeinside={\%*}{*)}, % if you want to add a comment within your code
|
---|
34 | morekeywords={*,...} % if you want to add more keywords to the set
|
---|
35 | }
|
---|
36 |
|
---|
37 | \begin{document}
|
---|
38 | \title{FACT Arduino ethernet communication Interface }
|
---|
39 | \author{D.Neise}
|
---|
40 | \maketitle
|
---|
41 | \tableofcontents
|
---|
42 | \newpage
|
---|
43 |
|
---|
44 | \section{Introduction}
|
---|
45 | Arduino is the name of a series of open source
|
---|
46 | microcontroller equipped boards. The
|
---|
47 | microcontroller in use is out of Atmels ATmega family.
|
---|
48 | The FACT telescope uses mostly the Arduino Ethernet board to
|
---|
49 | monitor and control certain auxiliary systems like the motors of the camera
|
---|
50 | shutter.
|
---|
51 | This board was chosen since the needed hardware for ethernet access,
|
---|
52 | like a dedicated ethernet controller (Wiznet W5100) and the jack, are already
|
---|
53 | in place. In addition the programming of the board as comparably easy.
|
---|
54 | Setting up a TCP/IP server (using either a fix IP or a DHCP server) as well as
|
---|
55 | raw byte-stream communication with clients is handled by the Ethernet library,
|
---|
56 | which comes with the Arduino IDE.
|
---|
57 | There is a variety of open source extension boards available for the Arduino,
|
---|
58 | both from the Arduino group as well as from unrelated developers. These
|
---|
59 | extension boards are usually called shields.
|
---|
60 | The shields can be connected to the ATmega port pins via 100mil headers,
|
---|
61 | which can be used to quickly connect custom peripherals as well.
|
---|
62 | Typical ATmega digital outputs can drive up to 10mA at 5.0V and thus allow for
|
---|
63 | quick connection of LEDs for software tests or similar quick hacks.
|
---|
64 | There exists an open source C cross compiler for ATmega MCUs as well a std-lib
|
---|
65 | implementation. The Arduino group created not only a user friendly
|
---|
66 | (maybe not power user friendly) IDE but also supplies the beginner with a
|
---|
67 | bunch of useful libraries from serial communication to LCD interfacing.
|
---|
68 |
|
---|
69 | \newpage
|
---|
70 | \subsection{std C vs. Arduinos C++ dialect}
|
---|
71 | The Arduino IDE provides the beginner with a simple programming enviroment.
|
---|
72 | While a standard microcontroller program usually is composed of an init section
|
---|
73 | and a never ending while loop which contains the actual job of the microcontroller,
|
---|
74 | e.g. like this:
|
---|
75 | \begin{lstlisting}
|
---|
76 | void main (void){
|
---|
77 |
|
---|
78 | // set up peripherals and I/O pins
|
---|
79 | // e.g:
|
---|
80 | DDRD |= 1<<PD6; // define pin PD6 to be an output
|
---|
81 |
|
---|
82 | // here the actual 'job' is performed
|
---|
83 | while(1){
|
---|
84 | // toggle the output
|
---|
85 | PORTD ^= 1<<PD6;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | \end{lstlisting}
|
---|
89 |
|
---|
90 | This would look like this in the Arduino C++ dialect:
|
---|
91 | \begin{lstlisting}
|
---|
92 | // On the Arduino board there are numbers printed
|
---|
93 | // next to the 100mil header sockets.
|
---|
94 | // The ATmega pin PD6 is named '6' on the Arduino board.
|
---|
95 | const int my_output_pin = 6;
|
---|
96 | boolean output_pin_state = false;
|
---|
97 |
|
---|
98 | setup(){
|
---|
99 | pinMode( my_output_pin , OUTPUT);
|
---|
100 | }
|
---|
101 |
|
---|
102 | loop(){
|
---|
103 | // toggle the variable...
|
---|
104 | output_pin_state = !output_pin_state;
|
---|
105 | // write the value of the variable, to the pin
|
---|
106 | digitalWrite( my_output_pin , output_pin_state);
|
---|
107 | }
|
---|
108 | \end{lstlisting}
|
---|
109 |
|
---|
110 | In many cases, the code written in the Arduino-C++ dialect does not
|
---|
111 | produce the optimal binary, but one can always fall back to standard C
|
---|
112 | or even inline assembler, if needed.
|
---|
113 |
|
---|
114 | \subsection{ scheduling on microcontrollers }
|
---|
115 | There is nothing like a scheduler running on a microcontroller, so one can not
|
---|
116 | produce concurrent running code by using threads. The developer needs
|
---|
117 | in such a case to implement a form of time sharing himself.
|
---|
118 | (Although there might be libraries easing the pain a little.)
|
---|
119 |
|
---|
120 | %Assume the following task:
|
---|
121 | %The ATmegas internal ADC should be used to measure a voltage as soon
|
---|
122 | %as an attached button is pressed. Since we expect some noise, the ADC should
|
---|
123 | %sample the voltage 100 times and return the mean and the std deviation.
|
---|
124 | %Since the user is expected to be slow, when pressing a button, 50 of the samples
|
---|
125 | %shoule be taken, before the user pressed the button.
|
---|
126 | %We assume the CPU frequency is 16MHz. And the serial communication to run at
|
---|
127 | %9600 baud.
|
---|
128 | %The ADC needs about 130us for a conversion.
|
---|
129 |
|
---|
130 | \subsubsection{simple time sharing}
|
---|
131 |
|
---|
132 | The most prominent solution maybe looks like this
|
---|
133 | \begin{lstlisting}
|
---|
134 | loop(){
|
---|
135 | check_if_a_button_was_pressed(); // < 1us
|
---|
136 | check_if_the_ADC_has_a_valid_reading(); // < 1us
|
---|
137 | calculate_something(); // approx 1ms
|
---|
138 | communicate(); //9600 baud // 1ms per byte
|
---|
139 | }
|
---|
140 | \end{lstlisting}
|
---|
141 | Each of these functions \emph{might} run for a well know and limited amount
|
---|
142 | of time.
|
---|
143 | This is important in case one wants to ensure, the user experience is immediate.
|
---|
144 | As an example, one might assume the button, which is checked in the first function, is a kind of emergency
|
---|
145 | shutdown button. In this case, one has to ensure, that the communicate function
|
---|
146 | will never block and thus inhibit the checking of the button and so inhibit
|
---|
147 | the emergency shutdown.
|
---|
148 |
|
---|
149 |
|
---|
150 | \subsubsection{Interrupts}
|
---|
151 | Another solution is the use of hardware interrupts. The ATmega comes
|
---|
152 | with quite a lot of interrupt routines, such as:
|
---|
153 | \begin{itemize}
|
---|
154 | \item ADC ready
|
---|
155 | \item timer overflow \\there are typically 3 timers
|
---|
156 | \item timer reached certain value \\typically 2 values per timer
|
---|
157 | \item special interrupt pin state changed \\good for emergency buttons
|
---|
158 | \item serial transfer complete (USART) \\i.e. the Arduino USB connection
|
---|
159 | \item SPI transfer complete \\the W5100 is connected via SPI
|
---|
160 | \end{itemize}
|
---|
161 |
|
---|
162 | Each of these interrupt sources can stop the running program and let the controller
|
---|
163 | jump to a special, often very tiny, so called interrupt service routine.
|
---|
164 | In case the developer connected the emergency button to one of the dedicated
|
---|
165 | interrupt pins, the program might look like this:
|
---|
166 | \newpage
|
---|
167 | \begin{lstlisting}
|
---|
168 | // global variables for data transfer
|
---|
169 | // between interrupt service routines
|
---|
170 | // and 'normal' user code
|
---|
171 | volatile boolean got_enough_adc_readings = false;
|
---|
172 | char adc_buffer[ADC_BUFFER_SIZE];
|
---|
173 | char adc_value_counter = 0;
|
---|
174 |
|
---|
175 | setup(){
|
---|
176 | enable_external_pin_irq();
|
---|
177 | enable_adc_irq();
|
---|
178 | }
|
---|
179 |
|
---|
180 | loop(){
|
---|
181 | // this might take about 1ms
|
---|
182 | if (got_enough_adc_readings == true){
|
---|
183 | calculate_something();
|
---|
184 | enable_adc_irq();
|
---|
185 | }
|
---|
186 | // this might take several 10ms, since 9600 baud is so slow.
|
---|
187 | communicate(); //9600 baud serial communication
|
---|
188 | }
|
---|
189 |
|
---|
190 | // this should take less than 16 cycles = 1us
|
---|
191 | adc_interrupt_service_routine(){
|
---|
192 | short reading = ADC_REGISTER;
|
---|
193 | adc_buffer[adc_value_counter] = reading;
|
---|
194 | adc_value_counter++;
|
---|
195 | if (adc_value_counter == ADC_BUFFER_SIZE){
|
---|
196 | got_enough_adc_readings = true;
|
---|
197 | disable_adc_irq();
|
---|
198 | }
|
---|
199 | }
|
---|
200 | // this should also take hardly any time ...
|
---|
201 | external_pin_toggle_service_routine(){
|
---|
202 | do_emergency_stuff();
|
---|
203 | }
|
---|
204 | \end{lstlisting}
|
---|
205 |
|
---|
206 | Writing the code in this manner does ensure, that even in case of very
|
---|
207 | long communication of several hundred bytes, the emergency button press is immediately
|
---|
208 | reacted on. In addition, the ADC samples are aquired faster than in the previous
|
---|
209 | solution, since the ADC is read when ever it finished a conversion (about every 100us)
|
---|
210 | and not after each communication.
|
---|
211 |
|
---|
212 | This solution is not very complicated, however the use of interrupts is connected
|
---|
213 | to some caveats, which are connected to non atomic access of 2-byte variables,
|
---|
214 | and compiler optimizations.
|
---|
215 |
|
---|
216 | In addition this solution is clearly to be used, in case a developer needs to ensure
|
---|
217 | a certain action is performed with a fixed rate, like monitoring the status
|
---|
218 | of a certain peripheral. This can be easily acomplished using one of the hardware
|
---|
219 | timer overflow interrupts.
|
---|
220 |
|
---|
221 | \section{Reliability}
|
---|
222 | Having the previous considerations in mind, one should also not forget,
|
---|
223 | that a remote device might not even have an emergency button, since the
|
---|
224 | ethernet connection is the only way for the user to interact with the deivce.
|
---|
225 | In such a case, the ethernet communication should be realiable and quick.
|
---|
226 |
|
---|
227 | Consider the flodding case:\\
|
---|
228 | Flodding might be caused by impatient users or buggy client software.
|
---|
229 | In such a case, the requests might come in faster, than they can be reacted on,
|
---|
230 | so the ethernet input buffer starts to fill up.
|
---|
231 |
|
---|
232 | In such a case, the device should at least, realize that the client is flodding
|
---|
233 | and in addition to the normal command execution answer, send a warning, that
|
---|
234 | the input buffer is e.g. 50\% filled.
|
---|
235 |
|
---|
236 | The client software should at least understand such a warning and stop sending
|
---|
237 | requests for a while.
|
---|
238 |
|
---|
239 | \section{Protocol}
|
---|
240 | In order to be quick and reliable, the protocol should be fairly easy.
|
---|
241 | Thus I recommend a fixed size binary, with unequal message sizes
|
---|
242 | for client to server requests and server to client messages.
|
---|
243 |
|
---|
244 | \subsection{client to server}
|
---|
245 | While the client to server communication is merely used
|
---|
246 | to send commands and settings,
|
---|
247 | the messages can be rather short. For example
|
---|
248 |
|
---|
249 | \begin{tabular}{|l|l|l|}
|
---|
250 | \hline
|
---|
251 | desc. & content & size \\
|
---|
252 | \hline
|
---|
253 | header & 0xF1 & 1 char\\
|
---|
254 | address & & 1 char\\
|
---|
255 | access type & \verb=SET|NAND|OR|XOR|READ= & 1 char\\
|
---|
256 | data & & 1 char\\
|
---|
257 | footer & 0xB4 & 1 char\\
|
---|
258 | \hline
|
---|
259 | \end{tabular}
|
---|
260 |
|
---|
261 | All commands and other requests are handled via access to some (virtual) registers.
|
---|
262 | Which are further pointed out in chapter \ref{sec_registers}. The registers space
|
---|
263 | is devided into com-registers, which are used to control the communication interface
|
---|
264 | itself, like activating automatic messaging or request certain register content,
|
---|
265 | and user-registers.
|
---|
266 | The address space looks like this
|
---|
267 |
|
---|
268 | \begin{tabular}{|l|l|}
|
---|
269 | \hline
|
---|
270 | 0x00 & CSTR \\ \hline
|
---|
271 | 0x01 & CTDR \\ \hline
|
---|
272 | 0x02 & URNR \\ \hline
|
---|
273 | 0x03 & URCR \\ \hline
|
---|
274 | 0x04 & URER \\ \hline
|
---|
275 | 0x05 & CMDR \\ \hline
|
---|
276 | 0x06 & CSTR \\ \hline
|
---|
277 | 0x07 & start of user register address space \\
|
---|
278 | ... & ... \\
|
---|
279 | 0xFF & end of user register address space \\ \hline
|
---|
280 | \end{tabular}\\
|
---|
281 |
|
---|
282 | The access type may be used by the client to make sure not to accidentally
|
---|
283 | alter registers content, which was not itendet to be changed. \\
|
---|
284 |
|
---|
285 | \textbf{examples:}
|
---|
286 |
|
---|
287 | \begin{tabular}{ll}
|
---|
288 | \verb= 0xF1 0x06 OR 0x02 0xB4= & set only bit 2 in CSTR register \\
|
---|
289 | \verb= 0xF1 0x01 NAND 0x40 0xB4 = & clear only bit 7 in CTDR register \\
|
---|
290 | \verb= 0xF1 0x0A XOR 0xC0 0xB4 = & toggle only bit 3 and 4 in a user register \\
|
---|
291 | \verb= 0xF1 0x00 SET 0x00 0xB4 = & set the entire CSTR register to zeros \\
|
---|
292 | \verb= 0xF1 0x02 READ 0x12 0xB4 = & read the URNR register \\
|
---|
293 | \end{tabular}\\
|
---|
294 |
|
---|
295 | To encode the different register access types I propose:
|
---|
296 |
|
---|
297 | \begin{tabular}{|l|l|}
|
---|
298 | \hline
|
---|
299 | SET & 0x00 \\ \hline
|
---|
300 | NAND & 0x01 \\ \hline
|
---|
301 | OR & 0x02 \\ \hline
|
---|
302 | XOR & 0x03 \\ \hline
|
---|
303 | READ & 0x05 \\ \hline
|
---|
304 | n/a & the rest \\ \hline
|
---|
305 | \end{tabular}
|
---|
306 |
|
---|
307 | In case unknown codes are submitted for the access type, the request is discarded.
|
---|
308 | the data field, for a READ access is discarded.
|
---|
309 | Each of the register access requests, triggers an answer, as long as the
|
---|
310 | request response (RR) bit in CPMR is set.
|
---|
311 |
|
---|
312 | \subsection{server to client}
|
---|
313 | Server to client communication on the other hand is meant to be rather informative.
|
---|
314 | The client is not only interested whether the last command which was sent, was received
|
---|
315 | and successfully executed, but also whether any other system status might have changed
|
---|
316 | unforseen.
|
---|
317 | Thus the client might be interested in:
|
---|
318 | \begin{itemize}
|
---|
319 | \item service messages, i.e. messages, which are sent in regular intervals
|
---|
320 | \item process messages, i.e. messages, which are sent upon certain events like:
|
---|
321 | \begin{itemize}
|
---|
322 | \item request reception
|
---|
323 | \item successfull command execution
|
---|
324 | \item error occurenaces(?)
|
---|
325 | \end{itemize}
|
---|
326 | \end{itemize}
|
---|
327 |
|
---|
328 | And in addition for the sake of speed, one might consider to define different sizes
|
---|
329 | for different messages. While process messages might be rather short, service messages
|
---|
330 | might be the entire register content, at least in case one wants to debug something.
|
---|
331 |
|
---|
332 | \subsubsection{request response}
|
---|
333 | The request response is a special form of a process message.
|
---|
334 | Process message in this context mean, any message send from the server
|
---|
335 | to the client, because something happened.
|
---|
336 | The request response is send back to the client automatically in order
|
---|
337 | to inform it about the reception of the request. The mere request response
|
---|
338 | does not mean, that the associated user command (in case there was one) execution
|
---|
339 | started.
|
---|
340 |
|
---|
341 | The request response protocol might look like this.
|
---|
342 |
|
---|
343 | \begin{tabular}{|l|l|l|}
|
---|
344 | \hline
|
---|
345 | start byte & content & size (byte)\\ \hline
|
---|
346 | 0x00 & general header & 1 \\ \hline
|
---|
347 | 0x01 & special request response header & 1 \\ \hline
|
---|
348 | 0x02 & request counter & 2 byte\\ \hline
|
---|
349 | 0x04 & real time in ms& 4 byte \\ \hline
|
---|
350 | 0x08 & address & 1 byte \\ \hline
|
---|
351 | 0x09 & data & 1 byte \\ \hline
|
---|
352 | 0x0A & crc(?) & 1 byte \\ \hline
|
---|
353 | 0x0B & footer & 1 byte \\ \hline
|
---|
354 | \end{tabular}
|
---|
355 |
|
---|
356 | I am not sure what kind of crc I would like to implement or if I should
|
---|
357 | implement one at all, but the experience with the FSC shows ... I should.
|
---|
358 |
|
---|
359 | \subsubsection{ process message protocol}
|
---|
360 | A process message can be send, because something happened.
|
---|
361 | I guess in the most cases, the message is send, because the user code started
|
---|
362 | executing a user command, or the user code finished executing a user command.
|
---|
363 | Or in more technical terms,
|
---|
364 | a process message is sent, in case either the user command register (UCR) or the
|
---|
365 | user execution registers(UER) are altered by the user code.
|
---|
366 | In addition a process message is send, in case the FACT++Interface detected an error.
|
---|
367 |
|
---|
368 | So for these process message I propose this protocol
|
---|
369 |
|
---|
370 | \begin{tabular}{|l|l|l|}
|
---|
371 | \hline
|
---|
372 | start byte & content & size (byte)\\ \hline
|
---|
373 | 0x00 & general header & 1 \\ \hline
|
---|
374 | 0x01 & special process message header & 1 \\ \hline
|
---|
375 | 0x02 & real time in ms & 4 byte \\ \hline
|
---|
376 | 0x06 & address & 1 byte \\ \hline
|
---|
377 | 0x07 & data & 1 byte \\ \hline
|
---|
378 | 0x08 & crc(?) & 1 byte \\ \hline
|
---|
379 | 0x09 & footer & 1 byte \\ \hline
|
---|
380 | \end{tabular}
|
---|
381 |
|
---|
382 | The address points to the register, which was altered an so caused
|
---|
383 | the sending of this message.
|
---|
384 | The data contains the data of that particular register.
|
---|
385 | I guess counting these messages makes no sense.
|
---|
386 |
|
---|
387 |
|
---|
388 | \subsubsection{service message protocol}
|
---|
389 |
|
---|
390 | The term service message referes to a form of message that is send in
|
---|
391 | regular time intervals (as regular as possible). These messages are send in
|
---|
392 | order to inform the client about the system status.
|
---|
393 | In addition by monitoring the system status carefully one might be
|
---|
394 | able to track down bugs in the program.
|
---|
395 | So it seems feasible to sent down the entire register content.
|
---|
396 |
|
---|
397 | The protocol I propose is this
|
---|
398 | \begin{tabular}{|l|l|l|}
|
---|
399 | \hline
|
---|
400 | start byte & content & size (byte)\\ \hline
|
---|
401 | 0x00 & general header & 1 \\ \hline
|
---|
402 | 0x01 & special service message header & 1 \\ \hline
|
---|
403 | 0x02 & real time in ms & 4 byte \\ \hline
|
---|
404 | 0x07 & com registers & 7 byte \\ \hline
|
---|
405 | 0x0E & user registers & URNR byte \\ \hline
|
---|
406 | 0x08 & crc(?) & 1 byte \\ \hline
|
---|
407 | 0x09 & footer & 1 byte \\ \hline
|
---|
408 | \end{tabular}
|
---|
409 |
|
---|
410 | The length depends on the user code.
|
---|
411 |
|
---|
412 |
|
---|
413 | \section{Registers}
|
---|
414 | \label{sec_registers}
|
---|
415 |
|
---|
416 | The registers are implemented as \\
|
---|
417 | \verb=char register[NUMBER_OF_REGISTERS]=.
|
---|
418 | There are two types of registers. The com-registers are members of the
|
---|
419 | Interface described in this document and the user-registers are entirely
|
---|
420 | in the hand of the user code. The interface just gets a pointer to the beginning
|
---|
421 | of the user-register space and its size. In addidtion the interface is informed
|
---|
422 | which of the user-registers are write-only, read-only and read-write registers.
|
---|
423 | I currently do not support 2byte registers, because in case the client wants
|
---|
424 | to read a 2byte register, the interface would need to make a copy first,
|
---|
425 | to ensure integrity at least to some extend.
|
---|
426 |
|
---|
427 | \subsection{Com Registers}
|
---|
428 | The following com-registers exists
|
---|
429 |
|
---|
430 | \begin{tabular}{|l|l|l|}
|
---|
431 | \hline
|
---|
432 | CSTR & R & com status register \\ \hline
|
---|
433 | CTDR & R & com time delay register \\ \hline
|
---|
434 | CSMR & W & com service message register \\ \hline
|
---|
435 | CPMR & R & com process message register \\ \hline
|
---|
436 | URNR & R & user register number register \\ \hline
|
---|
437 | URCR & R & address of user command register \\ \hline
|
---|
438 | URER & R & address of user execution register \\ \hline
|
---|
439 |
|
---|
440 | \end{tabular}
|
---|
441 |
|
---|
442 |
|
---|
443 |
|
---|
444 | \subsubsection{CSTR - com status register(R)}
|
---|
445 | The com status register contains information about the status of the
|
---|
446 | communication interface
|
---|
447 |
|
---|
448 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
449 | \hline
|
---|
450 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
451 | \multicolumn{3}{|c|}{NWR} & unused & unused & unused& unused& unused \\ \hline
|
---|
452 | \end{tabular}
|
---|
453 |
|
---|
454 | \subsubsection{CTDR - com time delay register(R)}
|
---|
455 | The com time delay register can be used, to find out, how much
|
---|
456 | time went by between two consecutive calls of FACT++Interface::com().
|
---|
457 | This might help debugging user code.
|
---|
458 |
|
---|
459 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
460 | \hline
|
---|
461 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
462 | \multicolumn{8}{|c|}{TIME} \\ \hline
|
---|
463 | \end{tabular}
|
---|
464 |
|
---|
465 | TIME is in units of 5ms.
|
---|
466 |
|
---|
467 | \subsubsection{CSMR - com servive message register(RW)}
|
---|
468 | The com servive message register controls the behaviour of the interface
|
---|
469 | regarding service messages
|
---|
470 |
|
---|
471 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
472 | \hline
|
---|
473 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
474 | SME & \multicolumn{7}{|c|}{SM\_INT} \\ \hline
|
---|
475 | \end{tabular}
|
---|
476 | \\
|
---|
477 | details
|
---|
478 |
|
---|
479 | \begin{tabular}{|l|l|l|}
|
---|
480 | \hline
|
---|
481 | abbr & description & default value \\ \hline
|
---|
482 | SME & service message enable & 1 \\ \hline
|
---|
483 | SM\_INT & service message interval (unit 0.1 seconds) & 50 \\ \hline
|
---|
484 | \end{tabular}
|
---|
485 |
|
---|
486 | \subsubsection{CPMR - com process message register(RW)}
|
---|
487 |
|
---|
488 | The com process message register controls the behaviour regarding
|
---|
489 | process messages
|
---|
490 |
|
---|
491 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
492 | \hline
|
---|
493 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
494 | PME & CRME & CEME & RRME & unused&unused&unused&unused \\ \hline
|
---|
495 | \end{tabular}
|
---|
496 | \\
|
---|
497 | details
|
---|
498 |
|
---|
499 | \begin{tabular}{|l|l|l|}
|
---|
500 | \hline
|
---|
501 | abbr & description & default value \\ \hline
|
---|
502 | PME & process message enable & 1 \\ \hline
|
---|
503 | CRME & command received message enable & 1 \\ \hline
|
---|
504 | CEME & command executed message enable & 1 \\ \hline
|
---|
505 | RRME & request response message enable & 1 \\ \hline
|
---|
506 | \end{tabular}
|
---|
507 |
|
---|
508 | \subsubsection{URNR - user register number register(R)}
|
---|
509 | The user-register number register stores the number of user registers
|
---|
510 |
|
---|
511 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
512 | \hline
|
---|
513 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
514 | \multicolumn{8}{|c|}{number of user registers} \\ \hline
|
---|
515 | \end{tabular}
|
---|
516 |
|
---|
517 | \subsubsection{URCR - user command register address(R)}
|
---|
518 | The user-register number register stores the address of the user command register
|
---|
519 |
|
---|
520 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
521 | \hline
|
---|
522 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
523 | \multicolumn{8}{|c|}{address} \\ \hline
|
---|
524 | \end{tabular}
|
---|
525 |
|
---|
526 | \subsubsection{URER - user-execute register address(R)}
|
---|
527 | The user-register number register stores the address of the user execute register
|
---|
528 |
|
---|
529 | \begin{tabular}{|c|c|c|c|c|c|c|c|}
|
---|
530 | \hline
|
---|
531 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline
|
---|
532 | \multicolumn{8}{|c|}{address} \\ \hline
|
---|
533 | \end{tabular}
|
---|
534 |
|
---|
535 |
|
---|
536 |
|
---|
537 |
|
---|
538 | \subsection{User Registers}
|
---|
539 | The user registers are implemented outside of the scope of the FACT++Interface
|
---|
540 | class. When constructed, the class gets a pointer to the beginning and the number
|
---|
541 | of user registers.
|
---|
542 |
|
---|
543 | The User may define special user registers. The \emph{User Command Register} and
|
---|
544 | the \emph{User Execution Register}.
|
---|
545 |
|
---|
546 | \subsubsection{User Command Register - UCR}
|
---|
547 | Every User Register can be used to inform the user code, about a request
|
---|
548 | by the client. Since the FACT++Interface cannot know, when and if the User code
|
---|
549 | starts to react on that command, in cannot inform the client about it.
|
---|
550 |
|
---|
551 | The special User Command register(UCR) ist monitored by the FACT++interface.
|
---|
552 | Assume the client requested to set a bit in the UCR.
|
---|
553 | Then the FACT++Interface sets this bit and makes an internal copy of the UCR.
|
---|
554 | In each call of FACT++Interface::com() is checked, if the user code changed the UCR.
|
---|
555 | In case the bit is cleared the FACT++Interface can inform the client, about the
|
---|
556 | starting execution of the requested command.
|
---|
557 |
|
---|
558 | \subsubsection{User Execute Register- UER}
|
---|
559 | The User Execute Register(EUR) is used to inform the FACT++Interface about the
|
---|
560 | execution of a command. In this case the client gets a meesage about this,
|
---|
561 | and the FACT++Interface cleares the bit, in order to inform the user code
|
---|
562 | and get a clean interface again.
|
---|
563 |
|
---|
564 |
|
---|
565 | \section{Usage}
|
---|
566 |
|
---|
567 | Here I will give an example, which methods should be called when.
|
---|
568 | It will look a little bit like this:
|
---|
569 | \newpage
|
---|
570 | \begin{lstlisting}
|
---|
571 | #define NUMBER_OF_REGS 7
|
---|
572 |
|
---|
573 | byte mac[] = { 0xFA, 0xC7, 0xFC, 0xB1, 0x00, 0x01 };
|
---|
574 | EthernetServer server(80);
|
---|
575 |
|
---|
576 | // this set of registers provides the interface
|
---|
577 | // between the FACT++interface class
|
---|
578 | // and the user code.
|
---|
579 | volatile char register[NUMBER_OF_REGISTERS];
|
---|
580 |
|
---|
581 | // set up the interface
|
---|
582 | FACT++Interface interface(server, register, NUMBER_OF_REGS);
|
---|
583 | // enable the sending of service messages
|
---|
584 | interface.service_msg(true);
|
---|
585 | // set the delay between service messages to 100, i.e. 10sec
|
---|
586 | interface.set_service_msg_delay(100);
|
---|
587 |
|
---|
588 | // inform the interface, that reg[6] & reg[7] serve as
|
---|
589 | // command interface between user code and FACT++Interface class
|
---|
590 | interface.set_command_register(6,7);
|
---|
591 |
|
---|
592 | setup(){
|
---|
593 | Ethernet.begin(mac);
|
---|
594 | server.begin();
|
---|
595 | interface.begin();
|
---|
596 | }
|
---|
597 |
|
---|
598 | loop(){
|
---|
599 | // here the ethernet communication takes place
|
---|
600 | // the method is ensured to take <100ms ... or so.
|
---|
601 | interface.com();
|
---|
602 | }
|
---|
603 |
|
---|
604 | // ensured to run every 10ms
|
---|
605 | timer_overflow_ISR(){
|
---|
606 |
|
---|
607 | // the user code checks certain registers
|
---|
608 | // to find out, if the client send a command
|
---|
609 | if(register[6]&(1<<4)){
|
---|
610 | register[6] &= ~(1<<4); // clear the command bit
|
---|
611 | // other registers can be used, to return values to the client.
|
---|
612 | register[2] = do_someting();
|
---|
613 | register[7] |= 1<<4; // set the execution bit
|
---|
614 | }
|
---|
615 |
|
---|
616 | if( !motors_ok() ){
|
---|
617 | stop_motors();
|
---|
618 | register[3] |= 1<<5;
|
---|
619 | }
|
---|
620 | }
|
---|
621 | \end{lstlisting}
|
---|
622 |
|
---|
623 | \section{Implementation}
|
---|
624 |
|
---|
625 | Here I will explain a little more about certain details of the
|
---|
626 | implementation, in case I feel this is needed.
|
---|
627 |
|
---|
628 | Definitely I will say how the files are named, and how to get them...
|
---|
629 |
|
---|
630 |
|
---|
631 | %\section{Summary}
|
---|
632 |
|
---|
633 | \end{document} |
---|