1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek 10/2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // MMarquardt //
|
---|
28 | // //
|
---|
29 | // Marquardt method of solving nonlinear least-squares problems //
|
---|
30 | // //
|
---|
31 | // (see Numerical recipes (2nd ed.), W.H.Press et al., p.688 ff) //
|
---|
32 | // //
|
---|
33 | /////////////////////////////////////////////////////////////////////////////
|
---|
34 | #include "MMarquardt.h"
|
---|
35 |
|
---|
36 | #include <math.h> // fabs
|
---|
37 |
|
---|
38 | #include <TVectorD.h>
|
---|
39 | #include <TMatrixD.h>
|
---|
40 |
|
---|
41 | #include <TStopwatch.h>
|
---|
42 |
|
---|
43 | #include "MLog.h"
|
---|
44 | #include "MLogManip.h"
|
---|
45 | #include "MParContainer.h"
|
---|
46 |
|
---|
47 | ClassImp(MMarquardt);
|
---|
48 |
|
---|
49 | using namespace std;
|
---|
50 |
|
---|
51 |
|
---|
52 | // --------------------------------------------------------------------------
|
---|
53 | //
|
---|
54 | // Default constructor.
|
---|
55 | //
|
---|
56 | MMarquardt::MMarquardt(const char *name, const char *title)
|
---|
57 | {
|
---|
58 | fName = name ? name : "MMarquardt";
|
---|
59 | fTitle = title ? title : "Marquardt minimization";
|
---|
60 | }
|
---|
61 |
|
---|
62 | // -----------------------------------------------------------------------
|
---|
63 | //
|
---|
64 | // Set - the number of parameters
|
---|
65 | // - the maximum number of steps allowed in the minimization and
|
---|
66 | // - the change in chi2 signaling convergence
|
---|
67 |
|
---|
68 | void MMarquardt::SetNpar(Int_t numpar, Int_t numstepmax, Double_t loopchi2)
|
---|
69 | {
|
---|
70 | fNpar = numpar;
|
---|
71 | fNumStepMax = numstepmax;
|
---|
72 | fLoopChi2 = loopchi2;
|
---|
73 |
|
---|
74 | fdParam.ResizeTo(fNpar);
|
---|
75 |
|
---|
76 | fParam.ResizeTo(fNpar);
|
---|
77 | fGrad.ResizeTo(fNpar);
|
---|
78 | fCovar.ResizeTo(fNpar, fNpar);
|
---|
79 |
|
---|
80 | fmyParam.ResizeTo(fNpar);
|
---|
81 | fmyGrad.ResizeTo(fNpar);
|
---|
82 | fmyCovar.ResizeTo(fNpar, fNpar);
|
---|
83 |
|
---|
84 | fIxc.ResizeTo(fNpar);
|
---|
85 | fIxr.ResizeTo(fNpar);
|
---|
86 | fIp.ResizeTo(fNpar);
|
---|
87 | }
|
---|
88 |
|
---|
89 |
|
---|
90 | // -----------------------------------------------------------------------
|
---|
91 | //
|
---|
92 | // do the minimization
|
---|
93 | //
|
---|
94 | // fcn is the function which calculates for a given set of parameters
|
---|
95 | // - the function L to be minimized
|
---|
96 | // - beta_k = -1/2 * dL/da_k (a kind of gradient of L)
|
---|
97 | // - alfa_kl = 1/2 * dL/(da_k da_l) (a kind of 2nd derivative of L)
|
---|
98 | //
|
---|
99 | // Vinit contains the starting values of the parameters
|
---|
100 | //
|
---|
101 |
|
---|
102 | Int_t MMarquardt::Loop(
|
---|
103 | Bool_t (*fcn)(TVectorD &, TMatrixD &, TVectorD &, Double_t &),
|
---|
104 | TVectorD &Vinit)
|
---|
105 | {
|
---|
106 | fFunc = fcn;
|
---|
107 |
|
---|
108 | // set the initial parameter values
|
---|
109 | for (Int_t i=0; i<fNpar; i++)
|
---|
110 | fParam(i) = Vinit(i);
|
---|
111 |
|
---|
112 | //-------------------------------------------
|
---|
113 | // first call of the function func
|
---|
114 | Bool_t rcfirst = FirstCall();
|
---|
115 | if (!rcfirst)
|
---|
116 | {
|
---|
117 | *fLog << "MMarquardt::Loop; first call of function failed " << endl;
|
---|
118 | return -1;
|
---|
119 | }
|
---|
120 |
|
---|
121 | Double_t oldChi2 = fChi2;
|
---|
122 | Double_t fdChi2 = 1.e10;
|
---|
123 | Int_t fNumStep = 0;
|
---|
124 |
|
---|
125 | //-------------------------------------------
|
---|
126 | // do the next step in the minimization
|
---|
127 | Bool_t rcnext;
|
---|
128 | do
|
---|
129 | {
|
---|
130 | fNumStep++;
|
---|
131 |
|
---|
132 | rcnext = NextStep();
|
---|
133 | if (!rcnext) break;
|
---|
134 |
|
---|
135 | fdChi2 = fabs(oldChi2-fChi2);
|
---|
136 | oldChi2 = fChi2;
|
---|
137 | } while (fdChi2 > fLoopChi2 && fNumStep < fNumStepMax);
|
---|
138 |
|
---|
139 | //-------------------------------------------
|
---|
140 | // do the final calculations
|
---|
141 | if (!rcnext)
|
---|
142 | {
|
---|
143 | *fLog << "MMarquardt::Loop; function call failed in step " << fNumStep
|
---|
144 | << endl;
|
---|
145 | return -2;
|
---|
146 | }
|
---|
147 |
|
---|
148 | if (fdChi2 > fLoopChi2)
|
---|
149 | {
|
---|
150 | *fLog << "MMarquardt::Loop; minimization has not converged, fChi2, fdChi2 = "
|
---|
151 | << fChi2 << ", " << fdChi2 << endl;
|
---|
152 | return -3;
|
---|
153 | }
|
---|
154 |
|
---|
155 | *fLog << "MMarquardt::Loop; minimization has converged, fChi2, fdChi2, fNumStep = "
|
---|
156 | << fChi2 << ", " << fdChi2 << ", " << fNumStep << endl;
|
---|
157 |
|
---|
158 |
|
---|
159 | Bool_t rccov = CovMatrix();
|
---|
160 | if (!rccov)
|
---|
161 | {
|
---|
162 | *fLog << "MMarquardt::Loop; calculation of covariance matrix failed "
|
---|
163 | << endl;
|
---|
164 | return 1;
|
---|
165 | }
|
---|
166 |
|
---|
167 | //-------------------------------------------
|
---|
168 | // results
|
---|
169 |
|
---|
170 | *fLog << "MMarquardt::Loop; Results of fit : fChi2, fNumStep, fdChi2 ="
|
---|
171 | << fChi2 << ", " << fNumStep << ", " << fdChi2 << endl;
|
---|
172 |
|
---|
173 | for (Int_t i=0; i<fNpar; i++)
|
---|
174 | fdParam(i) = sqrt(fCovar(i,i));
|
---|
175 |
|
---|
176 | *fLog << "MMarquardt::Loop; i, Param(i), dParam(i)" << endl;
|
---|
177 | for (Int_t i=0; i<fNpar; i++)
|
---|
178 | {
|
---|
179 | *fLog << i << " " << fParam(i) << " " << fdParam(i) << endl;
|
---|
180 | }
|
---|
181 |
|
---|
182 | *fLog << "MMarquardt::Loop; Covariance matrix" << endl;
|
---|
183 | for (Int_t i=0; i<fNpar; i++)
|
---|
184 | {
|
---|
185 | *fLog << i;
|
---|
186 | for (Int_t j=0; j<fNpar; j++)
|
---|
187 | {
|
---|
188 | *fLog << fCovar(i,j) << " ";
|
---|
189 | }
|
---|
190 | *fLog << endl;
|
---|
191 | }
|
---|
192 |
|
---|
193 | return 0;
|
---|
194 | }
|
---|
195 |
|
---|
196 |
|
---|
197 | // -----------------------------------------------------------------------
|
---|
198 | //
|
---|
199 | // do 1st step of the minimization
|
---|
200 | //
|
---|
201 |
|
---|
202 | Bool_t MMarquardt::FirstCall()
|
---|
203 | {
|
---|
204 | fLambda = 0.001;
|
---|
205 | Bool_t rc = (*fFunc)(fParam, fCovar, fGrad, fChi2);
|
---|
206 | if (!rc) return kFALSE;
|
---|
207 |
|
---|
208 | fCHIq = fChi2;
|
---|
209 | for (Int_t j=0; j<fNpar; j++)
|
---|
210 | fmyParam(j) = fParam(j);
|
---|
211 |
|
---|
212 | return kTRUE;
|
---|
213 | }
|
---|
214 |
|
---|
215 |
|
---|
216 | // -----------------------------------------------------------------------
|
---|
217 | //
|
---|
218 | // do one step of the minimization
|
---|
219 | //
|
---|
220 |
|
---|
221 | Bool_t MMarquardt::NextStep()
|
---|
222 | {
|
---|
223 | for (Int_t j=0; j<fNpar; j++)
|
---|
224 | {
|
---|
225 | for (Int_t k=0; k<fNpar; k++)
|
---|
226 | fmyCovar(j,k) = fCovar(j,k);
|
---|
227 |
|
---|
228 | fmyCovar(j,j) *= (1.0 + fLambda);
|
---|
229 | fmyGrad(j) = fGrad(j);
|
---|
230 | }
|
---|
231 |
|
---|
232 | Bool_t rgj = GaussJordan(fNpar, fmyCovar, fmyGrad);
|
---|
233 | if(!rgj) return kFALSE;
|
---|
234 |
|
---|
235 | for (Int_t j=0; j<fNpar; j++)
|
---|
236 | fmyParam(j) = fParam(j) + fmyGrad(j);
|
---|
237 |
|
---|
238 | Bool_t rc = (*fFunc)(fmyParam, fmyCovar, fmyGrad, fChi2);
|
---|
239 | if(!rc) return kFALSE;
|
---|
240 |
|
---|
241 | if (fChi2 < fCHIq)
|
---|
242 | {
|
---|
243 | fLambda *= 0.1;
|
---|
244 | fCHIq = fChi2;
|
---|
245 |
|
---|
246 | for (Int_t j=0; j<fNpar; j++)
|
---|
247 | {
|
---|
248 | for (Int_t k=0; k<fNpar; k++)
|
---|
249 | fCovar(j,k) = fmyCovar(j,k);
|
---|
250 |
|
---|
251 | fGrad(j) = fmyGrad(j);
|
---|
252 | fParam(j) = fmyParam(j);
|
---|
253 | }
|
---|
254 | }
|
---|
255 | else
|
---|
256 | fLambda *= 10.0;
|
---|
257 |
|
---|
258 |
|
---|
259 | return kTRUE;
|
---|
260 | }
|
---|
261 |
|
---|
262 | // -----------------------------------------------------------------------
|
---|
263 | //
|
---|
264 | // calculate error matrix of fitted parameters
|
---|
265 | //
|
---|
266 |
|
---|
267 | Bool_t MMarquardt::CovMatrix()
|
---|
268 | {
|
---|
269 | Bool_t rc = (*fFunc)(fParam, fCovar, fGrad, fChi2);
|
---|
270 | if(!rc) return kFALSE;
|
---|
271 |
|
---|
272 | for (Int_t j=0; j<fNpar; j++)
|
---|
273 | {
|
---|
274 | for (Int_t k=0; k<fNpar; k++)
|
---|
275 | fmyCovar(j,k) = fCovar(j,k);
|
---|
276 |
|
---|
277 | fmyCovar(j,j) *= (1.0 + fLambda);
|
---|
278 | fmyGrad(j) = fGrad(j);
|
---|
279 | }
|
---|
280 |
|
---|
281 | Bool_t rgj = GaussJordan(fNpar, fmyCovar, fmyGrad);
|
---|
282 | if(!rgj) return kFALSE;
|
---|
283 |
|
---|
284 | for (Int_t j=0; j<fNpar; j++)
|
---|
285 | {
|
---|
286 | for (Int_t k=0; k<fNpar; k++)
|
---|
287 | fCovar(j,k) = fmyCovar(j,k);
|
---|
288 | }
|
---|
289 |
|
---|
290 | return kTRUE;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // -----------------------------------------------------------------------
|
---|
294 | //
|
---|
295 | // solve normal equations
|
---|
296 | //
|
---|
297 | // sum(covar_kl * x_l) = beta_k (k=0,... (n-1))
|
---|
298 | //
|
---|
299 | // by the Gauss-Jordan method
|
---|
300 | // (see Numerical recipes (2nd ed.), W.H.Press et al., p.39)
|
---|
301 | //
|
---|
302 | // on return : covar contains the inverse of the input matrix covar
|
---|
303 | // beta contains the result for x
|
---|
304 | //
|
---|
305 | // return value = kTRUE means OK
|
---|
306 | // kFALSE means singular matrix
|
---|
307 | //
|
---|
308 |
|
---|
309 | Bool_t MMarquardt::GaussJordan(Int_t &n, TMatrixD &covar, TVectorD &beta)
|
---|
310 | {
|
---|
311 | Int_t i, j, k, l, ll;
|
---|
312 | Int_t ic = 0;
|
---|
313 | Int_t ir = 0;
|
---|
314 | Double_t h, d, p;
|
---|
315 |
|
---|
316 | for (j=0; j<n; j++)
|
---|
317 | fIp(j) = 0;
|
---|
318 |
|
---|
319 | for (i=0; i<n; i++)
|
---|
320 | {
|
---|
321 | h = 0.0;
|
---|
322 | for (j=0; j<n; j++)
|
---|
323 | {
|
---|
324 | if (fIp(j) != 1)
|
---|
325 | {
|
---|
326 | for (k=0; k<n; k++)
|
---|
327 | {
|
---|
328 | if (fIp(k) == 0)
|
---|
329 | {
|
---|
330 | if (fabs(covar(j,k)) >= h)
|
---|
331 | {
|
---|
332 | h = fabs(covar(j,k));
|
---|
333 | ir = j;
|
---|
334 | ic = k;
|
---|
335 | }
|
---|
336 | }
|
---|
337 | else
|
---|
338 | {
|
---|
339 | if (fIp(k) > 1) return kFALSE;
|
---|
340 | }
|
---|
341 | }
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | fIp(ic)++;
|
---|
346 | if (ir != ic)
|
---|
347 | {
|
---|
348 | for (l=0; l<n; l++)
|
---|
349 | {
|
---|
350 | d = covar(ir,l);
|
---|
351 | covar(ir,l) = covar(ic,l);
|
---|
352 | covar(ic,l) = d;
|
---|
353 | }
|
---|
354 | d = beta(ir);
|
---|
355 | beta(ir) = beta(ic);
|
---|
356 | beta(ic) = d;
|
---|
357 | }
|
---|
358 |
|
---|
359 | fIxr(i) = ir;
|
---|
360 | fIxc(i) = ic;
|
---|
361 | if (covar(ic,ic) == 0.0) return kFALSE;
|
---|
362 | p = 1.0 / covar(ic,ic);
|
---|
363 | covar(ic,ic) = 1.0;
|
---|
364 |
|
---|
365 | for (l=0; l<n; l++)
|
---|
366 | covar(ic,l) *= p;
|
---|
367 |
|
---|
368 | beta(ic) *= p;
|
---|
369 |
|
---|
370 | for (ll=0; ll<n; ll++)
|
---|
371 | {
|
---|
372 | if (ll!= ic)
|
---|
373 | {
|
---|
374 | d = covar(ll,ic);
|
---|
375 | covar(ll,ic) = 0.0;
|
---|
376 |
|
---|
377 | for (l=0; l<n; l++)
|
---|
378 | covar(ll,l) -= covar(ic,l) * d;
|
---|
379 |
|
---|
380 | beta(ll) -= beta(ic) * d;
|
---|
381 | }
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | for (l=n-1; l>=0; l--)
|
---|
386 | {
|
---|
387 | if (fIxr(l) != fIxc(l))
|
---|
388 | {
|
---|
389 | for (k=0; k<n; k++)
|
---|
390 | {
|
---|
391 | d = covar(k,fIxr(l));
|
---|
392 | covar(k,fIxr(l)) = covar(k,fIxc(l));
|
---|
393 | covar(k,fIxc(l)) = d;
|
---|
394 | }
|
---|
395 | }
|
---|
396 | }
|
---|
397 |
|
---|
398 | return kTRUE;
|
---|
399 | }
|
---|
400 | //=========================================================================
|
---|
401 |
|
---|
402 |
|
---|
403 |
|
---|
404 |
|
---|
405 |
|
---|
406 |
|
---|
407 |
|
---|
408 |
|
---|
409 |
|
---|
410 |
|
---|
411 |
|
---|
412 |
|
---|
413 |
|
---|
414 |
|
---|