1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2007
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MCalibrationChargeCalc
|
---|
28 | //
|
---|
29 | // Task to calculate the calibration conversion factors and quantum efficiencies
|
---|
30 | // from the fit results to the summed FADC slice distributions delivered by
|
---|
31 | // MCalibrationChargeCam, MCalibrationChargePix, MCalibrationChargeBlindPix and
|
---|
32 | // MCalibrationChargePINDiode, calculated and filled by MHCalibrationChargeCam,
|
---|
33 | // MHCalibrationChargePix, MHCalibrationChargeBlindPix and MHCalibrationChargePINDiode.
|
---|
34 | //
|
---|
35 | // PreProcess(): Initialize pointers to MCalibrationChargeCam, MCalibrationChargeBlindPix
|
---|
36 | // MCalibrationChargePINDiode and MCalibrationQECam
|
---|
37 | //
|
---|
38 | // Initialize pulser light wavelength
|
---|
39 | //
|
---|
40 | // ReInit(): MCalibrationCam::InitSize(NumPixels) is called from MGeomApply (which allocates
|
---|
41 | // memory in a TClonesArray of type MCalibrationChargePix)
|
---|
42 | // Initializes pointer to MBadPixelsCam
|
---|
43 | //
|
---|
44 | // Process(): Nothing to be done, histograms getting filled by MHCalibrationChargeCam
|
---|
45 | //
|
---|
46 | // PostProcess(): - FinalizePedestals()
|
---|
47 | // - FinalizeCharges()
|
---|
48 | // - FinalizeFFactorMethod()
|
---|
49 | // - FinalizeBadPixels()
|
---|
50 | // - FinalizeBlindCam()
|
---|
51 | // - FinalizePINDiode()
|
---|
52 | // - FinalizeFFactorQECam()
|
---|
53 | // - FinalizeBlindPixelQECam()
|
---|
54 | // - FinalizePINDiodeQECam()
|
---|
55 | //
|
---|
56 | // Input Containers:
|
---|
57 | // MCalibrationChargeCam
|
---|
58 | // MCalibrationChargeBlindPix
|
---|
59 | // MCalibrationChargePINDiode
|
---|
60 | // MCalibrationQECam
|
---|
61 | // MPedestalCam
|
---|
62 | // MBadPixelsCam
|
---|
63 | // MGeomCam
|
---|
64 | // MTime
|
---|
65 | //
|
---|
66 | // Output Containers:
|
---|
67 | // MCalibrationChargeCam
|
---|
68 | // MCalibrationChargeBlindPix
|
---|
69 | // MCalibrationChargePINDiode
|
---|
70 | // MCalibrationQECam
|
---|
71 | // MBadPixelsCam
|
---|
72 | //
|
---|
73 | //
|
---|
74 | // Preliminary description of the calibration in photons (email from 12/02/04)
|
---|
75 | //
|
---|
76 | // Why calibrating in photons:
|
---|
77 | // ===========================
|
---|
78 | //
|
---|
79 | // At the Barcelona meeting in 2002, we decided to calibrate the camera in
|
---|
80 | // photons. This for the following reasons:
|
---|
81 | //
|
---|
82 | // * The physical quantity arriving at the camera are photons. This is
|
---|
83 | // the direct physical information from the air shower. The photons
|
---|
84 | // have a flux and a spectrum.
|
---|
85 | //
|
---|
86 | // * The photon fluxes depend mostly on the shower energy (with
|
---|
87 | // corrections deriving from the observation conditions), while the photon
|
---|
88 | // spectra depend mostly on the observation conditions: zenith angle,
|
---|
89 | // quality of the air, also the impact parameter of the shower.
|
---|
90 | //
|
---|
91 | // * The photomultiplier, in turn, has different response properties
|
---|
92 | // (quantum efficiencies) for photons of different colour. (Moreover,
|
---|
93 | // different pixels have slightly different quantum efficiencies).
|
---|
94 | // The resulting number of photo-electrons is then amplified (linearly)
|
---|
95 | // with respect to the photo-electron flux.
|
---|
96 | //
|
---|
97 | // * In the ideal case, one would like to disentagle the effects
|
---|
98 | // of the observation conditions from the primary particle energy (which
|
---|
99 | // one likes to measure). To do so, one needs:
|
---|
100 | //
|
---|
101 | // 1) A reliable calibration relating the FADC counts to the photo-electron
|
---|
102 | // flux -> This is accomplished with the F-Factor method.
|
---|
103 | //
|
---|
104 | // 2) A reliable calibration of the wavelength-dependent quantum efficiency
|
---|
105 | // -> This is accomplished with the combination of the three methods,
|
---|
106 | // together with QE-measurements performed by David in order to do
|
---|
107 | // the interpolation.
|
---|
108 | //
|
---|
109 | // 3) A reliable calibration of the observation conditions. This means:
|
---|
110 | // - Tracing the atmospheric conditions -> LIDAR
|
---|
111 | // - Tracing the observation zenith angle -> Drive System
|
---|
112 | //
|
---|
113 | // 4) Some knowlegde about the impact parameter:
|
---|
114 | // - This is the only part which cannot be accomplished well with a
|
---|
115 | // single telescope. We would thus need to convolute the spectrum
|
---|
116 | // over the distribution of impact parameters.
|
---|
117 | //
|
---|
118 | //
|
---|
119 | // How an ideal calibration would look like:
|
---|
120 | // =========================================
|
---|
121 | //
|
---|
122 | // We know from the combined PIN-Diode and Blind-Pixel Method the response of
|
---|
123 | // each pixel to well-measured light fluxes in three representative
|
---|
124 | // wavelengths (green, blue, UV). We also know the response to these light
|
---|
125 | // fluxes in photo-electrons. Thus, we can derive:
|
---|
126 | //
|
---|
127 | // - conversion factors to photo-electrons
|
---|
128 | // - conversion factors to photons in three wavelengths.
|
---|
129 | //
|
---|
130 | // Together with David's measurements and some MC-simulation, we should be
|
---|
131 | // able to derive tables for typical Cherenkov-photon spectra - convoluted
|
---|
132 | // with the impact parameters and depending on the athmospheric conditions
|
---|
133 | // and the zenith angle (the "outer parameters").
|
---|
134 | //
|
---|
135 | // From these tables we can create "calibration tables" containing some
|
---|
136 | // effective quantum efficiency depending on these outer parameters and which
|
---|
137 | // are different for each pixel.
|
---|
138 | //
|
---|
139 | // In an ideal MCalibrate, one would thus have to convert first the FADC
|
---|
140 | // slices to Photo-electrons and then, depending on the outer parameters,
|
---|
141 | // look up the effective quantum efficiency and get the mean number of
|
---|
142 | // photons which is then used for the further analysis.
|
---|
143 | //
|
---|
144 | // How the (first) MAGIC calibration should look like:
|
---|
145 | // ===================================================
|
---|
146 | //
|
---|
147 | // For the moment, we have only one reliable calibration method, although
|
---|
148 | // with very large systematic errors. This is the F-Factor method. Knowing
|
---|
149 | // that the light is uniform over the whole camera (which I would not at all
|
---|
150 | // guarantee in the case of the CT1 pulser), one could in principle already
|
---|
151 | // perform a relative calibration of the quantum efficiencies in the UV.
|
---|
152 | // However, the spread in QE at UV is about 10-15% (according to the plot
|
---|
153 | // that Abelardo sent around last time. The spread in photo-electrons is 15%
|
---|
154 | // for the inner pixels, but much larger (40%) for the outer ones.
|
---|
155 | //
|
---|
156 | // I'm not sure if we can already say that we have measured the relative
|
---|
157 | // difference in quantum efficiency for the inner pixels and produce a first
|
---|
158 | // QE-table for each pixel. To so, I would rather check in other wavelengths
|
---|
159 | // (which we can do in about one-two weeks when the optical transmission of
|
---|
160 | // the calibration trigger is installed).
|
---|
161 | //
|
---|
162 | // Thus, for the moment being, I would join Thomas proposal to calibrate in
|
---|
163 | // photo-electrons and apply one stupid average quantum efficiency for all
|
---|
164 | // pixels. This keeping in mind that we will have much preciser information
|
---|
165 | // in about one to two weeks.
|
---|
166 | //
|
---|
167 | //
|
---|
168 | // What MCalibrate should calculate and what should be stored:
|
---|
169 | // ===========================================================
|
---|
170 | //
|
---|
171 | // It is clear that in the end, MCerPhotEvt will store photons.
|
---|
172 | // MCalibrationCam stores the conversionfactors to photo-electrons and also
|
---|
173 | // some tables of how to apply the conversion to photons, given the outer
|
---|
174 | // parameters. This is not yet implemented and not even discussed.
|
---|
175 | //
|
---|
176 | // To start, I would suggest that we define the "average quantum efficiency"
|
---|
177 | // (maybe something like 25+-3%) and apply them equally to all
|
---|
178 | // photo-electrons. Later, this average factor can be easily replaced by a
|
---|
179 | // pixel-dependent factor and later by a (pixel-dependent) table.
|
---|
180 | //
|
---|
181 | //
|
---|
182 | // ClassVersion 2:
|
---|
183 | // - Float_t fPheErrLimit;
|
---|
184 | // + Float_t fPheErrLowerLimit; // Lower limit acceptance nr. phe's w.r.t. area idx mean (in sigmas)
|
---|
185 | // + Float_t fPheErrUpperLimit; // Upper limit acceptance nr. phe's w.r.t. area idx mean (in sigmas)
|
---|
186 | //
|
---|
187 | //
|
---|
188 | // ClassVersion 3:
|
---|
189 | // + Bool_t fUseExtractorRes; // Include extractor resolution in F-Factor method
|
---|
190 | //
|
---|
191 | // ClassVersion 4:
|
---|
192 | // + Float_t fUnsuitablesLimit; // Limit for relative number of unsuitable pixels
|
---|
193 | // + Float_t fUnreliablesLimit; // Limit for relative number of unreliable pixels
|
---|
194 | // + Float_t fExternalNumPhes; // External mean number of photo-electrons set from outside
|
---|
195 | // + Float_t fExternalNumPhesRelVar; // External rel. var. number of photo-electrons set from outside
|
---|
196 | //
|
---|
197 | // ClassVersion 5:
|
---|
198 | // - TString fOutputPath
|
---|
199 | // - TString fOutputFile
|
---|
200 | //
|
---|
201 | // ClassVersion 6:
|
---|
202 | // - Bool_t fContinousCalibration
|
---|
203 | //
|
---|
204 | //////////////////////////////////////////////////////////////////////////////
|
---|
205 | #include "MCalibrationChargeCalc.h"
|
---|
206 |
|
---|
207 | #include <TSystem.h>
|
---|
208 | #include <TH1.h>
|
---|
209 | #include <TF1.h>
|
---|
210 |
|
---|
211 | #include "MLog.h"
|
---|
212 | #include "MLogManip.h"
|
---|
213 |
|
---|
214 | #include "MMath.h"
|
---|
215 |
|
---|
216 | #include "MParList.h"
|
---|
217 |
|
---|
218 | #include "MCalibrationPattern.h"
|
---|
219 |
|
---|
220 | #include "MGeomCam.h"
|
---|
221 | #include "MGeom.h"
|
---|
222 | #include "MHCamera.h"
|
---|
223 |
|
---|
224 | #include "MPedestalCam.h"
|
---|
225 | #include "MPedestalPix.h"
|
---|
226 |
|
---|
227 | #include "MHCalibrationChargeCam.h"
|
---|
228 | #include "MHCalibrationChargeBlindCam.h"
|
---|
229 |
|
---|
230 | #include "MCalibrationChargeCam.h"
|
---|
231 | #include "MCalibrationChargePix.h"
|
---|
232 | #include "MCalibrationChargePINDiode.h"
|
---|
233 | #include "MCalibrationBlindPix.h"
|
---|
234 | #include "MCalibrationBlindCam.h"
|
---|
235 |
|
---|
236 | #include "MExtractedSignalCam.h"
|
---|
237 | #include "MExtractedSignalPix.h"
|
---|
238 | #include "MExtractedSignalBlindPixel.h"
|
---|
239 | #include "MExtractedSignalPINDiode.h"
|
---|
240 |
|
---|
241 | #include "MBadPixelsCam.h"
|
---|
242 |
|
---|
243 | #include "MCalibrationQECam.h"
|
---|
244 | #include "MCalibrationQEPix.h"
|
---|
245 |
|
---|
246 | ClassImp(MCalibrationChargeCalc);
|
---|
247 |
|
---|
248 | using namespace std;
|
---|
249 |
|
---|
250 | const Float_t MCalibrationChargeCalc::fgChargeLimit = 4.5;
|
---|
251 | const Float_t MCalibrationChargeCalc::fgChargeErrLimit = 0.;
|
---|
252 | const Float_t MCalibrationChargeCalc::fgChargeRelErrLimit = 1.;
|
---|
253 | const Float_t MCalibrationChargeCalc::fgLambdaErrLimit = 0.2;
|
---|
254 | const Float_t MCalibrationChargeCalc::fgLambdaCheckLimit = 0.5;
|
---|
255 | const Float_t MCalibrationChargeCalc::fgPheErrLowerLimit = 6.0;
|
---|
256 | const Float_t MCalibrationChargeCalc::fgPheErrUpperLimit = 5.5;
|
---|
257 | const Float_t MCalibrationChargeCalc::fgFFactorErrLimit = 4.5;
|
---|
258 | const Float_t MCalibrationChargeCalc::fgArrTimeRmsLimit = 5.0;
|
---|
259 | const Float_t MCalibrationChargeCalc::fgUnsuitablesLimit = 0.1;
|
---|
260 | const Float_t MCalibrationChargeCalc::fgUnreliablesLimit = 0.3;
|
---|
261 |
|
---|
262 | const char *MCalibrationChargeCalc::fgNamePedestalCam = "MPedestalCam";
|
---|
263 |
|
---|
264 |
|
---|
265 | // --------------------------------------------------------------------------
|
---|
266 | //
|
---|
267 | // Default constructor.
|
---|
268 | //
|
---|
269 | // Sets the pointer to fQECam and fGeom to NULL
|
---|
270 | //
|
---|
271 | // Calls AddToBranchList for:
|
---|
272 | // - MRawEvtData.fHiGainPixId
|
---|
273 | // - MRawEvtData.fLoGainPixId
|
---|
274 | // - MRawEvtData.fHiGainFadcSamples
|
---|
275 | // - MRawEvtData.fLoGainFadcSamples
|
---|
276 | //
|
---|
277 | // Initializes:
|
---|
278 | // - fArrTimeRmsLimit to fgArrTimeRmsLimit
|
---|
279 | // - fChargeLimit to fgChargeLimit
|
---|
280 | // - fChargeErrLimit to fgChargeErrLimit
|
---|
281 | // - fChargeRelErrLimit to fgChargeRelErrLimit
|
---|
282 | // - fFFactorErrLimit to fgFFactorErrLimit
|
---|
283 | // - fLambdaCheckLimit to fgLambdaCheckLimit
|
---|
284 | // - fLambdaErrLimit to fgLambdaErrLimit
|
---|
285 | // - fNamePedestalCam to fgNamePedestalCam
|
---|
286 | // - fPheErrLowerLimit to fgPheErrLowerLimit
|
---|
287 | // - fPheErrUpperLimit to fgPheErrUpperLimit
|
---|
288 | // - fPulserColor to MCalibrationCam::kCT1
|
---|
289 | // - fOutputPath to "."
|
---|
290 | // - fOutputFile to "ChargeCalibStat.txt"
|
---|
291 | // - flag debug to kFALSE
|
---|
292 | // - IsUseExtractorRes to kFALSE
|
---|
293 | // - IsUseExternalNumPhes to kFALSE
|
---|
294 | // - fExternalNumPhes to 0.
|
---|
295 | // - fExternalNumPhesRelVar to 0.
|
---|
296 | //
|
---|
297 | // Sets all checks
|
---|
298 | //
|
---|
299 | // Calls:
|
---|
300 | // - Clear()
|
---|
301 | //
|
---|
302 | MCalibrationChargeCalc::MCalibrationChargeCalc(const char *name, const char *title)
|
---|
303 | : fPulserColor(MCalibrationCam::kNONE), fContinousCalibration(kFALSE),
|
---|
304 | fGeom(NULL), fSignal(NULL), fCalibPattern(NULL), fExtractor(NULL)
|
---|
305 | {
|
---|
306 |
|
---|
307 | fName = name ? name : "MCalibrationChargeCalc";
|
---|
308 | fTitle = title ? title : "Task to calculate the calibration constants and MCalibrationCam ";
|
---|
309 |
|
---|
310 | AddToBranchList("MRawEvtData.fHiGainPixId");
|
---|
311 | AddToBranchList("MRawEvtData.fLoGainPixId");
|
---|
312 | AddToBranchList("MRawEvtData.fHiGainFadcSamples");
|
---|
313 | AddToBranchList("MRawEvtData.fLoGainFadcSamples");
|
---|
314 |
|
---|
315 | SetArrTimeRmsLimit ();
|
---|
316 | SetChargeLimit ();
|
---|
317 | SetChargeErrLimit ();
|
---|
318 | SetChargeRelErrLimit ();
|
---|
319 | SetDebug ( kFALSE );
|
---|
320 | SetFFactorErrLimit ();
|
---|
321 | SetLambdaCheckLimit ();
|
---|
322 | SetLambdaErrLimit ();
|
---|
323 | SetNamePedestalCam ();
|
---|
324 | SetPheErrLowerLimit ();
|
---|
325 | SetPheErrUpperLimit ();
|
---|
326 | SetUnsuitablesLimit ();
|
---|
327 | SetUnreliablesLimit ();
|
---|
328 | SetUseExtractorRes ();
|
---|
329 | SetUseUnreliables ();
|
---|
330 | SetUseExternalNumPhes(kFALSE);
|
---|
331 |
|
---|
332 | SetExternalNumPhes ();
|
---|
333 | SetExternalNumPhesRelVar();
|
---|
334 |
|
---|
335 | SetCheckArrivalTimes ();
|
---|
336 | SetCheckDeadPixels ();
|
---|
337 | SetCheckDeviatingBehavior();
|
---|
338 | SetCheckExtractionWindow ();
|
---|
339 | SetCheckHistOverflow ();
|
---|
340 | SetCheckOscillations ();
|
---|
341 |
|
---|
342 | Clear();
|
---|
343 |
|
---|
344 | }
|
---|
345 |
|
---|
346 | // --------------------------------------------------------------------------
|
---|
347 | //
|
---|
348 | // Sets:
|
---|
349 | // - all variables to 0.,
|
---|
350 | // - all flags to kFALSE
|
---|
351 | // - all pointers to NULL
|
---|
352 | // - the pulser colour to kNONE
|
---|
353 | // - fBlindPixelFlags to 0
|
---|
354 | // - fPINDiodeFlags to 0
|
---|
355 | //
|
---|
356 | void MCalibrationChargeCalc::Clear(const Option_t *o)
|
---|
357 | {
|
---|
358 |
|
---|
359 | fNumHiGainSamples = 0.;
|
---|
360 | fNumLoGainSamples = 0.;
|
---|
361 | fSqrtHiGainSamples = 0.;
|
---|
362 | fSqrtLoGainSamples = 0.;
|
---|
363 | fNumInnerFFactorMethodUsed = 0;
|
---|
364 |
|
---|
365 | fNumProcessed = 0;
|
---|
366 |
|
---|
367 | fBadPixels = NULL;
|
---|
368 | fCam = NULL;
|
---|
369 | fHCam = NULL;
|
---|
370 | fQECam = NULL;
|
---|
371 | fBlindCam = NULL;
|
---|
372 | fHBlindCam = NULL;
|
---|
373 | fPINDiode = NULL;
|
---|
374 | fPedestals = NULL;
|
---|
375 |
|
---|
376 | SetPulserColor ( MCalibrationCam::kNONE );
|
---|
377 |
|
---|
378 | fStrength = 0.;
|
---|
379 | fBlindPixelFlags.Set(0);
|
---|
380 | fPINDiodeFlags .Set(0);
|
---|
381 | fResultFlags .Set(0);
|
---|
382 | }
|
---|
383 |
|
---|
384 |
|
---|
385 | // -----------------------------------------------------------------------------------
|
---|
386 | //
|
---|
387 | // The following container are searched for and execution aborted if not in MParList:
|
---|
388 | // - MPedestalCam
|
---|
389 | // - MCalibrationPattern
|
---|
390 | // - MExtractedSignalCam
|
---|
391 | //
|
---|
392 | Int_t MCalibrationChargeCalc::PreProcess(MParList *pList)
|
---|
393 | {
|
---|
394 |
|
---|
395 | /*
|
---|
396 | if (IsInterlaced())
|
---|
397 | {
|
---|
398 | fTrigPattern = (MTriggerPattern*)pList->FindObject("MTriggerPattern");
|
---|
399 | if (!fTrigPattern)
|
---|
400 | {
|
---|
401 | *fLog << err << "MTriggerPattern not found... abort." << endl;
|
---|
402 | return kFALSE;
|
---|
403 | }
|
---|
404 | }
|
---|
405 | */
|
---|
406 |
|
---|
407 | fCalibPattern = (MCalibrationPattern*)pList->FindObject("MCalibrationPattern");
|
---|
408 | if (!fCalibPattern)
|
---|
409 | {
|
---|
410 | *fLog << err << "MCalibrationPattern not found... abort." << endl;
|
---|
411 | return kFALSE;
|
---|
412 | }
|
---|
413 |
|
---|
414 | //
|
---|
415 | // Containers that have to be there.
|
---|
416 | //
|
---|
417 | fSignal = (MExtractedSignalCam*)pList->FindObject("MExtractedSignalCam");
|
---|
418 | if (!fSignal)
|
---|
419 | {
|
---|
420 | *fLog << err << "MExtractedSignalCam not found... aborting" << endl;
|
---|
421 | return kFALSE;
|
---|
422 | }
|
---|
423 |
|
---|
424 | if (fPedestals)
|
---|
425 | return kTRUE;
|
---|
426 |
|
---|
427 | fPedestals = (MPedestalCam*)pList->FindObject(AddSerialNumber(fNamePedestalCam), "MPedestalCam");
|
---|
428 | if (!fPedestals)
|
---|
429 | {
|
---|
430 | *fLog << err << fNamePedestalCam << " [MPedestalCam] not found... aborting" << endl;
|
---|
431 | return kFALSE;
|
---|
432 | }
|
---|
433 |
|
---|
434 | // Obsolete... it is already set in the constructor isn't it?
|
---|
435 | fPulserColor = MCalibrationCam::kNONE;
|
---|
436 |
|
---|
437 | return kTRUE;
|
---|
438 | }
|
---|
439 |
|
---|
440 |
|
---|
441 | // --------------------------------------------------------------------------
|
---|
442 | //
|
---|
443 | // Search for the following input containers and abort if not existing:
|
---|
444 | // - MGeomCam
|
---|
445 | // - MCalibrationChargeCam
|
---|
446 | // - MCalibrationQECam
|
---|
447 | // - MBadPixelsCam
|
---|
448 | //
|
---|
449 | // Search for the following input containers and give a warning if not existing:
|
---|
450 | // - MCalibrationBlindPix
|
---|
451 | // - MCalibrationChargePINDiode
|
---|
452 | //
|
---|
453 | // It retrieves the following variables from MCalibrationChargeCam:
|
---|
454 | //
|
---|
455 | // - fNumHiGainSamples
|
---|
456 | // - fNumLoGainSamples
|
---|
457 | //
|
---|
458 | // It defines the PixId of every pixel in:
|
---|
459 | //
|
---|
460 | // - MCalibrationChargeCam
|
---|
461 | // - MCalibrationQECam
|
---|
462 | //
|
---|
463 | // It sets all pixels in excluded which have the flag fBadBixelsPix::IsBad() set in:
|
---|
464 | //
|
---|
465 | // - MCalibrationChargePix
|
---|
466 | // - MCalibrationQEPix
|
---|
467 | //
|
---|
468 | // Sets the pulser colour and tests if it has not changed w.r.t. fPulserColor in:
|
---|
469 | //
|
---|
470 | // - MCalibrationChargeCam
|
---|
471 | // - MCalibrationBlindPix (if existing)
|
---|
472 | // - MCalibrationChargePINDiode (if existing)
|
---|
473 | //
|
---|
474 | Bool_t MCalibrationChargeCalc::ReInit(MParList *pList )
|
---|
475 | {
|
---|
476 |
|
---|
477 | //
|
---|
478 | // Geometry
|
---|
479 | //
|
---|
480 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam");
|
---|
481 | if (!fGeom)
|
---|
482 | {
|
---|
483 | *fLog << err << "No MGeomCam found... aborting." << endl;
|
---|
484 | return kFALSE;
|
---|
485 | }
|
---|
486 |
|
---|
487 | //
|
---|
488 | // Charge histogram
|
---|
489 | //
|
---|
490 | fHCam = (MHCalibrationChargeCam*)pList->FindObject(AddSerialNumber("MHCalibrationChargeCam"));
|
---|
491 | if (!fHCam)
|
---|
492 | {
|
---|
493 | *fLog << err << "Cannot find MHCalibrationChargeCam ... abort." << endl;
|
---|
494 | *fLog << "Maybe you forget to call an MFillH for the MHCalibrationChargeCam before..." << endl;
|
---|
495 | return kFALSE;
|
---|
496 | }
|
---|
497 |
|
---|
498 | //
|
---|
499 | // MCalibrationChargeCam
|
---|
500 | //
|
---|
501 | fCam = (MCalibrationChargeCam*)pList->FindObject(AddSerialNumber("MCalibrationChargeCam"));
|
---|
502 | if (!fCam)
|
---|
503 | {
|
---|
504 | *fLog << err << "Cannot find MCalibrationChargeCam ... abort." << endl;
|
---|
505 | *fLog << "Maybe you forget to call an MFillH for the MHCalibrationChargeCam before..." << endl;
|
---|
506 | return kFALSE;
|
---|
507 | }
|
---|
508 |
|
---|
509 | //
|
---|
510 | // Blind pixel calibration
|
---|
511 | //
|
---|
512 | fBlindCam = (MCalibrationBlindCam*)pList->FindObject(AddSerialNumber("MCalibrationBlindCam"));
|
---|
513 | if (!fBlindCam)
|
---|
514 | *fLog << inf << "No MCalibrationBlindCam found... no Blind Pixel method!" << endl;
|
---|
515 |
|
---|
516 | //
|
---|
517 | // Required containers
|
---|
518 | //
|
---|
519 | fQECam = (MCalibrationQECam*)pList->FindObject(AddSerialNumber("MCalibrationQECam"));
|
---|
520 | if (!fQECam)
|
---|
521 | {
|
---|
522 | *fLog << err << "Cannot find MCalibrationQECam ... abort." << endl;
|
---|
523 | return kFALSE;
|
---|
524 | }
|
---|
525 |
|
---|
526 | fBadPixels = (MBadPixelsCam*)pList->FindObject(AddSerialNumber("MBadPixelsCam"));
|
---|
527 | if (!fBadPixels)
|
---|
528 | {
|
---|
529 | *fLog << err << "Cannot find MBadPixelsCam ... abort." << endl;
|
---|
530 | return kFALSE;
|
---|
531 | }
|
---|
532 |
|
---|
533 | //
|
---|
534 | // Optional Containers
|
---|
535 | //
|
---|
536 | fPINDiode = (MCalibrationChargePINDiode*)pList->FindObject("MCalibrationChargePINDiode");
|
---|
537 | if (!fPINDiode)
|
---|
538 | *fLog << inf << "No MCalibrationChargePINDiode found... no PIN Diode method!" << endl;
|
---|
539 |
|
---|
540 | fHBlindCam = (MHCalibrationChargeBlindCam*)pList->FindObject(AddSerialNumber("MHCalibrationChargeBlindCam"));
|
---|
541 | if (!fHBlindCam)
|
---|
542 | *fLog << inf << "No MHCalibrationChargeBlindCam found... no Blind Pixel method!" << endl;
|
---|
543 |
|
---|
544 |
|
---|
545 | //
|
---|
546 | // Further initialization
|
---|
547 | //
|
---|
548 | if (IsDebug())
|
---|
549 | {
|
---|
550 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
551 | for (UInt_t i=0; i<npixels; i++)
|
---|
552 | (*fCam)[i].SetDebug();
|
---|
553 | }
|
---|
554 |
|
---|
555 | fResultFlags.Set(fGeom->GetNumAreas());
|
---|
556 |
|
---|
557 | return kTRUE;
|
---|
558 | }
|
---|
559 |
|
---|
560 | // ----------------------------------------------------------------------------------
|
---|
561 | //
|
---|
562 | // Set the correct colour to the charge containers
|
---|
563 | //
|
---|
564 | Int_t MCalibrationChargeCalc::Process()
|
---|
565 | {
|
---|
566 |
|
---|
567 | const MCalibrationCam::PulserColor_t col = fCalibPattern->GetPulserColor();
|
---|
568 |
|
---|
569 | //
|
---|
570 | // If pulser color didn't change there is nothing to do
|
---|
571 | //
|
---|
572 | const Float_t strength = fCalibPattern->GetPulserStrength();
|
---|
573 | const Float_t strdiff = TMath::Abs(strength-fStrength);
|
---|
574 | if (col == fPulserColor && strdiff < 0.05 )
|
---|
575 | {
|
---|
576 | fNumProcessed++;
|
---|
577 | return kTRUE;
|
---|
578 | }
|
---|
579 |
|
---|
580 | //
|
---|
581 | // If there is no color is nothing to do
|
---|
582 | //
|
---|
583 | if (col == MCalibrationCam::kNONE)
|
---|
584 | return kTRUE;
|
---|
585 |
|
---|
586 | //
|
---|
587 | // Now retrieve the colour and check if not various colours have been used
|
---|
588 | //
|
---|
589 | if (!fContinousCalibration && fPulserColor != MCalibrationCam::kNONE)
|
---|
590 | {
|
---|
591 | *fLog << warn << "Multiple colours used simultaneously!" << flush;
|
---|
592 | fHCam->Finalize();
|
---|
593 | if (fHBlindCam)
|
---|
594 | fHBlindCam->Finalize();
|
---|
595 |
|
---|
596 | Finalize();
|
---|
597 |
|
---|
598 | fHCam->ResetHists();
|
---|
599 | if (fHBlindCam)
|
---|
600 | fHBlindCam->ResetHists();
|
---|
601 |
|
---|
602 | *fLog << inf << "Starting next calibration... " << flush;
|
---|
603 |
|
---|
604 | fHCam->SetColor(col);
|
---|
605 | if (fHBlindCam)
|
---|
606 | fHBlindCam->SetColor(col);
|
---|
607 |
|
---|
608 | fCam->SetPulserColor(col);
|
---|
609 | if (fBlindCam)
|
---|
610 | fBlindCam->SetPulserColor(col);
|
---|
611 | }
|
---|
612 |
|
---|
613 | //
|
---|
614 | // Keep pulser color and strength in mind and output some information
|
---|
615 | //
|
---|
616 | fPulserColor = col;
|
---|
617 | fStrength = strength;
|
---|
618 |
|
---|
619 | *fLog << inf << "Found new colour ... " << flush;
|
---|
620 |
|
---|
621 | switch (col)
|
---|
622 | {
|
---|
623 | case MCalibrationCam::kGREEN: *fLog << "Green"; break;
|
---|
624 | case MCalibrationCam::kBLUE: *fLog << "Blue"; break;
|
---|
625 | case MCalibrationCam::kUV: *fLog << "UV"; break;
|
---|
626 | case MCalibrationCam::kCT1: *fLog << "CT1"; break;
|
---|
627 | default: break;
|
---|
628 | }
|
---|
629 |
|
---|
630 | *fLog << inf << " with strength: " << strength << endl;
|
---|
631 |
|
---|
632 | //
|
---|
633 | // Distribute new color to all containers
|
---|
634 | //
|
---|
635 | fCam->SetPulserColor(col);
|
---|
636 | if (fBlindCam)
|
---|
637 | fBlindCam->SetPulserColor(col);
|
---|
638 |
|
---|
639 | fHCam->SetColor(col);
|
---|
640 | if (fHBlindCam)
|
---|
641 | fHBlindCam->SetColor(col);
|
---|
642 | if (fPINDiode)
|
---|
643 | fPINDiode->SetColor(col);
|
---|
644 |
|
---|
645 | //
|
---|
646 | // Reset number of processed events
|
---|
647 | //
|
---|
648 | fNumProcessed = 0;
|
---|
649 |
|
---|
650 | return kTRUE;
|
---|
651 | }
|
---|
652 |
|
---|
653 | // -----------------------------------------------------------------------
|
---|
654 | //
|
---|
655 | // Return if number of executions is null.
|
---|
656 | //
|
---|
657 | Int_t MCalibrationChargeCalc::PostProcess()
|
---|
658 | {
|
---|
659 |
|
---|
660 | if (GetNumExecutions() < 1)
|
---|
661 | return kTRUE;
|
---|
662 |
|
---|
663 | if (fPulserColor == MCalibrationCam::kNONE)
|
---|
664 | {
|
---|
665 | *fLog << err << "ERROR - No event was flagged with a pulser color... no calibration possible." << endl;
|
---|
666 | return kFALSE;
|
---|
667 | }
|
---|
668 |
|
---|
669 | if (fNumProcessed == 0)
|
---|
670 | return kTRUE;
|
---|
671 |
|
---|
672 | *fLog << endl;
|
---|
673 |
|
---|
674 | return Finalize();
|
---|
675 | }
|
---|
676 |
|
---|
677 | // ----------------------------------------------------------------------------------------------------
|
---|
678 | //
|
---|
679 | // Check for outliers. They are marked with
|
---|
680 | // MBadPixelsPix::kFluctuatingArrivalTimes
|
---|
681 | //
|
---|
682 | // see also MCalibrationRelTimeCalc::FinalizeRelTimes
|
---|
683 | //
|
---|
684 | void MCalibrationChargeCalc::FinalizeAbsTimes()
|
---|
685 | {
|
---|
686 | const Int_t npixels = fGeom->GetNumPixels();
|
---|
687 | const Int_t nareas = fGeom->GetNumAreas();
|
---|
688 |
|
---|
689 | // Create an array capable of holding all pixels
|
---|
690 | TArrayF arr(npixels);
|
---|
691 |
|
---|
692 | for (Int_t aidx=0; aidx<nareas; aidx++)
|
---|
693 | {
|
---|
694 | Int_t n = 0;
|
---|
695 | for (Int_t i=0; i<npixels; i++)
|
---|
696 | {
|
---|
697 | // Check for this aidx only
|
---|
698 | if ((*fGeom)[i].GetAidx()!=aidx)
|
---|
699 | continue;
|
---|
700 |
|
---|
701 | // check if pixel may not contain a valid value
|
---|
702 | if ((*fBadPixels)[i].IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
703 | continue;
|
---|
704 |
|
---|
705 | // check if it was excluded for some reason
|
---|
706 | const MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
707 | if (pix.IsExcluded())
|
---|
708 | continue;
|
---|
709 |
|
---|
710 | // if TimePrecision is valid fill it into array
|
---|
711 | if (pix.GetAbsTimeRms()>0)
|
---|
712 | arr[n++] = pix.GetAbsTimeRms();
|
---|
713 | }
|
---|
714 |
|
---|
715 | // Check the ratio of valid entries to the ratio of pixels
|
---|
716 | const Float_t ratio = 100*n/fGeom->GetNumPixWithAidx(aidx);
|
---|
717 | if (3*ratio<2)
|
---|
718 | *fLog << warn << "Area " << setw(4) << aidx << ": Only " << ratio << "% pixels with valid time resolution found." << endl;
|
---|
719 |
|
---|
720 | // Calculate median and median deviation
|
---|
721 | Double_t med;
|
---|
722 | const Double_t dev = MMath::MedianDev(n, arr.GetArray(), med);
|
---|
723 |
|
---|
724 | // Calculate upper and lower limit
|
---|
725 | const Float_t lolim = TMath::Max(med-fArrTimeRmsLimit*dev, 0.);
|
---|
726 | const Float_t hilim = TMath::Max(med+fArrTimeRmsLimit*dev, 0.);
|
---|
727 |
|
---|
728 | // Now find the outliers
|
---|
729 | for (Int_t i=0; i<npixels; i++)
|
---|
730 | {
|
---|
731 | // Search only within this aidx
|
---|
732 | if ((*fGeom)[i].GetAidx()!=aidx)
|
---|
733 | continue;
|
---|
734 |
|
---|
735 | // skip pixels already known to be unsuitable
|
---|
736 | if ((*fBadPixels)[i].IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
737 | continue;
|
---|
738 |
|
---|
739 | // check if a pixel has been excluded. This
|
---|
740 | const MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
741 |
|
---|
742 | // Check if time precision is valid (might be invalid
|
---|
743 | // for example in cae of empty histograms)
|
---|
744 | const Float_t res = pix.GetAbsTimeRms();
|
---|
745 | if (res<0) //FIXME!!! How does this happen?
|
---|
746 | {
|
---|
747 | *fLog << warn << "Pixel " << setw(4) << i << ": Abs-time rms could not be calculated." << endl;
|
---|
748 | (*fBadPixels)[i].SetUncalibrated(MBadPixelsPix::kDeviatingAbsTimeResolution);
|
---|
749 | continue;
|
---|
750 | }
|
---|
751 |
|
---|
752 | if (res==0)
|
---|
753 | {
|
---|
754 | *fLog << warn << "Pixel " << setw(4) << i << ": Abs-time rms==0." << endl;
|
---|
755 | (*fBadPixels)[i].SetUncalibrated(MBadPixelsPix::kDeviatingAbsTimeResolution);
|
---|
756 | continue;
|
---|
757 | }
|
---|
758 |
|
---|
759 | // Now compare to a lower and upper limit
|
---|
760 | if (res<=lolim || res>=hilim)
|
---|
761 | {
|
---|
762 | *fLog << warn << "Pixel " << setw(4) << i << ": Deviation from abs-time rms: "
|
---|
763 | << Form("%5.2f", res) << " out of range "
|
---|
764 | << Form("[%4.2f,%4.2f]", lolim, hilim) << endl;
|
---|
765 |
|
---|
766 | (*fBadPixels)[i].SetUncalibrated(MBadPixelsPix::kDeviatingAbsTimeResolution);
|
---|
767 | }
|
---|
768 | }
|
---|
769 | }
|
---|
770 | }
|
---|
771 |
|
---|
772 | // -----------------------------------------------------------------------
|
---|
773 | //
|
---|
774 | // Return kTRUE if fPulserColor is kNONE
|
---|
775 | //
|
---|
776 | // First loop over pixels, average areas and sectors, call:
|
---|
777 | // - FinalizePedestals()
|
---|
778 | // - FinalizeCharges()
|
---|
779 | // for every entry. Count number of valid pixels in loop and return kFALSE
|
---|
780 | // if there are none (the "Michele check").
|
---|
781 | //
|
---|
782 | // Call FinalizeBadPixels()
|
---|
783 | //
|
---|
784 | // Call FinalizeFFactorMethod() (second and third loop over pixels and areas)
|
---|
785 | //
|
---|
786 | // Call FinalizeBlindCam()
|
---|
787 | // Call FinalizePINDiode()
|
---|
788 | //
|
---|
789 | // Call FinalizeFFactorQECam() (fourth loop over pixels and areas)
|
---|
790 | // Call FinalizeBlindPixelQECam() (fifth loop over pixels and areas)
|
---|
791 | // Call FinalizePINDiodeQECam() (sixth loop over pixels and areas)
|
---|
792 | //
|
---|
793 | // Call FinalizeUnsuitablePixels()
|
---|
794 | //
|
---|
795 | // Call MParContainer::SetReadyToSave() for fCam, fQECam, fBadPixels and
|
---|
796 | // fBlindCam and fPINDiode if they exist
|
---|
797 | //
|
---|
798 | // Print out some statistics
|
---|
799 | //
|
---|
800 | Int_t MCalibrationChargeCalc::Finalize()
|
---|
801 | {
|
---|
802 | // The number of used slices are just a mean value
|
---|
803 | // the real number might change from event to event.
|
---|
804 | // (up to 50%!)
|
---|
805 |
|
---|
806 | fNumHiGainSamples = fSignal->GetNumUsedHiGainFADCSlices();
|
---|
807 | fNumLoGainSamples = fSignal->GetNumUsedLoGainFADCSlices();
|
---|
808 |
|
---|
809 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
810 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
811 |
|
---|
812 | if (fPINDiode)
|
---|
813 | if (!fPINDiode->IsValid())
|
---|
814 | {
|
---|
815 | *fLog << warn << GetDescriptor()
|
---|
816 | << ": MCalibrationChargePINDiode is declared not valid... no PIN Diode method! " << endl;
|
---|
817 | fPINDiode = NULL;
|
---|
818 | }
|
---|
819 |
|
---|
820 | //
|
---|
821 | // First loop over pixels, call FinalizePedestals and FinalizeCharges
|
---|
822 | //
|
---|
823 | Int_t nvalid = 0;
|
---|
824 | for (Int_t pixid=0; pixid<fPedestals->GetSize(); pixid++)
|
---|
825 | {
|
---|
826 | //
|
---|
827 | // Check if the pixel has been excluded from the fits
|
---|
828 | //
|
---|
829 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[pixid];
|
---|
830 | if (pix.IsExcluded())
|
---|
831 | continue;
|
---|
832 |
|
---|
833 | FinalizePedestals((*fPedestals)[pixid], pix, (*fGeom)[pixid].GetAidx());
|
---|
834 |
|
---|
835 | if (FinalizeCharges(pix, (*fBadPixels)[pixid], "Pixel "))
|
---|
836 | nvalid++;
|
---|
837 | }
|
---|
838 |
|
---|
839 | FinalizeAbsTimes();
|
---|
840 |
|
---|
841 | *fLog << endl;
|
---|
842 |
|
---|
843 | //
|
---|
844 | // The Michele check ...
|
---|
845 | //
|
---|
846 | if (nvalid == 0)
|
---|
847 | {
|
---|
848 | if (!fContinousCalibration)
|
---|
849 | {
|
---|
850 | *fLog << warn << GetDescriptor() << ": All pixels have non-valid calibration. "
|
---|
851 | << "Did you forget to fill the histograms "
|
---|
852 | << "(filling MHCalibrationChargeCam from MExtractedSignalCam using MFillH) ? " << endl;
|
---|
853 | *fLog << warn << GetDescriptor() << ": Or, maybe, you have used a pedestal run "
|
---|
854 | << "instead of a calibration run " << endl;
|
---|
855 | return kFALSE;
|
---|
856 | }
|
---|
857 | }
|
---|
858 |
|
---|
859 | for (UInt_t aidx=0; aidx<fGeom->GetNumAreas(); aidx++)
|
---|
860 | {
|
---|
861 |
|
---|
862 | const MPedestalPix &ped = fPedestals->GetAverageArea(aidx);
|
---|
863 | MCalibrationChargePix &pix = (MCalibrationChargePix&)fCam->GetAverageArea(aidx);
|
---|
864 | const MArrayI &arr = fHCam->GetAverageAreaNum();
|
---|
865 |
|
---|
866 | FinalizePedestals(ped,pix,aidx);
|
---|
867 |
|
---|
868 | //
|
---|
869 | // Correct for sqrt(number of valid pixels) in the pedestal RMS
|
---|
870 | // (already done for calibration sigma in MHCalibrationCam::CalcAverageSigma()
|
---|
871 | //
|
---|
872 | const Double_t sqrtnum = TMath::Sqrt((Double_t)arr[aidx]);
|
---|
873 |
|
---|
874 | pix.SetPedRMS(pix.GetPedRms()*sqrtnum, pix.GetPedRmsErr()*sqrtnum);
|
---|
875 | pix.SetSigma (pix.GetSigma()/pix.GetFFactorFADC2Phe());
|
---|
876 |
|
---|
877 | FinalizeCharges(pix, fCam->GetAverageBadArea(aidx),"area id");
|
---|
878 | }
|
---|
879 |
|
---|
880 | *fLog << endl;
|
---|
881 |
|
---|
882 | for (UInt_t sector=0; sector<fGeom->GetNumSectors(); sector++)
|
---|
883 | {
|
---|
884 |
|
---|
885 | const MPedestalPix &ped = fPedestals->GetAverageSector(sector);
|
---|
886 |
|
---|
887 | MCalibrationChargePix &pix = (MCalibrationChargePix&)fCam->GetAverageSector(sector);
|
---|
888 | FinalizePedestals(ped,pix, 0);
|
---|
889 | }
|
---|
890 |
|
---|
891 | *fLog << endl;
|
---|
892 |
|
---|
893 | //
|
---|
894 | // Finalize Bad Pixels
|
---|
895 | //
|
---|
896 | FinalizeBadPixels();
|
---|
897 |
|
---|
898 | //
|
---|
899 | // Finalize F-Factor method
|
---|
900 | //
|
---|
901 | if (FinalizeFFactorMethod())
|
---|
902 | fCam->SetFFactorMethodValid(kTRUE);
|
---|
903 | else
|
---|
904 | {
|
---|
905 | *fLog << warn << "Could not calculate the photons flux from the F-Factor method " << endl;
|
---|
906 | fCam->SetFFactorMethodValid(kFALSE);
|
---|
907 | if (!fContinousCalibration)
|
---|
908 | return kFALSE;
|
---|
909 | }
|
---|
910 |
|
---|
911 | *fLog << endl;
|
---|
912 |
|
---|
913 | //
|
---|
914 | // Finalize Blind Pixel
|
---|
915 | //
|
---|
916 | fQECam->SetBlindPixelMethodValid(FinalizeBlindCam());
|
---|
917 |
|
---|
918 | //
|
---|
919 | // Finalize PIN Diode
|
---|
920 | //
|
---|
921 | fQECam->SetBlindPixelMethodValid(FinalizePINDiode());
|
---|
922 |
|
---|
923 | //
|
---|
924 | // Finalize QE Cam
|
---|
925 | //
|
---|
926 | FinalizeFFactorQECam();
|
---|
927 | FinalizeBlindPixelQECam();
|
---|
928 | FinalizePINDiodeQECam();
|
---|
929 | FinalizeCombinedQECam();
|
---|
930 |
|
---|
931 | //
|
---|
932 | // Re-direct the output to an ascii-file from now on:
|
---|
933 | //
|
---|
934 | *fLog << inf << endl;
|
---|
935 | *fLog << GetDescriptor() << ": Fatal errors statistics:" << endl;
|
---|
936 |
|
---|
937 | PrintUncalibrated(MBadPixelsPix::kChargeIsPedestal,
|
---|
938 | Form("%s%2.1f%s","Signal less than ",fChargeLimit," Pedestal RMS: "));
|
---|
939 | PrintUncalibrated(MBadPixelsPix::kChargeRelErrNotValid,
|
---|
940 | Form("%s%2.1f%s","Signal Error bigger than ",fChargeRelErrLimit," times Mean Signal: "));
|
---|
941 | PrintUncalibrated(MBadPixelsPix::kLoGainSaturation,
|
---|
942 | "Low Gain Saturation: ");
|
---|
943 | // PrintUncalibrated(MBadPixelsPix::kMeanTimeInFirstBin,
|
---|
944 | // Form("%s%2.1f%s","Mean Abs. Arr. Time in First ",1.," Bin(s): "));
|
---|
945 | // PrintUncalibrated(MBadPixelsPix::kMeanTimeInLast2Bins,
|
---|
946 | // Form("%s%2.1f%s","Mean Abs. Arr. Time in Last ",2.," Bin(s): "));
|
---|
947 | PrintUncalibrated(MBadPixelsPix::kHiGainOverFlow,
|
---|
948 | "Pixels with High Gain Overflow: ");
|
---|
949 | PrintUncalibrated(MBadPixelsPix::kLoGainOverFlow,
|
---|
950 | "Pixels with Low Gain Overflow : ");
|
---|
951 | // PrintUncalibrated(MBadPixelsPix::kFluctuatingArrivalTimes,
|
---|
952 | // "Fluctuating Pulse Arrival Times: ");
|
---|
953 | PrintUncalibrated(MBadPixelsPix::kDeviatingAbsTimeResolution,
|
---|
954 | Form("%s%2.1f%s ","Abs.time rms more than ", fArrTimeRmsLimit, " dev from median: "));
|
---|
955 | PrintUncalibrated(MBadPixelsPix::kDeadPedestalRms,
|
---|
956 | "Presumably dead from Pedestal Rms: ");
|
---|
957 | PrintUncalibrated(MBadPixelsPix::kDeviatingNumPhes,
|
---|
958 | "Deviating number of phes: ");
|
---|
959 | PrintUncalibrated(MBadPixelsPix::kLoGainBlackout,
|
---|
960 | "Too many blackout events in low gain: ");
|
---|
961 | PrintUncalibrated(MBadPixelsPix::kPreviouslyExcluded,
|
---|
962 | "Previously excluded: ");
|
---|
963 |
|
---|
964 | *fLog << inf << endl;
|
---|
965 | *fLog << GetDescriptor() << ": Unreliable errors statistics:" << endl;
|
---|
966 |
|
---|
967 | PrintUncalibrated(MBadPixelsPix::kChargeSigmaNotValid,
|
---|
968 | "Signal Sigma smaller than Pedestal RMS: ");
|
---|
969 | PrintUncalibrated(MBadPixelsPix::kHiGainOscillating,
|
---|
970 | "Changing Hi Gain signal over time: ");
|
---|
971 | PrintUncalibrated(MBadPixelsPix::kLoGainOscillating,
|
---|
972 | "Changing Lo Gain signal over time: ");
|
---|
973 | PrintUncalibrated(MBadPixelsPix::kHiGainNotFitted,
|
---|
974 | "Unsuccesful Gauss fit to the Hi Gain: ");
|
---|
975 | PrintUncalibrated(MBadPixelsPix::kLoGainNotFitted,
|
---|
976 | "Unsuccesful Gauss fit to the Lo Gain: ");
|
---|
977 | PrintUncalibrated(MBadPixelsPix::kDeviatingFFactor,
|
---|
978 | "Deviating F-Factor: ");
|
---|
979 |
|
---|
980 | fCam->SetReadyToSave();
|
---|
981 | fQECam->SetReadyToSave();
|
---|
982 | fBadPixels->SetReadyToSave();
|
---|
983 |
|
---|
984 | if (fBlindCam)
|
---|
985 | fBlindCam->SetReadyToSave();
|
---|
986 | if (fPINDiode)
|
---|
987 | fPINDiode->SetReadyToSave();
|
---|
988 |
|
---|
989 | //
|
---|
990 | // Finalize calibration statistics
|
---|
991 | //
|
---|
992 | return FinalizeUnsuitablePixels();
|
---|
993 | }
|
---|
994 |
|
---|
995 | // ----------------------------------------------------------------------------------
|
---|
996 | //
|
---|
997 | // Retrieves pedestal and pedestal RMS from MPedestalPix
|
---|
998 | // Retrieves total entries from MPedestalCam
|
---|
999 | // Sets pedestal*fNumHiGainSamples and pedestal*fNumLoGainSamples in MCalibrationChargePix
|
---|
1000 | // Sets pedRMS *fSqrtHiGainSamples and pedRMS *fSqrtLoGainSamples in MCalibrationChargePix
|
---|
1001 | //
|
---|
1002 | // If the flag MCalibrationPix::IsHiGainSaturation() is set, call also:
|
---|
1003 | // - MCalibrationChargePix::CalcLoGainPedestal()
|
---|
1004 | //
|
---|
1005 | void MCalibrationChargeCalc::FinalizePedestals(const MPedestalPix &ped, MCalibrationChargePix &cal, const Int_t aidx)
|
---|
1006 | {
|
---|
1007 |
|
---|
1008 | //
|
---|
1009 | // get the pedestals
|
---|
1010 | //
|
---|
1011 | const Float_t pedes = ped.GetPedestal();
|
---|
1012 | const Float_t prms = ped.GetPedestalRms();
|
---|
1013 | const Int_t num = fPedestals->GetNumSlices()*ped.GetNumEvents();
|
---|
1014 |
|
---|
1015 | //
|
---|
1016 | // RMS error set by PedCalcFromLoGain, 0 in case MPedCalcPedRun was used.
|
---|
1017 | //
|
---|
1018 | const Float_t prmserr = num>0 ? prms/TMath::Sqrt(2.*num) : ped.GetPedestalRmsError();
|
---|
1019 |
|
---|
1020 | //
|
---|
1021 | // set them in the calibration camera
|
---|
1022 | //
|
---|
1023 | if (cal.IsHiGainSaturation())
|
---|
1024 | {
|
---|
1025 | cal.SetPedestal(pedes * fNumLoGainSamples,
|
---|
1026 | prms * fSqrtLoGainSamples,
|
---|
1027 | prmserr * fSqrtLoGainSamples);
|
---|
1028 | cal.CalcLoGainPedestal(fNumLoGainSamples);
|
---|
1029 | }
|
---|
1030 | else
|
---|
1031 | {
|
---|
1032 |
|
---|
1033 | cal.SetPedestal(pedes * fNumHiGainSamples,
|
---|
1034 | prms * fSqrtHiGainSamples,
|
---|
1035 | prmserr * fSqrtHiGainSamples);
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | // ----------------------------------------------------------------------------------------------------
|
---|
1041 | //
|
---|
1042 | // Check fit results validity. Bad Pixels flags are set if:
|
---|
1043 | //
|
---|
1044 | // 1) Pixel has a mean smaller than fChargeLimit*PedRMS ( Flag: MBadPixelsPix::kChargeIsPedestal)
|
---|
1045 | // 2) Pixel has a mean error smaller than fChargeErrLimit ( Flag: MBadPixelsPix::kChargeErrNotValid)
|
---|
1046 | // 3) Pixel has mean smaller than fChargeRelVarLimit times its mean error
|
---|
1047 | // ( Flag: MBadPixelsPix::kChargeRelErrNotValid)
|
---|
1048 | // 4) Pixel has a sigma bigger than its Pedestal RMS ( Flag: MBadPixelsPix::kChargeSigmaNotValid )
|
---|
1049 | //
|
---|
1050 | // Further returns if flags: MBadPixelsPix::kUnsuitableRun is set
|
---|
1051 | //
|
---|
1052 | // Calls MCalibrationChargePix::CalcReducedSigma() and sets flag: MBadPixelsPix::kChargeIsPedestal
|
---|
1053 | // and returns kFALSE if not succesful.
|
---|
1054 | //
|
---|
1055 | // Calls MCalibrationChargePix::CalcFFactor() and sets flag: MBadPixelsPix::kDeviatingNumPhes)
|
---|
1056 | // and returns kFALSE if not succesful.
|
---|
1057 | //
|
---|
1058 | // Calls MCalibrationChargePix::CalcConvFFactor()and sets flag: MBadPixelsPix::kDeviatingNumPhes)
|
---|
1059 | // and returns kFALSE if not succesful.
|
---|
1060 | //
|
---|
1061 | Bool_t MCalibrationChargeCalc::FinalizeCharges(MCalibrationChargePix &cal, MBadPixelsPix &bad, const char* what)
|
---|
1062 | {
|
---|
1063 |
|
---|
1064 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1065 | return kFALSE;
|
---|
1066 |
|
---|
1067 | const TString desc = Form("%7s%4d: ", what, cal.GetPixId());
|
---|
1068 |
|
---|
1069 | if (cal.GetMean()<0)
|
---|
1070 | {
|
---|
1071 | *fLog << warn << desc << "Charge not fitted." << endl;
|
---|
1072 | bad.SetUncalibrated( MBadPixelsPix::kChargeIsPedestal);
|
---|
1073 | return kFALSE;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | if (cal.GetSigma()<0)
|
---|
1077 | {
|
---|
1078 | *fLog << warn << desc << "Charge Sigma invalid." << endl;
|
---|
1079 | bad.SetUncalibrated( MBadPixelsPix::kChargeIsPedestal);
|
---|
1080 | return kFALSE;
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | if (cal.GetMean() < fChargeLimit*cal.GetPedRms())
|
---|
1084 | {
|
---|
1085 | *fLog << warn << desc
|
---|
1086 | << Form("Fitted Charge: %5.2f < %2.1f",cal.GetMean(),fChargeLimit)
|
---|
1087 | << Form(" * Pedestal RMS %5.2f",cal.GetPedRms()) << endl;
|
---|
1088 | bad.SetUncalibrated( MBadPixelsPix::kChargeIsPedestal);
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | if (cal.GetMean() < fChargeRelErrLimit*cal.GetMeanErr())
|
---|
1092 | {
|
---|
1093 | *fLog << warn << desc
|
---|
1094 | << Form("Fitted Charge: %4.2f < %2.1f",cal.GetMean(),fChargeRelErrLimit)
|
---|
1095 | << Form(" * its error %4.2f",cal.GetMeanErr()) << endl;
|
---|
1096 | bad.SetUncalibrated( MBadPixelsPix::kChargeRelErrNotValid );
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | if (cal.GetSigma() < cal.GetPedRms())
|
---|
1100 | {
|
---|
1101 | *fLog << warn << desc << "Sigma of Fitted Charge: "
|
---|
1102 | << Form("%6.2f <",cal.GetSigma()) << " Ped. RMS="
|
---|
1103 | << Form("%5.2f", cal.GetPedRms()) << endl;
|
---|
1104 | bad.SetUncalibrated( MBadPixelsPix::kChargeSigmaNotValid );
|
---|
1105 | return kFALSE;
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | if (!cal.CalcReducedSigma())
|
---|
1109 | {
|
---|
1110 | *fLog << warn << desc << "Could not calculate the reduced sigma" << endl;
|
---|
1111 | bad.SetUncalibrated( MBadPixelsPix::kChargeSigmaNotValid );
|
---|
1112 | return kFALSE;
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | if (!cal.CalcFFactor())
|
---|
1116 | {
|
---|
1117 | *fLog << warn << desc << "Could not calculate the F-Factor"<< endl;
|
---|
1118 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1119 | bad.SetUnsuitable(MBadPixelsPix::kUnsuitableRun);
|
---|
1120 | return kFALSE;
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | if (cal.GetPheFFactorMethod() < 0.)
|
---|
1124 | {
|
---|
1125 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1126 | bad.SetUnsuitable(MBadPixelsPix::kUnsuitableRun);
|
---|
1127 | cal.SetFFactorMethodValid(kFALSE);
|
---|
1128 | return kFALSE;
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | if (!cal.CalcConvFFactor())
|
---|
1132 | {
|
---|
1133 | *fLog << warn << desc << "Could not calculate the Conv. FADC counts to Phes"<< endl;
|
---|
1134 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1135 | return kFALSE;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | if (!IsUseExtractorRes())
|
---|
1139 | return kTRUE;
|
---|
1140 |
|
---|
1141 | if (!fExtractor)
|
---|
1142 | {
|
---|
1143 | *fLog << err << "Extractor resolution has been chosen, but no extractor is set. Cannot calibrate." << endl;
|
---|
1144 | return kFALSE;
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | const Float_t resinphes = cal.IsHiGainSaturation()
|
---|
1148 | ? cal.GetPheFFactorMethod()*fExtractor->GetResolutionPerPheLoGain()
|
---|
1149 | : cal.GetPheFFactorMethod()*fExtractor->GetResolutionPerPheHiGain();
|
---|
1150 |
|
---|
1151 | Float_t resinfadc = cal.IsHiGainSaturation()
|
---|
1152 | ? resinphes/cal.GetMeanConvFADC2Phe()/cal.GetConversionHiLo()
|
---|
1153 | : resinphes/cal.GetMeanConvFADC2Phe();
|
---|
1154 |
|
---|
1155 | if (resinfadc > 3.0*cal.GetPedRms() )
|
---|
1156 | {
|
---|
1157 | *fLog << warn << desc << "Extractor Resolution " << Form("%5.2f", resinfadc) << " bigger than 3 Pedestal RMS "
|
---|
1158 | << Form("%4.2f", cal.GetPedRms()) << endl;
|
---|
1159 | resinfadc = 3.0*cal.GetPedRms();
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | if (!cal.CalcReducedSigma(resinfadc))
|
---|
1163 | {
|
---|
1164 | *fLog << warn << desc << "Could not calculate the reduced sigma" << endl;
|
---|
1165 | bad.SetUncalibrated( MBadPixelsPix::kChargeSigmaNotValid );
|
---|
1166 | return kFALSE;
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | if (!cal.CalcFFactor())
|
---|
1170 | {
|
---|
1171 | *fLog << warn << desc << "Could not calculate the F-Factor" << endl;
|
---|
1172 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1173 | bad.SetUnsuitable(MBadPixelsPix::kUnsuitableRun);
|
---|
1174 | return kFALSE;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | if (cal.GetPheFFactorMethod() < 0.)
|
---|
1178 | {
|
---|
1179 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1180 | bad.SetUnsuitable(MBadPixelsPix::kUnsuitableRun);
|
---|
1181 | cal.SetFFactorMethodValid(kFALSE);
|
---|
1182 | return kFALSE;
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | if (!cal.CalcConvFFactor())
|
---|
1186 | {
|
---|
1187 | *fLog << warn << desc << "Could not calculate the conv. FADC cts to phes" << endl;
|
---|
1188 | bad.SetUncalibrated(MBadPixelsPix::kDeviatingNumPhes);
|
---|
1189 | return kFALSE;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | return kTRUE;
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | // -----------------------------------------------------------------------------------
|
---|
1196 | //
|
---|
1197 | // Sets pixel to MBadPixelsPix::kUnsuitableRun, if one of the following flags is set:
|
---|
1198 | // - MBadPixelsPix::kChargeIsPedestal
|
---|
1199 | // - MBadPixelsPix::kChargeRelErrNotValid
|
---|
1200 | // - MBadPixelsPix::kMeanTimeInFirstBin
|
---|
1201 | // - MBadPixelsPix::kMeanTimeInLast2Bins
|
---|
1202 | // - MBadPixelsPix::kDeviatingNumPhes
|
---|
1203 | // - MBadPixelsPix::kHiGainOverFlow
|
---|
1204 | // - MBadPixelsPix::kLoGainOverFlow
|
---|
1205 | //
|
---|
1206 | // Sets pixel to MBadPixelsPix::kUnreliableRun, if one of the following flags is set:
|
---|
1207 | // - MBadPixelsPix::kChargeSigmaNotValid
|
---|
1208 | //
|
---|
1209 | void MCalibrationChargeCalc::FinalizeBadPixels()
|
---|
1210 | {
|
---|
1211 |
|
---|
1212 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
1213 | {
|
---|
1214 |
|
---|
1215 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1216 |
|
---|
1217 | if (IsCheckDeadPixels())
|
---|
1218 | {
|
---|
1219 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeIsPedestal))
|
---|
1220 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1221 | }
|
---|
1222 | /*
|
---|
1223 | if (IsCheckExtractionWindow())
|
---|
1224 | {
|
---|
1225 | if (bad.IsUncalibrated( MBadPixelsPix::kMeanTimeInFirstBin ))
|
---|
1226 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1227 |
|
---|
1228 | if (bad.IsUncalibrated( MBadPixelsPix::kMeanTimeInLast2Bins ))
|
---|
1229 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1230 | }
|
---|
1231 | */
|
---|
1232 | if (IsCheckDeviatingBehavior())
|
---|
1233 | {
|
---|
1234 | if (bad.IsUncalibrated( MBadPixelsPix::kDeviatingNumPhes ))
|
---|
1235 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 | if (IsCheckHistOverflow())
|
---|
1239 | {
|
---|
1240 | if (bad.IsUncalibrated( MBadPixelsPix::kHiGainOverFlow ))
|
---|
1241 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1242 |
|
---|
1243 | if (bad.IsUncalibrated( MBadPixelsPix::kLoGainOverFlow ))
|
---|
1244 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1245 | }
|
---|
1246 |
|
---|
1247 | if (IsCheckArrivalTimes())
|
---|
1248 | {
|
---|
1249 | if (bad.IsUncalibrated( MBadPixelsPix::kDeviatingAbsTimeResolution ))
|
---|
1250 | bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1251 | //if (bad.IsUncalibrated( MBadPixelsPix::kFluctuatingArrivalTimes ))
|
---|
1252 | // bad.SetUnsuitable( MBadPixelsPix::kUnsuitableRun );
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | if (bad.IsUncalibrated( MBadPixelsPix::kChargeSigmaNotValid ))
|
---|
1256 | bad.SetUnsuitable( MBadPixelsPix::kUnreliableRun );
|
---|
1257 | }
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | // ------------------------------------------------------------------------
|
---|
1261 | //
|
---|
1262 | //
|
---|
1263 | // First loop: Calculate a mean and mean RMS of photo-electrons per area index
|
---|
1264 | // Include only pixels which are not MBadPixelsPix::kUnsuitableRun nor
|
---|
1265 | // MBadPixelsPix::kChargeSigmaNotValid (see FinalizeBadPixels()) and set
|
---|
1266 | // MCalibrationChargePix::SetFFactorMethodValid(kFALSE) in that case.
|
---|
1267 | //
|
---|
1268 | // Second loop: Get mean number of photo-electrons and its RMS including
|
---|
1269 | // only pixels with flag MCalibrationChargePix::IsFFactorMethodValid()
|
---|
1270 | // and further exclude those deviating by more than fPheErrLimit mean
|
---|
1271 | // sigmas from the mean (obtained in first loop). Set
|
---|
1272 | // MBadPixelsPix::kDeviatingNumPhes if excluded.
|
---|
1273 | //
|
---|
1274 | // For the suitable pixels with flag MBadPixelsPix::kChargeSigmaNotValid
|
---|
1275 | // set the number of photo-electrons as the mean number of photo-electrons
|
---|
1276 | // calculated in that area index.
|
---|
1277 | //
|
---|
1278 | // Set weighted mean and variance of photo-electrons per area index in:
|
---|
1279 | // average area pixels of MCalibrationChargeCam (obtained from:
|
---|
1280 | // MCalibrationChargeCam::GetAverageArea() )
|
---|
1281 | //
|
---|
1282 | // Set weighted mean and variance of photo-electrons per sector in:
|
---|
1283 | // average sector pixels of MCalibrationChargeCam (obtained from:
|
---|
1284 | // MCalibrationChargeCam::GetAverageSector() )
|
---|
1285 | //
|
---|
1286 | //
|
---|
1287 | // Third loop: Set mean number of photo-electrons and its RMS in the pixels
|
---|
1288 | // only excluded as: MBadPixelsPix::kChargeSigmaNotValid
|
---|
1289 | //
|
---|
1290 | Bool_t MCalibrationChargeCalc::FinalizeFFactorMethod()
|
---|
1291 | {
|
---|
1292 | const Int_t npixels = fGeom->GetNumPixels();
|
---|
1293 | const Int_t nareas = fGeom->GetNumAreas();
|
---|
1294 | const Int_t nsectors = fGeom->GetNumSectors();
|
---|
1295 |
|
---|
1296 | TArrayF lowlim (nareas);
|
---|
1297 | TArrayF upplim (nareas);
|
---|
1298 | TArrayD areavars (nareas);
|
---|
1299 | TArrayD areaweights (nareas);
|
---|
1300 | TArrayD sectorweights (nsectors);
|
---|
1301 | TArrayD areaphes (nareas);
|
---|
1302 | TArrayD sectorphes (nsectors);
|
---|
1303 | TArrayI numareavalid (nareas);
|
---|
1304 | TArrayI numsectorvalid(nsectors);
|
---|
1305 |
|
---|
1306 | //
|
---|
1307 | // First loop: Get mean number of photo-electrons and the RMS
|
---|
1308 | // The loop is only to recognize later pixels with very deviating numbers
|
---|
1309 | //
|
---|
1310 | MHCamera camphes(*fGeom,"Camphes","Phes in Camera");
|
---|
1311 |
|
---|
1312 | for (Int_t i=0; i<npixels; i++)
|
---|
1313 | {
|
---|
1314 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1315 |
|
---|
1316 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1317 |
|
---|
1318 | if (!pix.IsFFactorMethodValid())
|
---|
1319 | continue;
|
---|
1320 |
|
---|
1321 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1322 | {
|
---|
1323 | pix.SetFFactorMethodValid(kFALSE);
|
---|
1324 | continue;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | if (bad.IsUncalibrated(MBadPixelsPix::kChargeSigmaNotValid))
|
---|
1328 | continue;
|
---|
1329 |
|
---|
1330 | if (!IsUseUnreliables())
|
---|
1331 | if (bad.IsUnsuitable(MBadPixelsPix::kUnreliableRun))
|
---|
1332 | continue;
|
---|
1333 |
|
---|
1334 | const Float_t nphe = pix.GetPheFFactorMethod();
|
---|
1335 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
1336 | camphes.Fill(i,nphe);
|
---|
1337 | camphes.SetUsed(i);
|
---|
1338 | areaphes [aidx] += nphe;
|
---|
1339 | areavars [aidx] += nphe*nphe;
|
---|
1340 | numareavalid[aidx] ++;
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | for (Int_t i=0; i<nareas; i++)
|
---|
1344 | {
|
---|
1345 | if (numareavalid[i] == 0)
|
---|
1346 | {
|
---|
1347 | *fLog << warn << GetDescriptor() << ": No pixels with valid number of photo-electrons found "
|
---|
1348 | << "in area index: " << i << endl;
|
---|
1349 | continue;
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | if (numareavalid[i] == 1)
|
---|
1353 | areavars[i] = 0.;
|
---|
1354 | else
|
---|
1355 | {
|
---|
1356 | areavars[i] = (areavars[i] - areaphes[i]*areaphes[i]/numareavalid[i]) / (numareavalid[i]-1);
|
---|
1357 | areaphes[i] /= numareavalid[i];
|
---|
1358 | }
|
---|
1359 |
|
---|
1360 | if (areavars[i] < 0.)
|
---|
1361 | {
|
---|
1362 | *fLog << warn << "Area " << setw(4) << i << ": No pixels with valid variance of photo-electrons found." << endl;
|
---|
1363 | continue;
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | // FIXME: WHAT IS THIS FOR? It is overwritten!
|
---|
1367 | lowlim[i] = areaphes[i] - fPheErrLowerLimit*TMath::Sqrt(areavars[i]);
|
---|
1368 | upplim[i] = areaphes[i] + fPheErrUpperLimit*TMath::Sqrt(areavars[i]);
|
---|
1369 |
|
---|
1370 |
|
---|
1371 | TH1D *hist = camphes.ProjectionS(TArrayI(),TArrayI(1,&i),"_py",100);
|
---|
1372 | hist->Fit("gaus","Q0");
|
---|
1373 | const Float_t mean = hist->GetFunction("gaus")->GetParameter(1);
|
---|
1374 | const Float_t sigma = hist->GetFunction("gaus")->GetParameter(2);
|
---|
1375 | const Int_t ndf = hist->GetFunction("gaus")->GetNDF();
|
---|
1376 |
|
---|
1377 | if (IsDebug())
|
---|
1378 | hist->DrawClone();
|
---|
1379 |
|
---|
1380 | if (ndf < 5)
|
---|
1381 | {
|
---|
1382 | *fLog << warn << GetDescriptor() << ": Cannot use a Gauss fit to the number of photo-electrons " << endl;
|
---|
1383 | *fLog << " in the camera with area index: " << i << endl;
|
---|
1384 | *fLog << " Number of dof.: " << ndf << " is smaller than 5 " << endl;
|
---|
1385 | *fLog << " Will use the simple mean and rms " << endl;
|
---|
1386 | delete hist;
|
---|
1387 | SetPheFitOK(i,kFALSE);
|
---|
1388 | continue;
|
---|
1389 | }
|
---|
1390 |
|
---|
1391 | const Double_t prob = hist->GetFunction("gaus")->GetProb();
|
---|
1392 |
|
---|
1393 | if (prob < 0.001)
|
---|
1394 | {
|
---|
1395 | *fLog << warn << GetDescriptor() << ": Cannot use a Gauss fit to the number of photo-electrons " << endl;
|
---|
1396 | *fLog << " in the camera with area index: " << i << endl;
|
---|
1397 | *fLog << " Fit probability " << prob << " is smaller than 0.001 " << endl;
|
---|
1398 | *fLog << " Will use the simple mean and rms " << endl;
|
---|
1399 | delete hist;
|
---|
1400 | SetPheFitOK(i,kFALSE);
|
---|
1401 | continue;
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 | if (mean < 0.)
|
---|
1405 | {
|
---|
1406 | *fLog << inf << "Area " << setw(4) << i << ": Fitted mean number of phe smaller 0." << endl;
|
---|
1407 | *fLog << warn << "Area " << setw(4) << i << ": Will use the simple mean and rms " << endl;
|
---|
1408 | SetPheFitOK(i,kFALSE);
|
---|
1409 | delete hist;
|
---|
1410 | continue;
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 | *fLog << inf << "Area " << setw(4) << i << ": Mean number of phes: "
|
---|
1414 | << Form("%7.2f+-%6.2f",mean,sigma) << endl;
|
---|
1415 |
|
---|
1416 | lowlim[i] = mean - fPheErrLowerLimit*sigma;
|
---|
1417 | upplim[i] = mean + fPheErrUpperLimit*sigma;
|
---|
1418 |
|
---|
1419 | if (lowlim[i]<1)
|
---|
1420 | lowlim[i] = 1;
|
---|
1421 |
|
---|
1422 | delete hist;
|
---|
1423 |
|
---|
1424 | SetPheFitOK(i,kTRUE);
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 | *fLog << endl;
|
---|
1428 |
|
---|
1429 | numareavalid.Reset();
|
---|
1430 | areaphes .Reset();
|
---|
1431 | areavars .Reset();
|
---|
1432 | //
|
---|
1433 | // Second loop: Get mean number of photo-electrons and its RMS excluding
|
---|
1434 | // pixels deviating by more than fPheErrLimit sigma.
|
---|
1435 | // Set the conversion factor FADC counts to photo-electrons
|
---|
1436 | //
|
---|
1437 | for (Int_t i=0; i<npixels; i++)
|
---|
1438 | {
|
---|
1439 |
|
---|
1440 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1441 |
|
---|
1442 | if (!pix.IsFFactorMethodValid())
|
---|
1443 | continue;
|
---|
1444 |
|
---|
1445 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1446 |
|
---|
1447 | if (bad.IsUncalibrated(MBadPixelsPix::kChargeSigmaNotValid))
|
---|
1448 | continue;
|
---|
1449 |
|
---|
1450 | if (!IsUseUnreliables())
|
---|
1451 | if (bad.IsUnsuitable(MBadPixelsPix::kUnreliableRun))
|
---|
1452 | continue;
|
---|
1453 |
|
---|
1454 | const Float_t nvar = pix.GetPheFFactorMethodVar();
|
---|
1455 | if (nvar <= 0.)
|
---|
1456 | {
|
---|
1457 | pix.SetFFactorMethodValid(kFALSE);
|
---|
1458 | continue;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
1462 | const Int_t sector = (*fGeom)[i].GetSector();
|
---|
1463 | const Float_t area = (*fGeom)[i].GetA();
|
---|
1464 | const Float_t nphe = pix.GetPheFFactorMethod();
|
---|
1465 |
|
---|
1466 | if ( nphe < lowlim[aidx] || nphe > upplim[aidx] )
|
---|
1467 | {
|
---|
1468 | *fLog << warn << "Pixel " << setw(4) << i << ": Num of phe "
|
---|
1469 | << Form("%7.2f out of +%3.1f-%3.1f sigma limit ",nphe,fPheErrUpperLimit,fPheErrLowerLimit)
|
---|
1470 | << Form("[%7.2f,%7.2f]",lowlim[aidx],upplim[aidx]) << endl;
|
---|
1471 | bad.SetUncalibrated( MBadPixelsPix::kDeviatingNumPhes );
|
---|
1472 |
|
---|
1473 | if (IsCheckDeviatingBehavior())
|
---|
1474 | bad.SetUnsuitable(MBadPixelsPix::kUnsuitableRun);
|
---|
1475 | continue;
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 | areaweights [aidx] += nphe*nphe;
|
---|
1479 | areaphes [aidx] += nphe;
|
---|
1480 | numareavalid [aidx] ++;
|
---|
1481 |
|
---|
1482 | if (aidx == 0)
|
---|
1483 | fNumInnerFFactorMethodUsed++;
|
---|
1484 |
|
---|
1485 | sectorweights [sector] += nphe*nphe/area/area;
|
---|
1486 | sectorphes [sector] += nphe/area;
|
---|
1487 | numsectorvalid[sector] ++;
|
---|
1488 | }
|
---|
1489 |
|
---|
1490 | *fLog << endl;
|
---|
1491 |
|
---|
1492 | for (Int_t aidx=0; aidx<nareas; aidx++)
|
---|
1493 | {
|
---|
1494 |
|
---|
1495 | MCalibrationChargePix &apix = (MCalibrationChargePix&)fCam->GetAverageArea(aidx);
|
---|
1496 |
|
---|
1497 | if (numareavalid[aidx] == 1)
|
---|
1498 | areaweights[aidx] = 0.;
|
---|
1499 | else if (numareavalid[aidx] == 0)
|
---|
1500 | {
|
---|
1501 | areaphes[aidx] = -1.;
|
---|
1502 | areaweights[aidx] = -1.;
|
---|
1503 | }
|
---|
1504 | else
|
---|
1505 | {
|
---|
1506 | areaweights[aidx] = (areaweights[aidx] - areaphes[aidx]*areaphes[aidx]/numareavalid[aidx])
|
---|
1507 | / (numareavalid[aidx]-1);
|
---|
1508 | areaphes[aidx] /= numareavalid[aidx];
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 | if (areaweights[aidx] < 0. || areaphes[aidx] <= 0.)
|
---|
1512 | {
|
---|
1513 | *fLog << warn << "Area " << setw(4) << aidx << ": Mean number phes could not be calculated: "
|
---|
1514 | << " Mean: " << areaphes[aidx]
|
---|
1515 | << " Var: " << areaweights[aidx] << endl;
|
---|
1516 | apix.SetFFactorMethodValid(kFALSE);
|
---|
1517 | continue;
|
---|
1518 | }
|
---|
1519 |
|
---|
1520 | *fLog << inf << "Area " << setw(4) << aidx << ": Average total phes: "
|
---|
1521 | << Form("%7.2f +- %6.2f",areaphes[aidx],TMath::Sqrt(areaweights[aidx])) << endl;
|
---|
1522 |
|
---|
1523 | apix.SetPheFFactorMethod ( areaphes[aidx] );
|
---|
1524 | apix.SetPheFFactorMethodVar( areaweights[aidx] / numareavalid[aidx] );
|
---|
1525 | apix.SetFFactorMethodValid ( kTRUE );
|
---|
1526 |
|
---|
1527 | }
|
---|
1528 |
|
---|
1529 | *fLog << endl;
|
---|
1530 |
|
---|
1531 | for (Int_t sector=0; sector<nsectors; sector++)
|
---|
1532 | {
|
---|
1533 |
|
---|
1534 | if (numsectorvalid[sector] == 1)
|
---|
1535 | sectorweights[sector] = 0.;
|
---|
1536 | else if (numsectorvalid[sector] == 0)
|
---|
1537 | {
|
---|
1538 | sectorphes[sector] = -1.;
|
---|
1539 | sectorweights[sector] = -1.;
|
---|
1540 | }
|
---|
1541 | else
|
---|
1542 | {
|
---|
1543 | sectorweights[sector] = (sectorweights[sector]
|
---|
1544 | - sectorphes[sector]*sectorphes[sector]/numsectorvalid[sector]
|
---|
1545 | )
|
---|
1546 | / (numsectorvalid[sector]-1.);
|
---|
1547 | sectorphes[sector] /= numsectorvalid[sector];
|
---|
1548 | }
|
---|
1549 |
|
---|
1550 | MCalibrationChargePix &spix = (MCalibrationChargePix&)fCam->GetAverageSector(sector);
|
---|
1551 |
|
---|
1552 | if (sectorweights[sector] < 0. || sectorphes[sector] <= 0.)
|
---|
1553 | {
|
---|
1554 | *fLog << warn << "Sector " << setw(4) << sector
|
---|
1555 | <<": Mean number phes/area could not be calculated:"
|
---|
1556 | << " Mean: " << sectorphes[sector] << " Var: " << sectorweights[sector] << endl;
|
---|
1557 | spix.SetFFactorMethodValid(kFALSE);
|
---|
1558 | continue;
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | *fLog << inf << "Sector " << setw(4) << sector
|
---|
1562 | << ": Avg number phes/mm^2: "
|
---|
1563 | << Form("%5.3f+-%4.3f",sectorphes[sector],TMath::Sqrt(sectorweights[sector]))
|
---|
1564 | << endl;
|
---|
1565 |
|
---|
1566 | spix.SetPheFFactorMethod ( sectorphes[sector] );
|
---|
1567 | spix.SetPheFFactorMethodVar( sectorweights[sector] / numsectorvalid[sector]);
|
---|
1568 | spix.SetFFactorMethodValid ( kTRUE );
|
---|
1569 |
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 | //
|
---|
1573 | // Third loop: Set mean number of photo-electrons and its RMS in the pixels
|
---|
1574 | // only excluded as: MBadPixelsPix::kChargeSigmaNotValid
|
---|
1575 | //
|
---|
1576 | for (Int_t i=0; i<npixels; i++)
|
---|
1577 | {
|
---|
1578 |
|
---|
1579 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1580 |
|
---|
1581 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1582 |
|
---|
1583 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1584 | continue;
|
---|
1585 |
|
---|
1586 | if (bad.IsUncalibrated(MBadPixelsPix::kChargeSigmaNotValid))
|
---|
1587 | {
|
---|
1588 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
1589 | MCalibrationChargePix &apix = (MCalibrationChargePix&)fCam->GetAverageArea(aidx);
|
---|
1590 |
|
---|
1591 | pix.SetPheFFactorMethod ( apix.GetPheFFactorMethod() );
|
---|
1592 | pix.SetPheFFactorMethodVar( apix.GetPheFFactorMethodVar() );
|
---|
1593 |
|
---|
1594 | if (!pix.CalcConvFFactor())
|
---|
1595 | {
|
---|
1596 | *fLog << warn << GetDescriptor()
|
---|
1597 | << "Pixel " << setw(4) << pix.GetPixId()
|
---|
1598 | <<": Could not calculate the Conv. FADC counts to Phes"
|
---|
1599 | << endl;
|
---|
1600 | bad.SetUncalibrated( MBadPixelsPix::kDeviatingNumPhes );
|
---|
1601 | if (IsCheckDeviatingBehavior())
|
---|
1602 | bad.SetUnsuitable ( MBadPixelsPix::kUnsuitableRun );
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 | }
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | return kTRUE;
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 |
|
---|
1612 |
|
---|
1613 | // ------------------------------------------------------------------------
|
---|
1614 | //
|
---|
1615 | // Returns kFALSE if pointer to MCalibrationBlindCam is NULL
|
---|
1616 | //
|
---|
1617 | // The check returns kFALSE if:
|
---|
1618 | //
|
---|
1619 | // 1) fLambda and fLambdaCheck are separated relatively to each other by more than fLambdaCheckLimit
|
---|
1620 | // 2) BlindPixel has an fLambdaErr greater than fLambdaErrLimit
|
---|
1621 | //
|
---|
1622 | // Calls:
|
---|
1623 | // - MCalibrationBlindPix::CalcFluxInsidePlexiglass()
|
---|
1624 | //
|
---|
1625 | Bool_t MCalibrationChargeCalc::FinalizeBlindCam()
|
---|
1626 | {
|
---|
1627 | if (!fBlindCam)
|
---|
1628 | return kFALSE;
|
---|
1629 |
|
---|
1630 | Int_t nvalid = 0;
|
---|
1631 |
|
---|
1632 | for (Int_t i=0; i<fBlindCam->GetSize(); i++)
|
---|
1633 | {
|
---|
1634 |
|
---|
1635 | MCalibrationBlindPix &blindpix = (MCalibrationBlindPix&)(*fBlindCam)[i];
|
---|
1636 |
|
---|
1637 | if (!blindpix.IsValid())
|
---|
1638 | continue;
|
---|
1639 |
|
---|
1640 | const Float_t lambda = blindpix.GetLambda();
|
---|
1641 | const Float_t lambdaerr = blindpix.GetLambdaErr();
|
---|
1642 | const Float_t lambdacheck = blindpix.GetLambdaCheck();
|
---|
1643 |
|
---|
1644 | if (2.*(lambdacheck-lambda)/(lambdacheck+lambda) > fLambdaCheckLimit)
|
---|
1645 | {
|
---|
1646 | *fLog << warn << "BlindPix " << i << ": Lambda="
|
---|
1647 | << Form("%4.2f", lambda) << " and Lambda-Check="
|
---|
1648 | << Form("%4.2f", lambdacheck) << " differ by more than "
|
---|
1649 | << Form("%4.2f", fLambdaCheckLimit) << endl;
|
---|
1650 | blindpix.SetValid(kFALSE);
|
---|
1651 | continue;
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | if (lambdaerr > fLambdaErrLimit)
|
---|
1655 | {
|
---|
1656 | *fLog << warn << "BlindPix " << i << ": Error of Fitted Lambda="
|
---|
1657 | << Form("%4.2f", lambdaerr) << " is greater than "
|
---|
1658 | << Form("%4.2f", fLambdaErrLimit) << endl;
|
---|
1659 | blindpix.SetValid(kFALSE);
|
---|
1660 | continue;
|
---|
1661 | }
|
---|
1662 |
|
---|
1663 | if (!blindpix.CalcFluxInsidePlexiglass())
|
---|
1664 | {
|
---|
1665 | *fLog << warn << "Could not calculate the flux of photons from Blind Pixel Nr." << i << endl;
|
---|
1666 | blindpix.SetValid(kFALSE);
|
---|
1667 | continue;
|
---|
1668 | }
|
---|
1669 |
|
---|
1670 | nvalid++;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | if (!nvalid)
|
---|
1674 | return kFALSE;
|
---|
1675 |
|
---|
1676 | return kTRUE;
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | // ------------------------------------------------------------------------
|
---|
1680 | //
|
---|
1681 | // Returns kFALSE if pointer to MCalibrationChargePINDiode is NULL
|
---|
1682 | //
|
---|
1683 | // The check returns kFALSE if:
|
---|
1684 | //
|
---|
1685 | // 1) PINDiode has a fitted charge smaller than fChargeLimit*PedRMS
|
---|
1686 | // 2) PINDiode has a fit error smaller than fChargeErrLimit
|
---|
1687 | // 3) PINDiode has a fitted charge smaller its fChargeRelErrLimit times its charge error
|
---|
1688 | // 4) PINDiode has a charge sigma smaller than its Pedestal RMS
|
---|
1689 | //
|
---|
1690 | // Calls:
|
---|
1691 | // - MCalibrationChargePINDiode::CalcFluxOutsidePlexiglass()
|
---|
1692 | //
|
---|
1693 | Bool_t MCalibrationChargeCalc::FinalizePINDiode()
|
---|
1694 | {
|
---|
1695 |
|
---|
1696 | if (!fPINDiode)
|
---|
1697 | return kFALSE;
|
---|
1698 |
|
---|
1699 | if (fPINDiode->GetMean() < fChargeLimit*fPINDiode->GetPedRms())
|
---|
1700 | {
|
---|
1701 | *fLog << warn << "PINDiode : Fitted Charge is smaller than "
|
---|
1702 | << fChargeLimit << " Pedestal RMS." << endl;
|
---|
1703 | return kFALSE;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | if (fPINDiode->GetMeanErr() < fChargeErrLimit)
|
---|
1707 | {
|
---|
1708 | *fLog << warn << "PINDiode : Error of Fitted Charge is smaller than "
|
---|
1709 | << fChargeErrLimit << endl;
|
---|
1710 | return kFALSE;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | if (fPINDiode->GetMean() < fChargeRelErrLimit*fPINDiode->GetMeanErr())
|
---|
1714 | {
|
---|
1715 | *fLog << warn << "PINDiode : Fitted Charge is smaller than "
|
---|
1716 | << fChargeRelErrLimit << "* its error" << endl;
|
---|
1717 | return kFALSE;
|
---|
1718 | }
|
---|
1719 |
|
---|
1720 | if (fPINDiode->GetSigma() < fPINDiode->GetPedRms())
|
---|
1721 | {
|
---|
1722 | *fLog << warn << "PINDiode : Sigma of Fitted Charge smaller than Pedestal RMS" << endl;
|
---|
1723 | return kFALSE;
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 |
|
---|
1727 | if (!fPINDiode->CalcFluxOutsidePlexiglass())
|
---|
1728 | {
|
---|
1729 | *fLog << warn << "PINDiode : Could not calculate the flux of photons, "
|
---|
1730 | << "will skip PIN Diode Calibration " << endl;
|
---|
1731 | return kFALSE;
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 | return kTRUE;
|
---|
1735 | }
|
---|
1736 |
|
---|
1737 | // ------------------------------------------------------------------------
|
---|
1738 | //
|
---|
1739 | // Calculate the average number of photons outside the plexiglass with the
|
---|
1740 | // formula:
|
---|
1741 | //
|
---|
1742 | // av.Num.photons(area index) = av.Num.Phes(area index)
|
---|
1743 | // / MCalibrationQEPix::GetDefaultQE(fPulserColor)
|
---|
1744 | // / MCalibrationQEPix::GetPMTCollectionEff()
|
---|
1745 | // / MCalibrationQEPix::GetLightGuidesEff(fPulserColor)
|
---|
1746 | // / MCalibrationQECam::GetPlexiglassQE()
|
---|
1747 | //
|
---|
1748 | // Calculate the variance on the average number of photons assuming that the error on the
|
---|
1749 | // Quantum efficiency is reduced by the number of used inner pixels, but the rest of the
|
---|
1750 | // values keeps it ordinary error since it is systematic.
|
---|
1751 | //
|
---|
1752 | // Loop over pixels:
|
---|
1753 | //
|
---|
1754 | // - Continue, if not MCalibrationChargePix::IsFFactorMethodValid() and set:
|
---|
1755 | // MCalibrationQEPix::SetFFactorMethodValid(kFALSE,fPulserColor)
|
---|
1756 | //
|
---|
1757 | // - Call MCalibrationChargePix::CalcMeanFFactor(av.Num.photons) and set:
|
---|
1758 | // MCalibrationQEPix::SetFFactorMethodValid(kFALSE,fPulserColor) if not succesful
|
---|
1759 | //
|
---|
1760 | // - Calculate the quantum efficiency with the formula:
|
---|
1761 | //
|
---|
1762 | // QE = ( Num.Phes / av.Num.photons ) * MGeomCam::GetPixRatio()
|
---|
1763 | //
|
---|
1764 | // - Set QE in MCalibrationQEPix::SetQEFFactor ( QE, fPulserColor );
|
---|
1765 | //
|
---|
1766 | // - Set Variance of QE in MCalibrationQEPix::SetQEFFactorVar ( Variance, fPulserColor );
|
---|
1767 | // - Set bit MCalibrationQEPix::SetFFactorMethodValid(kTRUE,fPulserColor)
|
---|
1768 | //
|
---|
1769 | // - Call MCalibrationQEPix::UpdateFFactorMethod()
|
---|
1770 | //
|
---|
1771 | void MCalibrationChargeCalc::FinalizeFFactorQECam()
|
---|
1772 | {
|
---|
1773 |
|
---|
1774 | if (fNumInnerFFactorMethodUsed < 2)
|
---|
1775 | {
|
---|
1776 | *fLog << warn << GetDescriptor()
|
---|
1777 | << ": Could not calculate F-Factor Method: Less than 2 inner pixels valid! " << endl;
|
---|
1778 | return;
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | MCalibrationChargePix &avpix = (MCalibrationChargePix&)fCam->GetAverageArea(0);
|
---|
1782 | MCalibrationQEPix &qepix = (MCalibrationQEPix&) fQECam->GetAverageArea(0);
|
---|
1783 |
|
---|
1784 | if (IsDebug())
|
---|
1785 | *fLog << dbginf << "External Phes: " << fExternalNumPhes
|
---|
1786 | << " Internal Phes: " << avpix.GetPheFFactorMethod() << endl;
|
---|
1787 |
|
---|
1788 | const Float_t avphotons = ( IsUseExternalNumPhes()
|
---|
1789 | ? fExternalNumPhes
|
---|
1790 | : avpix.GetPheFFactorMethod() )
|
---|
1791 | / qepix.GetDefaultQE(fPulserColor)
|
---|
1792 | / qepix.GetPMTCollectionEff()
|
---|
1793 | / qepix.GetLightGuidesEff(fPulserColor)
|
---|
1794 | / fQECam->GetPlexiglassQE();
|
---|
1795 |
|
---|
1796 | const Float_t avphotrelvar = ( IsUseExternalNumPhes()
|
---|
1797 | ? fExternalNumPhesRelVar
|
---|
1798 | : avpix.GetPheFFactorMethodRelVar() )
|
---|
1799 | + qepix.GetDefaultQERelVar(fPulserColor) / fNumInnerFFactorMethodUsed
|
---|
1800 | + qepix.GetPMTCollectionEffRelVar()
|
---|
1801 | + qepix.GetLightGuidesEffRelVar(fPulserColor)
|
---|
1802 | + fQECam->GetPlexiglassQERelVar();
|
---|
1803 |
|
---|
1804 | const UInt_t nareas = fGeom->GetNumAreas();
|
---|
1805 |
|
---|
1806 | //
|
---|
1807 | // Set the results in the MCalibrationChargeCam
|
---|
1808 | //
|
---|
1809 | fCam->SetNumPhotonsFFactorMethod (avphotons);
|
---|
1810 |
|
---|
1811 | if (avphotrelvar > 0.)
|
---|
1812 | fCam->SetNumPhotonsFFactorMethodErr(TMath::Sqrt( avphotrelvar * avphotons * avphotons));
|
---|
1813 |
|
---|
1814 | TArrayF lowlim (nareas);
|
---|
1815 | TArrayF upplim (nareas);
|
---|
1816 | TArrayD avffactorphotons (nareas);
|
---|
1817 | TArrayD avffactorphotvar (nareas);
|
---|
1818 | TArrayI numffactor (nareas);
|
---|
1819 |
|
---|
1820 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
1821 |
|
---|
1822 | MHCamera camffactor(*fGeom,"Camffactor","F-Factor in Camera");
|
---|
1823 |
|
---|
1824 | for (UInt_t i=0; i<npixels; i++)
|
---|
1825 | {
|
---|
1826 |
|
---|
1827 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1828 | MCalibrationQEPix &qpix = (MCalibrationQEPix&) (*fQECam)[i];
|
---|
1829 |
|
---|
1830 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1831 |
|
---|
1832 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1833 | continue;
|
---|
1834 |
|
---|
1835 | const Float_t photons = avphotons / fGeom->GetPixRatio(i);
|
---|
1836 | const Float_t qe = pix.GetPheFFactorMethod() / photons ;
|
---|
1837 |
|
---|
1838 | const Float_t qerelvar = avphotrelvar + pix.GetPheFFactorMethodRelVar();
|
---|
1839 |
|
---|
1840 | qpix.SetQEFFactor ( qe , fPulserColor );
|
---|
1841 | qpix.SetQEFFactorVar ( qerelvar*qe*qe, fPulserColor );
|
---|
1842 | qpix.SetFFactorMethodValid( kTRUE , fPulserColor );
|
---|
1843 |
|
---|
1844 | if (!qpix.UpdateFFactorMethod( fQECam->GetPlexiglassQE() ))
|
---|
1845 | *fLog << warn << GetDescriptor()
|
---|
1846 | << ": Cannot update Quantum efficiencies with the F-Factor Method" << endl;
|
---|
1847 |
|
---|
1848 | //
|
---|
1849 | // The following pixels are those with deviating sigma, but otherwise OK,
|
---|
1850 | // probably those with stars during the pedestal run, but not the cal. run.
|
---|
1851 | //
|
---|
1852 | if (!pix.CalcMeanFFactor( photons , avphotrelvar ))
|
---|
1853 | {
|
---|
1854 | bad.SetUncalibrated( MBadPixelsPix::kDeviatingFFactor );
|
---|
1855 | if (IsCheckDeviatingBehavior())
|
---|
1856 | bad.SetUnsuitable ( MBadPixelsPix::kUnreliableRun );
|
---|
1857 | continue;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
1861 | const Float_t ffactor = pix.GetMeanFFactorFADC2Phot();
|
---|
1862 |
|
---|
1863 | camffactor.Fill(i,ffactor);
|
---|
1864 | camffactor.SetUsed(i);
|
---|
1865 |
|
---|
1866 | avffactorphotons[aidx] += ffactor;
|
---|
1867 | avffactorphotvar[aidx] += ffactor*ffactor;
|
---|
1868 | numffactor[aidx]++;
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 | for (UInt_t i=0; i<nareas; i++)
|
---|
1872 | {
|
---|
1873 |
|
---|
1874 | if (numffactor[i] == 0)
|
---|
1875 | {
|
---|
1876 | *fLog << warn << GetDescriptor() << ": No pixels with valid total F-Factor found "
|
---|
1877 | << "in area index: " << i << endl;
|
---|
1878 | continue;
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 | avffactorphotvar[i] = (avffactorphotvar[i] - avffactorphotons[i]*avffactorphotons[i]/numffactor[i])
|
---|
1882 | / (numffactor[i]-1.);
|
---|
1883 | avffactorphotons[i] = avffactorphotons[i] / numffactor[i];
|
---|
1884 |
|
---|
1885 | if (avffactorphotvar[i] < 0.)
|
---|
1886 | {
|
---|
1887 | *fLog << warn << GetDescriptor() << ": No pixels with valid variance of total F-Factor found "
|
---|
1888 | << "in area index: " << i << endl;
|
---|
1889 | continue;
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | lowlim [i] = 1.; // Lowest known F-Factor of a PMT
|
---|
1893 | upplim [i] = avffactorphotons[i] + fFFactorErrLimit*TMath::Sqrt(avffactorphotvar[i]);
|
---|
1894 |
|
---|
1895 | TArrayI area(1);
|
---|
1896 | area[0] = i;
|
---|
1897 |
|
---|
1898 | TH1D *hist = camffactor.ProjectionS(TArrayI(),area,"_py",100);
|
---|
1899 | hist->Fit("gaus","Q0");
|
---|
1900 | const Float_t mean = hist->GetFunction("gaus")->GetParameter(1);
|
---|
1901 | const Float_t sigma = hist->GetFunction("gaus")->GetParameter(2);
|
---|
1902 | const Int_t ndf = hist->GetFunction("gaus")->GetNDF();
|
---|
1903 |
|
---|
1904 | if (IsDebug())
|
---|
1905 | camffactor.DrawClone();
|
---|
1906 |
|
---|
1907 | if (ndf < 2)
|
---|
1908 | {
|
---|
1909 | *fLog << warn << GetDescriptor() << ": Cannot use a Gauss fit to the F-Factor " << endl;
|
---|
1910 | *fLog << " in the camera with area index: " << i << endl;
|
---|
1911 | *fLog << " Number of dof.: " << ndf << " is smaller than 2 " << endl;
|
---|
1912 | *fLog << " Will use the simple mean and rms." << endl;
|
---|
1913 | delete hist;
|
---|
1914 | SetFFactorFitOK(i,kFALSE);
|
---|
1915 | continue;
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | const Double_t prob = hist->GetFunction("gaus")->GetProb();
|
---|
1919 |
|
---|
1920 | if (prob < 0.001)
|
---|
1921 | {
|
---|
1922 | *fLog << warn << GetDescriptor() << ": Cannot use a Gauss fit to the F-Factor " << endl;
|
---|
1923 | *fLog << " in the camera with area index: " << i << endl;
|
---|
1924 | *fLog << " Fit probability " << prob << " is smaller than 0.001 " << endl;
|
---|
1925 | *fLog << " Will use the simple mean and rms." << endl;
|
---|
1926 | delete hist;
|
---|
1927 | SetFFactorFitOK(i,kFALSE);
|
---|
1928 | continue;
|
---|
1929 | }
|
---|
1930 |
|
---|
1931 | *fLog << inf << "Area " << setw(4) << i <<": Mean F-Factor :"
|
---|
1932 | << Form("%4.2f+-%4.2f",mean,sigma) << endl;
|
---|
1933 |
|
---|
1934 | lowlim [i] = 1.;
|
---|
1935 | upplim [i] = mean + fFFactorErrLimit*sigma;
|
---|
1936 |
|
---|
1937 | delete hist;
|
---|
1938 |
|
---|
1939 | SetFFactorFitOK(i,kTRUE);
|
---|
1940 | }
|
---|
1941 |
|
---|
1942 | *fLog << endl;
|
---|
1943 |
|
---|
1944 | for (UInt_t i=0; i<npixels; i++)
|
---|
1945 | {
|
---|
1946 |
|
---|
1947 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1948 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
1949 |
|
---|
1950 | if (bad.IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1951 | continue;
|
---|
1952 |
|
---|
1953 | const Float_t ffactor = pix.GetMeanFFactorFADC2Phot();
|
---|
1954 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
1955 |
|
---|
1956 | if ( ffactor < lowlim[aidx] || ffactor > upplim[aidx] )
|
---|
1957 | {
|
---|
1958 | *fLog << warn << "Pixel " << setw(4) << i<< ": Overall F-Factor "
|
---|
1959 | << Form("%5.2f",ffactor) << " out of range ["
|
---|
1960 | << Form("%5.2f,%5.2f",lowlim[aidx],upplim[aidx]) << "]" << endl;
|
---|
1961 |
|
---|
1962 | bad.SetUncalibrated( MBadPixelsPix::kDeviatingFFactor );
|
---|
1963 | if (IsCheckDeviatingBehavior())
|
---|
1964 | bad.SetUnsuitable ( MBadPixelsPix::kUnreliableRun );
|
---|
1965 | }
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 | for (UInt_t i=0; i<npixels; i++)
|
---|
1969 | {
|
---|
1970 |
|
---|
1971 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
1972 | MCalibrationQEPix &qpix = (MCalibrationQEPix&)(*fQECam)[i];
|
---|
1973 |
|
---|
1974 | if ((*fBadPixels)[i].IsUnsuitable(MBadPixelsPix::kUnsuitableRun))
|
---|
1975 | {
|
---|
1976 | qpix.SetFFactorMethodValid(kFALSE,fPulserColor);
|
---|
1977 | pix.SetFFactorMethodValid(kFALSE);
|
---|
1978 | continue;
|
---|
1979 | }
|
---|
1980 | }
|
---|
1981 | }
|
---|
1982 |
|
---|
1983 |
|
---|
1984 | // ------------------------------------------------------------------------
|
---|
1985 | //
|
---|
1986 | // Loop over pixels:
|
---|
1987 | //
|
---|
1988 | // - Continue, if not MCalibrationBlindPix::IsFluxInsidePlexiglassAvailable() and set:
|
---|
1989 | // MCalibrationQEPix::SetBlindPixelMethodValid(kFALSE,fPulserColor)
|
---|
1990 | //
|
---|
1991 | // - Calculate the quantum efficiency with the formula:
|
---|
1992 | //
|
---|
1993 | // QE = Num.Phes / MCalibrationBlindPix::GetFluxInsidePlexiglass()
|
---|
1994 | // / MGeomPix::GetA() * MCalibrationQECam::GetPlexiglassQE()
|
---|
1995 | //
|
---|
1996 | // - Set QE in MCalibrationQEPix::SetQEBlindPixel ( QE, fPulserColor );
|
---|
1997 | // - Set Variance of QE in MCalibrationQEPix::SetQEBlindPixelVar ( Variance, fPulserColor );
|
---|
1998 | // - Set bit MCalibrationQEPix::SetBlindPixelMethodValid(kTRUE,fPulserColor)
|
---|
1999 | //
|
---|
2000 | // - Call MCalibrationQEPix::UpdateBlindPixelMethod()
|
---|
2001 | //
|
---|
2002 | void MCalibrationChargeCalc::FinalizeBlindPixelQECam()
|
---|
2003 | {
|
---|
2004 |
|
---|
2005 | if (!fBlindCam)
|
---|
2006 | return;
|
---|
2007 |
|
---|
2008 | //
|
---|
2009 | // Set the results in the MCalibrationChargeCam
|
---|
2010 | //
|
---|
2011 | if (!fBlindCam->IsFluxInsidePlexiglassAvailable())
|
---|
2012 | {
|
---|
2013 |
|
---|
2014 | const Float_t photons = fBlindCam->GetFluxInsidePlexiglass() * (*fGeom)[0].GetA()
|
---|
2015 | / fQECam->GetPlexiglassQE();
|
---|
2016 | fCam->SetNumPhotonsBlindPixelMethod(photons);
|
---|
2017 |
|
---|
2018 | const Float_t photrelvar = fBlindCam->GetFluxInsidePlexiglassRelVar()
|
---|
2019 | + fQECam->GetPlexiglassQERelVar();
|
---|
2020 |
|
---|
2021 | if (photrelvar > 0.)
|
---|
2022 | fCam->SetNumPhotonsBlindPixelMethodErr(TMath::Sqrt( photrelvar * photons * photons));
|
---|
2023 | }
|
---|
2024 |
|
---|
2025 | //
|
---|
2026 | // With the knowledge of the overall photon flux, calculate the
|
---|
2027 | // quantum efficiencies after the Blind Pixel and PIN Diode method
|
---|
2028 | //
|
---|
2029 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
2030 | for (UInt_t i=0; i<npixels; i++)
|
---|
2031 | {
|
---|
2032 |
|
---|
2033 | MCalibrationQEPix &qepix = (MCalibrationQEPix&)(*fQECam)[i];
|
---|
2034 |
|
---|
2035 | if (!fBlindCam->IsFluxInsidePlexiglassAvailable())
|
---|
2036 | {
|
---|
2037 | qepix.SetBlindPixelMethodValid(kFALSE, fPulserColor);
|
---|
2038 | continue;
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
2042 |
|
---|
2043 | if (bad.IsUnsuitable (MBadPixelsPix::kUnsuitableRun))
|
---|
2044 | {
|
---|
2045 | qepix.SetBlindPixelMethodValid(kFALSE, fPulserColor);
|
---|
2046 | continue;
|
---|
2047 | }
|
---|
2048 |
|
---|
2049 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
2050 | MGeom &geo = (*fGeom)[i];
|
---|
2051 |
|
---|
2052 | const Float_t qe = pix.GetPheFFactorMethod()
|
---|
2053 | / fBlindCam->GetFluxInsidePlexiglass()
|
---|
2054 | / geo.GetA()
|
---|
2055 | * fQECam->GetPlexiglassQE();
|
---|
2056 |
|
---|
2057 | const Float_t qerelvar = fBlindCam->GetFluxInsidePlexiglassRelVar()
|
---|
2058 | + fQECam->GetPlexiglassQERelVar()
|
---|
2059 | + pix.GetPheFFactorMethodRelVar();
|
---|
2060 |
|
---|
2061 | qepix.SetQEBlindPixel ( qe , fPulserColor );
|
---|
2062 | qepix.SetQEBlindPixelVar ( qerelvar*qe*qe, fPulserColor );
|
---|
2063 | qepix.SetBlindPixelMethodValid( kTRUE , fPulserColor );
|
---|
2064 |
|
---|
2065 | if (!qepix.UpdateBlindPixelMethod( fQECam->GetPlexiglassQE()))
|
---|
2066 | *fLog << warn << GetDescriptor()
|
---|
2067 | << ": Cannot update Quantum efficiencies with the Blind Pixel Method" << endl;
|
---|
2068 | }
|
---|
2069 | }
|
---|
2070 |
|
---|
2071 | // ------------------------------------------------------------------------
|
---|
2072 | //
|
---|
2073 | // Loop over pixels:
|
---|
2074 | //
|
---|
2075 | // - Continue, if not MCalibrationChargePINDiode::IsFluxOutsidePlexiglassAvailable() and set:
|
---|
2076 | // MCalibrationQEPix::SetPINDiodeMethodValid(kFALSE,fPulserColor)
|
---|
2077 | //
|
---|
2078 | // - Calculate the quantum efficiency with the formula:
|
---|
2079 | //
|
---|
2080 | // QE = Num.Phes / MCalibrationChargePINDiode::GetFluxOutsidePlexiglass() / MGeomPix::GetA()
|
---|
2081 | //
|
---|
2082 | // - Set QE in MCalibrationQEPix::SetQEPINDiode ( QE, fPulserColor );
|
---|
2083 | // - Set Variance of QE in MCalibrationQEPix::SetQEPINDiodeVar ( Variance, fPulserColor );
|
---|
2084 | // - Set bit MCalibrationQEPix::SetPINDiodeMethodValid(kTRUE,fPulserColor)
|
---|
2085 | //
|
---|
2086 | // - Call MCalibrationQEPix::UpdatePINDiodeMethod()
|
---|
2087 | //
|
---|
2088 | void MCalibrationChargeCalc::FinalizePINDiodeQECam()
|
---|
2089 | {
|
---|
2090 |
|
---|
2091 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
2092 |
|
---|
2093 | if (!fPINDiode)
|
---|
2094 | return;
|
---|
2095 |
|
---|
2096 | //
|
---|
2097 | // With the knowledge of the overall photon flux, calculate the
|
---|
2098 | // quantum efficiencies after the PIN Diode method
|
---|
2099 | //
|
---|
2100 | for (UInt_t i=0; i<npixels; i++)
|
---|
2101 | {
|
---|
2102 |
|
---|
2103 | MCalibrationQEPix &qepix = (MCalibrationQEPix&)(*fQECam)[i];
|
---|
2104 |
|
---|
2105 | if (!fPINDiode)
|
---|
2106 | {
|
---|
2107 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
2108 | continue;
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | if (!fPINDiode->IsFluxOutsidePlexiglassAvailable())
|
---|
2112 | {
|
---|
2113 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
2114 | continue;
|
---|
2115 | }
|
---|
2116 |
|
---|
2117 | MBadPixelsPix &bad = (*fBadPixels)[i];
|
---|
2118 |
|
---|
2119 | if (!bad.IsUnsuitable (MBadPixelsPix::kUnsuitableRun))
|
---|
2120 | {
|
---|
2121 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
2122 | continue;
|
---|
2123 | }
|
---|
2124 |
|
---|
2125 | MCalibrationChargePix &pix = (MCalibrationChargePix&)(*fCam)[i];
|
---|
2126 | MGeom &geo = (*fGeom)[i];
|
---|
2127 |
|
---|
2128 | const Float_t qe = pix.GetPheFFactorMethod()
|
---|
2129 | / fPINDiode->GetFluxOutsidePlexiglass()
|
---|
2130 | / geo.GetA();
|
---|
2131 |
|
---|
2132 | const Float_t qerelvar = fPINDiode->GetFluxOutsidePlexiglassRelVar() + pix.GetPheFFactorMethodRelVar();
|
---|
2133 |
|
---|
2134 | qepix.SetQEPINDiode ( qe , fPulserColor );
|
---|
2135 | qepix.SetQEPINDiodeVar ( qerelvar*qe*qe, fPulserColor );
|
---|
2136 | qepix.SetPINDiodeMethodValid( kTRUE , fPulserColor );
|
---|
2137 |
|
---|
2138 | if (!qepix.UpdatePINDiodeMethod())
|
---|
2139 | *fLog << warn << GetDescriptor()
|
---|
2140 | << ": Cannot update Quantum efficiencies with the PIN Diode Method" << endl;
|
---|
2141 | }
|
---|
2142 | }
|
---|
2143 |
|
---|
2144 | // ------------------------------------------------------------------------
|
---|
2145 | //
|
---|
2146 | // Loop over pixels:
|
---|
2147 | //
|
---|
2148 | // - Call MCalibrationQEPix::UpdateCombinedMethod()
|
---|
2149 | //
|
---|
2150 | void MCalibrationChargeCalc::FinalizeCombinedQECam()
|
---|
2151 | {
|
---|
2152 |
|
---|
2153 | const UInt_t npixels = fGeom->GetNumPixels();
|
---|
2154 |
|
---|
2155 | for (UInt_t i=0; i<npixels; i++)
|
---|
2156 | {
|
---|
2157 |
|
---|
2158 | MCalibrationQEPix &qepix = (MCalibrationQEPix&)(*fQECam)[i];
|
---|
2159 |
|
---|
2160 | if (!(*fBadPixels)[i].IsUnsuitable (MBadPixelsPix::kUnsuitableRun))
|
---|
2161 | {
|
---|
2162 | qepix.SetPINDiodeMethodValid(kFALSE, fPulserColor);
|
---|
2163 | continue;
|
---|
2164 | }
|
---|
2165 |
|
---|
2166 | qepix.UpdateCombinedMethod();
|
---|
2167 | }
|
---|
2168 | }
|
---|
2169 |
|
---|
2170 | // -----------------------------------------------------------------------------------------------
|
---|
2171 | //
|
---|
2172 | // - Print out statistics about BadPixels of type UnsuitableType_t
|
---|
2173 | // - store numbers of bad pixels of each type in fCam
|
---|
2174 | //
|
---|
2175 | Bool_t MCalibrationChargeCalc::FinalizeUnsuitablePixels()
|
---|
2176 | {
|
---|
2177 |
|
---|
2178 | *fLog << inf << endl;
|
---|
2179 | *fLog << GetDescriptor() << ": Charge Calibration status:" << endl;
|
---|
2180 | *fLog << dec << setfill(' ');
|
---|
2181 |
|
---|
2182 | const Int_t nareas = fGeom->GetNumAreas();
|
---|
2183 |
|
---|
2184 | TArrayI suit(nareas);
|
---|
2185 | TArrayI unsuit(nareas);
|
---|
2186 | TArrayI unrel(nareas);
|
---|
2187 |
|
---|
2188 | Int_t unsuitcnt=0;
|
---|
2189 | Int_t unrelcnt =0;
|
---|
2190 |
|
---|
2191 | // Count number of succesfully calibrated pixels
|
---|
2192 | for (Int_t aidx=0; aidx<nareas; aidx++)
|
---|
2193 | {
|
---|
2194 | suit[aidx] = fBadPixels->GetNumSuitable(MBadPixelsPix::kUnsuitableRun, fGeom, aidx);
|
---|
2195 | unsuit[aidx] = fBadPixels->GetNumUnsuitable(MBadPixelsPix::kUnsuitableRun, fGeom, aidx);
|
---|
2196 | unrel[aidx] = fBadPixels->GetNumUnsuitable(MBadPixelsPix::kUnreliableRun, fGeom, aidx);
|
---|
2197 |
|
---|
2198 | unsuitcnt += unsuit[aidx];
|
---|
2199 | unrelcnt += unrel[aidx];
|
---|
2200 |
|
---|
2201 | fCam->SetNumUnsuitable(unsuit[aidx], aidx);
|
---|
2202 | fCam->SetNumUnreliable(unrel[aidx], aidx);
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 | TArrayI counts(nareas);
|
---|
2206 | for (Int_t i=0; i<fCam->GetSize(); i++)
|
---|
2207 | {
|
---|
2208 | const MCalibrationPix &pix = (*fCam)[i];
|
---|
2209 | if (pix.IsHiGainSaturation())
|
---|
2210 | {
|
---|
2211 | const Int_t aidx = (*fGeom)[i].GetAidx();
|
---|
2212 | counts[aidx]++;
|
---|
2213 | }
|
---|
2214 | }
|
---|
2215 |
|
---|
2216 | if (fGeom->InheritsFrom("MGeomCamMagic"))
|
---|
2217 | {
|
---|
2218 | *fLog << " Successfully calibrated Pixels: Inner: "
|
---|
2219 | << Form("%3i",suit[0]) << " Outer: " << Form("%3i",suit[1]) << endl;
|
---|
2220 | *fLog << " Uncalibrated Pixels: Inner: "
|
---|
2221 | << Form("%3i",unsuit[0]) << " Outer: " << Form("%3i",unsuit[1]) << endl;
|
---|
2222 | *fLog << " Unreliable Pixels: Inner: "
|
---|
2223 | << Form("%3i",unrel[0]) << " Outer: " << Form("%3i",unrel[1]) << endl;
|
---|
2224 | *fLog << " High-gain saturated Pixels: Inner: "
|
---|
2225 | << Form("%3i",counts[0]) << " Outer: " << Form("%3i",counts[1]) << endl;
|
---|
2226 | *fLog << endl;
|
---|
2227 | }
|
---|
2228 |
|
---|
2229 | if (unsuitcnt > fUnsuitablesLimit*fGeom->GetNumPixels())
|
---|
2230 | {
|
---|
2231 | *fLog << err << "Number of unsuitable pixels: " << 100.*unsuitcnt/fGeom->GetNumPixels()
|
---|
2232 | << "% exceeds limit of " << fUnsuitablesLimit*100 << "%" << endl;
|
---|
2233 | return kFALSE;
|
---|
2234 | }
|
---|
2235 |
|
---|
2236 | if (unrelcnt > fUnreliablesLimit*fGeom->GetNumPixels())
|
---|
2237 | {
|
---|
2238 | *fLog << err << "Relative number of unreliable pixels: " << 100.*unrelcnt/fGeom->GetNumPixels()
|
---|
2239 | << "% exceeds limit of " << fUnreliablesLimit*100 << "%" << endl;
|
---|
2240 | return kFALSE;
|
---|
2241 | }
|
---|
2242 | return kTRUE;
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | // -----------------------------------------------------------------------------------------------
|
---|
2246 | //
|
---|
2247 | // Print out statistics about BadPixels of type UncalibratedType_t
|
---|
2248 | //
|
---|
2249 | void MCalibrationChargeCalc::PrintUncalibrated(MBadPixelsPix::UncalibratedType_t typ, const char *text) const
|
---|
2250 | {
|
---|
2251 |
|
---|
2252 | UInt_t countinner = 0;
|
---|
2253 | UInt_t countouter = 0;
|
---|
2254 |
|
---|
2255 | for (Int_t i=0; i<fBadPixels->GetSize(); i++)
|
---|
2256 | {
|
---|
2257 | if ((*fBadPixels)[i].IsUncalibrated(typ))
|
---|
2258 | {
|
---|
2259 | if (fGeom->GetPixRatio(i) == 1.)
|
---|
2260 | countinner++;
|
---|
2261 | else
|
---|
2262 | countouter++;
|
---|
2263 | }
|
---|
2264 | }
|
---|
2265 |
|
---|
2266 | *fLog << " " << setw(7) << text << "Inner: " << Form("%3i",countinner)
|
---|
2267 | << " Outer: " << Form("%3i", countouter) << endl;
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 | // --------------------------------------------------------------------------
|
---|
2271 | //
|
---|
2272 | // Read the environment for the following data members:
|
---|
2273 | // - fChargeLimit
|
---|
2274 | // - fChargeErrLimit
|
---|
2275 | // - fChargeRelErrLimit
|
---|
2276 | // - fDebug
|
---|
2277 | // - fFFactorErrLimit
|
---|
2278 | // - fLambdaErrLimit
|
---|
2279 | // - fLambdaCheckErrLimit
|
---|
2280 | // - fPheErrLimit
|
---|
2281 | //
|
---|
2282 | Int_t MCalibrationChargeCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
2283 | {
|
---|
2284 |
|
---|
2285 | Bool_t rc = kFALSE;
|
---|
2286 | if (IsEnvDefined(env, prefix, "ChargeLimit", print))
|
---|
2287 | {
|
---|
2288 | SetChargeLimit(GetEnvValue(env, prefix, "ChargeLimit", fChargeLimit));
|
---|
2289 | rc = kTRUE;
|
---|
2290 | }
|
---|
2291 | if (IsEnvDefined(env, prefix, "ChargeErrLimit", print))
|
---|
2292 | {
|
---|
2293 | SetChargeErrLimit(GetEnvValue(env, prefix, "ChargeErrLimit", fChargeErrLimit));
|
---|
2294 | rc = kTRUE;
|
---|
2295 | }
|
---|
2296 | if (IsEnvDefined(env, prefix, "ChargeRelErrLimit", print))
|
---|
2297 | {
|
---|
2298 | SetChargeRelErrLimit(GetEnvValue(env, prefix, "ChargeRelErrLimit", fChargeRelErrLimit));
|
---|
2299 | rc = kTRUE;
|
---|
2300 | }
|
---|
2301 | if (IsEnvDefined(env, prefix, "Debug", print))
|
---|
2302 | {
|
---|
2303 | SetDebug(GetEnvValue(env, prefix, "Debug", IsDebug()));
|
---|
2304 | rc = kTRUE;
|
---|
2305 | }
|
---|
2306 | if (IsEnvDefined(env, prefix, "ArrTimeRmsLimit", print))
|
---|
2307 | {
|
---|
2308 | SetArrTimeRmsLimit(GetEnvValue(env, prefix, "ArrTimeRmsLimit", fArrTimeRmsLimit));
|
---|
2309 | rc = kTRUE;
|
---|
2310 | }
|
---|
2311 | if (IsEnvDefined(env, prefix, "FFactorErrLimit", print))
|
---|
2312 | {
|
---|
2313 | SetFFactorErrLimit(GetEnvValue(env, prefix, "FFactorErrLimit", fFFactorErrLimit));
|
---|
2314 | rc = kTRUE;
|
---|
2315 | }
|
---|
2316 | if (IsEnvDefined(env, prefix, "LambdaErrLimit", print))
|
---|
2317 | {
|
---|
2318 | SetLambdaErrLimit(GetEnvValue(env, prefix, "LambdaErrLimit", fLambdaErrLimit));
|
---|
2319 | rc = kTRUE;
|
---|
2320 | }
|
---|
2321 | if (IsEnvDefined(env, prefix, "LambdaCheckLimit", print))
|
---|
2322 | {
|
---|
2323 | SetLambdaCheckLimit(GetEnvValue(env, prefix, "LambdaCheckLimit", fLambdaCheckLimit));
|
---|
2324 | rc = kTRUE;
|
---|
2325 | }
|
---|
2326 | if (IsEnvDefined(env, prefix, "CheckDeadPixels", print))
|
---|
2327 | {
|
---|
2328 | SetCheckDeadPixels(GetEnvValue(env, prefix, "CheckDeadPixels", IsCheckDeadPixels()));
|
---|
2329 | rc = kTRUE;
|
---|
2330 | }
|
---|
2331 | if (IsEnvDefined(env, prefix, "CheckDeviatingBehavior", print))
|
---|
2332 | {
|
---|
2333 | SetCheckDeviatingBehavior(GetEnvValue(env, prefix, "CheckDeviatingBehavior", IsCheckDeviatingBehavior()));
|
---|
2334 | rc = kTRUE;
|
---|
2335 | }
|
---|
2336 | if (IsEnvDefined(env, prefix, "CheckExtractionWindow", print))
|
---|
2337 | {
|
---|
2338 | SetCheckExtractionWindow(GetEnvValue(env, prefix, "CheckExtractionWindow", IsCheckExtractionWindow()));
|
---|
2339 | rc = kTRUE;
|
---|
2340 | }
|
---|
2341 | if (IsEnvDefined(env, prefix, "CheckHistOverflow", print))
|
---|
2342 | {
|
---|
2343 | SetCheckHistOverflow(GetEnvValue(env, prefix, "CheckHistOverflow", IsCheckHistOverflow()));
|
---|
2344 | rc = kTRUE;
|
---|
2345 | }
|
---|
2346 | if (IsEnvDefined(env, prefix, "CheckOscillations", print))
|
---|
2347 | {
|
---|
2348 | SetCheckOscillations(GetEnvValue(env, prefix, "CheckOscillations", IsCheckOscillations()));
|
---|
2349 | rc = kTRUE;
|
---|
2350 | }
|
---|
2351 | if (IsEnvDefined(env, prefix, "CheckArrivalTimes", print))
|
---|
2352 | {
|
---|
2353 | SetCheckArrivalTimes(GetEnvValue(env, prefix, "CheckArrivalTimes", IsCheckArrivalTimes()));
|
---|
2354 | rc = kTRUE;
|
---|
2355 | }
|
---|
2356 | if (IsEnvDefined(env, prefix, "PheErrLowerLimit", print))
|
---|
2357 | {
|
---|
2358 | SetPheErrLowerLimit(GetEnvValue(env, prefix, "PheErrLowerLimit", fPheErrLowerLimit));
|
---|
2359 | rc = kTRUE;
|
---|
2360 | }
|
---|
2361 | if (IsEnvDefined(env, prefix, "PheErrUpperLimit", print))
|
---|
2362 | {
|
---|
2363 | SetPheErrUpperLimit(GetEnvValue(env, prefix, "PheErrUpperLimit", fPheErrUpperLimit));
|
---|
2364 | rc = kTRUE;
|
---|
2365 | }
|
---|
2366 | if (IsEnvDefined(env, prefix, "UseExtractorRes", print))
|
---|
2367 | {
|
---|
2368 | SetUseExtractorRes(GetEnvValue(env, prefix, "UseExtractorRes", IsUseExtractorRes()));
|
---|
2369 | rc = kTRUE;
|
---|
2370 | }
|
---|
2371 | if (IsEnvDefined(env, prefix, "UseUnreliables", print))
|
---|
2372 | {
|
---|
2373 | SetUseUnreliables(GetEnvValue(env, prefix, "UseUnreliables", IsUseUnreliables()));
|
---|
2374 | rc = kTRUE;
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | if (IsEnvDefined(env, prefix, "UseExternalNumPhes", print))
|
---|
2378 | {
|
---|
2379 | SetUseExternalNumPhes(GetEnvValue(env, prefix, "UseExternalNumPhes", IsUseExternalNumPhes()));
|
---|
2380 | rc = kTRUE;
|
---|
2381 | }
|
---|
2382 |
|
---|
2383 | if (IsEnvDefined(env, prefix, "UnsuitablesLimit", print))
|
---|
2384 | {
|
---|
2385 | SetUnsuitablesLimit(GetEnvValue(env, prefix, "UnsuitablesLimit", fUnsuitablesLimit));
|
---|
2386 | rc = kTRUE;
|
---|
2387 | }
|
---|
2388 |
|
---|
2389 | if (IsEnvDefined(env, prefix, "UnreliablesLimit", print))
|
---|
2390 | {
|
---|
2391 | SetUnreliablesLimit(GetEnvValue(env, prefix, "UnreliablesLimit", fUnreliablesLimit));
|
---|
2392 | rc = kTRUE;
|
---|
2393 | }
|
---|
2394 |
|
---|
2395 |
|
---|
2396 | return rc;
|
---|
2397 | }
|
---|