1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MHCalibrationPix
|
---|
28 | //
|
---|
29 | // A base class for events which are believed to follow a Gaussian distribution
|
---|
30 | // with time, e.g. calibration events, observables containing white noise, ...
|
---|
31 | //
|
---|
32 | // MHCalibrationPix derives from MHGausEvents, thus all features of
|
---|
33 | // MHGausEvents can be used by a class deriving from MHCalibrationPix
|
---|
34 | //
|
---|
35 | // As an additional feature to MHGausEvents, this class offers to skip the fitting
|
---|
36 | // to set mean, sigma and its errors directly from the histograms with the function
|
---|
37 | // BypassFit()
|
---|
38 | //
|
---|
39 | // See also: MHGausEvents
|
---|
40 | //
|
---|
41 | //////////////////////////////////////////////////////////////////////////////
|
---|
42 | #include "MHCalibrationPix.h"
|
---|
43 |
|
---|
44 | #include <TH1.h>
|
---|
45 | #include <TF1.h>
|
---|
46 | #include <TMath.h>
|
---|
47 | #include <TGraph.h>
|
---|
48 |
|
---|
49 | #include "MLog.h"
|
---|
50 | #include "MLogManip.h"
|
---|
51 |
|
---|
52 | ClassImp(MHCalibrationPix);
|
---|
53 |
|
---|
54 | using namespace std;
|
---|
55 |
|
---|
56 | const Float_t MHCalibrationPix::fgBlackoutLimit = 5.;
|
---|
57 | const Float_t MHCalibrationPix::fgPickupLimit = 5.;
|
---|
58 | // --------------------------------------------------------------------------
|
---|
59 | //
|
---|
60 | // Default Constructor.
|
---|
61 | // Sets:
|
---|
62 | // - the default number for fPickupLimit (fgPickupLimit)
|
---|
63 | // - the default number for fBlackoutLimit (fgBlackoutLimit)
|
---|
64 | //
|
---|
65 | // Initializes:
|
---|
66 | // - all variables to 0.
|
---|
67 | //
|
---|
68 | MHCalibrationPix::MHCalibrationPix(const char *name, const char *title)
|
---|
69 | {
|
---|
70 |
|
---|
71 | fName = name ? name : "MHCalibrationPix";
|
---|
72 | fTitle = title ? title : "Calibration histogram events";
|
---|
73 |
|
---|
74 | Clear();
|
---|
75 |
|
---|
76 | SetBlackoutLimit();
|
---|
77 | SetPickupLimit();
|
---|
78 | }
|
---|
79 |
|
---|
80 | // --------------------------------------------------------------------------
|
---|
81 | //
|
---|
82 | // Default Clear(), can be overloaded.
|
---|
83 | //
|
---|
84 | // Sets:
|
---|
85 | // - all other pointers to NULL
|
---|
86 | // - all variables to 0., except fPixId to -1
|
---|
87 | // - all flags to kFALSE
|
---|
88 | //
|
---|
89 | // - all pointers
|
---|
90 | //
|
---|
91 | void MHCalibrationPix::Clear(Option_t *o)
|
---|
92 | {
|
---|
93 |
|
---|
94 | MHGausEvents::Clear();
|
---|
95 | fSaturated = 0;
|
---|
96 | }
|
---|
97 |
|
---|
98 | void MHCalibrationPix::Reset()
|
---|
99 | {
|
---|
100 |
|
---|
101 | MHGausEvents::Reset();
|
---|
102 | fSaturated = 0;
|
---|
103 | }
|
---|
104 |
|
---|
105 |
|
---|
106 | // -----------------------------------------------------------------------------
|
---|
107 | //
|
---|
108 | // Bypasses the Gauss fit by taking mean and RMS from the histogram
|
---|
109 | //
|
---|
110 | // Errors are determined in the following way:
|
---|
111 | // MeanErr = RMS / Sqrt(entries)
|
---|
112 | // SigmaErr = RMS / (2.*Sqrt(entries) )
|
---|
113 | //
|
---|
114 | void MHCalibrationPix::BypassFit()
|
---|
115 | {
|
---|
116 |
|
---|
117 | const Stat_t entries = fHGausHist.GetEntries();
|
---|
118 |
|
---|
119 | if (entries <= 0.)
|
---|
120 | {
|
---|
121 | *fLog << warn << GetDescriptor()
|
---|
122 | << ": Cannot bypass fit. Number of entries smaller or equal 0 in pixel: " << GetName() << endl;
|
---|
123 | return;
|
---|
124 | }
|
---|
125 |
|
---|
126 | fMean = fHGausHist.GetMean();
|
---|
127 | fMeanErr = fHGausHist.GetRMS() / TMath::Sqrt(entries);
|
---|
128 | fSigma = fHGausHist.GetRMS() ;
|
---|
129 | fSigmaErr = fHGausHist.GetRMS() / TMath::Sqrt(entries) / 2.;
|
---|
130 | }
|
---|
131 |
|
---|
132 | // -------------------------------------------------------------------------------
|
---|
133 | //
|
---|
134 | // Return the number of "blackout" events, which are events with values higher
|
---|
135 | // than fBlackoutLimit sigmas from the mean
|
---|
136 | //
|
---|
137 | //
|
---|
138 | const Double_t MHCalibrationPix::GetBlackout() const
|
---|
139 | {
|
---|
140 |
|
---|
141 | if ((fMean == 0.) && (fSigma == 0.))
|
---|
142 | return -1.;
|
---|
143 |
|
---|
144 | const Int_t first = fHGausHist.GetXaxis()->GetFirst();
|
---|
145 | const Int_t last = fHGausHist.GetXaxis()->FindBin(fMean-fBlackoutLimit*fSigma);
|
---|
146 |
|
---|
147 | if (first >= last)
|
---|
148 | return 0.;
|
---|
149 |
|
---|
150 | return fHGausHist.Integral(first, last);
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | // -------------------------------------------------------------------------------
|
---|
155 | //
|
---|
156 | // Return the number of "pickup" events, which are events with values higher
|
---|
157 | // than fPickupLimit sigmas from the mean
|
---|
158 | //
|
---|
159 | //
|
---|
160 | const Double_t MHCalibrationPix::GetPickup() const
|
---|
161 | {
|
---|
162 | if (!IsValid())
|
---|
163 | return -1.;
|
---|
164 |
|
---|
165 | const Int_t first = fHGausHist.GetXaxis()->FindBin(fMean+fPickupLimit*fSigma);
|
---|
166 | const Int_t last = fHGausHist.GetXaxis()->GetLast();
|
---|
167 |
|
---|
168 | if (first >= last)
|
---|
169 | return 0.;
|
---|
170 |
|
---|
171 | return fHGausHist.Integral(first, last);
|
---|
172 | }
|
---|
173 |
|
---|
174 | // -----------------------------------------------------------------------------
|
---|
175 | //
|
---|
176 | // If flag IsGausFitOK() is set (histogram already successfully fitted),
|
---|
177 | // returns kTRUE
|
---|
178 | //
|
---|
179 | // If both fMean and fSigma are still zero, call FitGaus()
|
---|
180 | //
|
---|
181 | // Repeats the Gauss fit in a smaller range, defined by:
|
---|
182 | //
|
---|
183 | // min = GetMean() - fBlackoutLimit * GetSigma();
|
---|
184 | // max = GetMean() + fPickupLimit * GetSigma();
|
---|
185 | //
|
---|
186 | // The fit results are retrieved and stored in class-own variables.
|
---|
187 | //
|
---|
188 | // A flag IsGausFitOK() is set according to whether the fit probability
|
---|
189 | // is smaller or bigger than fProbLimit, whether the NDF is bigger than
|
---|
190 | // fNDFLimit and whether results are NaNs.
|
---|
191 | //
|
---|
192 | Bool_t MHCalibrationPix::RepeatFit(const Option_t *option)
|
---|
193 | {
|
---|
194 |
|
---|
195 | if (IsGausFitOK())
|
---|
196 | return kTRUE;
|
---|
197 |
|
---|
198 | if (!IsValid())
|
---|
199 | return FitGaus();
|
---|
200 |
|
---|
201 | //
|
---|
202 | // Get new fitting ranges
|
---|
203 | //
|
---|
204 | Axis_t rmin = GetMean() - fBlackoutLimit * GetSigma();
|
---|
205 | Axis_t rmax = GetMean() + fPickupLimit * GetSigma();
|
---|
206 |
|
---|
207 | Axis_t hmin = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst());
|
---|
208 | Axis_t hmax = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast()) ;
|
---|
209 |
|
---|
210 | fFGausFit->SetRange(hmin < rmin ? rmin : hmin , hmax > rmax ? rmax : hmax);
|
---|
211 |
|
---|
212 | fHGausHist.Fit(fFGausFit,option);
|
---|
213 |
|
---|
214 | fMean = fFGausFit->GetParameter(1);
|
---|
215 | fSigma = fFGausFit->GetParameter(2);
|
---|
216 | fMeanErr = fFGausFit->GetParError(1) ;
|
---|
217 | fSigmaErr = fFGausFit->GetParError(2) ;
|
---|
218 | fProb = fFGausFit->GetProb() ;
|
---|
219 |
|
---|
220 | //
|
---|
221 | // The fit result is accepted under condition:
|
---|
222 | // 1) The results are not nan's
|
---|
223 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
---|
224 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
---|
225 | //
|
---|
226 | if ( !TMath::Finite( fMean )
|
---|
227 | || !TMath::Finite( fMeanErr )
|
---|
228 | || !TMath::Finite( fProb )
|
---|
229 | || !TMath::Finite( fSigma )
|
---|
230 | || !TMath::Finite( fSigmaErr )
|
---|
231 | || fFGausFit->GetNDF() < GetNDFLimit()
|
---|
232 | || fProb < GetProbLimit() )
|
---|
233 | return kFALSE;
|
---|
234 |
|
---|
235 | SetGausFitOK(kTRUE);
|
---|
236 | return kTRUE;
|
---|
237 |
|
---|
238 | }
|
---|
239 |
|
---|