1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:thomas.bretz@epfl.ch>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2010
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimRays
|
---|
28 | //
|
---|
29 | // Task to produce rays from a light source at either infinity or a given
|
---|
30 | // height from a given local sky position.
|
---|
31 | //
|
---|
32 | // The sky position is defined by an MPointingPos object in the parameter
|
---|
33 | // list (if none exists, the source is at the reflector axis). Its
|
---|
34 | // default name is "MPointingPos".
|
---|
35 | //
|
---|
36 | // The height of the light/point source is set by SetHeight in units of km.
|
---|
37 | // A value <= 0 means infinity.
|
---|
38 | //
|
---|
39 | // The number of rays produced per event is defined by SetNumPhotons(n).
|
---|
40 | // The default is 1000.
|
---|
41 | //
|
---|
42 | //////////////////////////////////////////////////////////////////////////////
|
---|
43 | #include "MSimRays.h"
|
---|
44 |
|
---|
45 | #include <TMath.h> // root >=5.20
|
---|
46 | #include <TRandom.h>
|
---|
47 | #include <TRotation.h>
|
---|
48 |
|
---|
49 | #include "MLog.h"
|
---|
50 | #include "MLogManip.h"
|
---|
51 |
|
---|
52 | #include "MParList.h"
|
---|
53 |
|
---|
54 | #include "MQuaternion.h"
|
---|
55 |
|
---|
56 | #include "MPhotonEvent.h"
|
---|
57 | #include "MPhotonData.h"
|
---|
58 |
|
---|
59 | #include "MReflector.h"
|
---|
60 | #include "MPointingPos.h"
|
---|
61 |
|
---|
62 | ClassImp(MSimRays);
|
---|
63 |
|
---|
64 | using namespace std;
|
---|
65 |
|
---|
66 | // --------------------------------------------------------------------------
|
---|
67 | //
|
---|
68 | // Default Constructor.
|
---|
69 | //
|
---|
70 | MSimRays::MSimRays(const char* name, const char *title)
|
---|
71 | : fEvt(0), fReflector(0), fPointPos(0), fSource(0),
|
---|
72 | fNumPhotons(1000), fHeight(-1),
|
---|
73 | fNameReflector("MReflector"), fNamePointPos("MPointingPos"),
|
---|
74 | fNameSource("Source")
|
---|
75 | {
|
---|
76 | fName = name ? name : "MSimRays";
|
---|
77 | fTitle = title ? title : "Task to calculate reflection os a mirror";
|
---|
78 | }
|
---|
79 |
|
---|
80 | // --------------------------------------------------------------------------
|
---|
81 | //
|
---|
82 | // Search for the necessary parameter containers.
|
---|
83 | //
|
---|
84 | Int_t MSimRays::PreProcess(MParList *pList)
|
---|
85 | {
|
---|
86 | fEvt = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent");
|
---|
87 | if (!fEvt)
|
---|
88 | return kFALSE;
|
---|
89 |
|
---|
90 | if (!pList->FindCreateObj("MCorsikaEvtHeader"))
|
---|
91 | return kFALSE;
|
---|
92 |
|
---|
93 | fReflector = (MReflector*)pList->FindObject(fNameReflector, "MReflector");
|
---|
94 | if (!fReflector)
|
---|
95 | {
|
---|
96 | *fLog << inf << fNameReflector << " [MReflector] not found..." << endl;
|
---|
97 | return kFALSE;
|
---|
98 | }
|
---|
99 |
|
---|
100 | fSource = (MPointingPos*)pList->FindObject(fNameSource, "MPointingPos");
|
---|
101 | if (!fSource)
|
---|
102 | {
|
---|
103 | // *fLog << inf << fNameSource << " [MPointingPos] not found..." << endl;
|
---|
104 | // return kFALSE;
|
---|
105 | }
|
---|
106 |
|
---|
107 | fPointPos = (MPointingPos*)pList->FindObject(fNamePointPos, "MPointingPos");
|
---|
108 | if (!fPointPos)
|
---|
109 | {
|
---|
110 | *fLog << inf << fNamePointPos << " [MPointingPos] not found..." << endl;
|
---|
111 | return kFALSE;
|
---|
112 | }
|
---|
113 |
|
---|
114 | return kTRUE;
|
---|
115 | }
|
---|
116 |
|
---|
117 | // --------------------------------------------------------------------------
|
---|
118 | //
|
---|
119 | // Converts the photons into the telscope coordinate frame using the
|
---|
120 | // pointing position from MPointingPos.
|
---|
121 | //
|
---|
122 | // Reflects all photons on all mirrors and stores the final photons on
|
---|
123 | // the focal plane. Also intermediate photons are stored for debugging.
|
---|
124 | //
|
---|
125 | Int_t MSimRays::Process()
|
---|
126 | {
|
---|
127 | // Get arrays from event container
|
---|
128 | fEvt->Resize(fNumPhotons);
|
---|
129 |
|
---|
130 | TClonesArray &arr = fEvt->GetArray();
|
---|
131 |
|
---|
132 | const Int_t num = arr.GetEntriesFast();
|
---|
133 |
|
---|
134 | const Double_t maxr = fReflector->GetMaxR();
|
---|
135 |
|
---|
136 | const Double_t deltazd = fSource ? fSource->GetZdRad() : 0;
|
---|
137 | const Double_t deltaaz = fSource ? fSource->GetAzRad() : 0;
|
---|
138 |
|
---|
139 | const Double_t zd = fPointPos->GetZdRad() + deltazd;
|
---|
140 | const Double_t az = fPointPos->GetAzRad() + deltaaz;
|
---|
141 |
|
---|
142 |
|
---|
143 | // cm -> m
|
---|
144 | // s -> ns
|
---|
145 | // length -> time
|
---|
146 | const Double_t conv = 1./(TMath::C()*100/1e9);
|
---|
147 |
|
---|
148 | // Local sky coordinates (direction of telescope axis)
|
---|
149 | //const Double_t zd = fPointing->GetZdRad(); // x==north
|
---|
150 | //const Double_t az = fPointing->GetAzRad();
|
---|
151 |
|
---|
152 | // Height of point source [cm] (0 means infinity)
|
---|
153 | const Double_t h = fHeight * 100000;
|
---|
154 |
|
---|
155 | // Rotation matrix to derotate sky
|
---|
156 | // For the new coordinate system see the Wiki
|
---|
157 | TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis
|
---|
158 | rot.RotateX( zd); // Rotate point on ground to align it with the telescope axis
|
---|
159 | rot.RotateZ(-az); // tilt the point from ground to make it parallel to the mirror plane
|
---|
160 |
|
---|
161 | Int_t idx = 0;
|
---|
162 | while (idx<num)
|
---|
163 | {
|
---|
164 | MPhotonData &dat = *static_cast<MPhotonData*>(arr.UncheckedAt(idx));
|
---|
165 |
|
---|
166 | Double_t x, y;
|
---|
167 | const Double_t r = gRandom->Uniform();
|
---|
168 | gRandom->Circle(x, y, maxr*TMath::Sqrt(r));
|
---|
169 | /*
|
---|
170 | Double_t ra = gRandom->Uniform(maxr);
|
---|
171 | Double_t ph = gRandom->Uniform(TMath::TwoPi());
|
---|
172 |
|
---|
173 |
|
---|
174 | // Get radom incident point on the mirror plane.
|
---|
175 | //const Double_t x = gRandom->Uniform(-maxr, maxr);
|
---|
176 | //const Double_t y = gRandom->Uniform(-maxr, maxr);
|
---|
177 |
|
---|
178 | Double_t x = ra*sin(ph);
|
---|
179 | Double_t y = ra*cos(ph);
|
---|
180 |
|
---|
181 | // if (x*x + y*y > maxr*maxr)
|
---|
182 | // continue;
|
---|
183 | */
|
---|
184 | // The is the incident direction of the photon
|
---|
185 | // h==0 means infinitiy
|
---|
186 | const TVector3 u = fHeight>0 ? TVector3(x, y, -h).Unit() : TVector3(0, 0, -1);
|
---|
187 |
|
---|
188 | // w is pointing away from the direction the photon comes from
|
---|
189 | // CORSIKA-orig: x(north), y(west), z(up), t(time)
|
---|
190 | // NOW: x(east), y(north), z(up), t(time)
|
---|
191 | MQuaternion p(TVector3(x, y, 0), fHeight>0 ? TMath::Sqrt(x*x + y*y + h*h): 0);
|
---|
192 | MQuaternion w(u, conv);
|
---|
193 |
|
---|
194 | // Rotate the coordinates into the reflector's coordinate system.
|
---|
195 | // It is assumed that the z-plane is parallel to the focal plane.
|
---|
196 | // (The reflector coordinate system is defined by the telescope orientation)
|
---|
197 | p *= rot;
|
---|
198 | w *= rot;
|
---|
199 |
|
---|
200 | // Now propagate the photon to the z-plane in the new coordinate system
|
---|
201 | p.PropagateZ0(w);
|
---|
202 |
|
---|
203 | // Shift the coordinate system to the telescope. Corsika's
|
---|
204 | // coordinate system is always w.r.t. to the particle axis
|
---|
205 | //p += impact;
|
---|
206 |
|
---|
207 | // Store new position and direction in the reflector's coordinate frame
|
---|
208 | dat.SetPosition(p);
|
---|
209 | dat.SetDirection(w);
|
---|
210 |
|
---|
211 | idx++;
|
---|
212 | }
|
---|
213 |
|
---|
214 | // Doesn't seem to be too time consuming. But we could also sort later!
|
---|
215 | // (after cones, inside the camera)
|
---|
216 | // fEvt->Sort(kTRUE);
|
---|
217 |
|
---|
218 | return kTRUE;
|
---|
219 | }
|
---|
220 |
|
---|
221 | // --------------------------------------------------------------------------
|
---|
222 | //
|
---|
223 | // Height: -1
|
---|
224 | // NumPhotons: 1000
|
---|
225 | //
|
---|
226 | Int_t MSimRays::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
227 | {
|
---|
228 | Bool_t rc = kFALSE;
|
---|
229 | if (IsEnvDefined(env, prefix, "Height", print))
|
---|
230 | {
|
---|
231 | rc = kTRUE;
|
---|
232 | fHeight = GetEnvValue(env, prefix, "Height", fHeight);
|
---|
233 | }
|
---|
234 | if (IsEnvDefined(env, prefix, "NumPhotons", print))
|
---|
235 | {
|
---|
236 | rc = kTRUE;
|
---|
237 | fNumPhotons = GetEnvValue(env, prefix, "NumPhotons", (Int_t)fNumPhotons);
|
---|
238 | }
|
---|
239 |
|
---|
240 | return rc;
|
---|
241 | }
|
---|