1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MMath
|
---|
28 | //
|
---|
29 | // Mars - Math package (eg Significances, etc)
|
---|
30 | //
|
---|
31 | /////////////////////////////////////////////////////////////////////////////
|
---|
32 | #include "MMath.h"
|
---|
33 |
|
---|
34 | #ifndef ROOT_TVector3
|
---|
35 | #include <TVector3.h>
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | #ifndef ROOT_TArrayD
|
---|
39 | #include <TArrayD.h>
|
---|
40 | #endif
|
---|
41 |
|
---|
42 | #ifndef ROOT_TComplex
|
---|
43 | #include <TComplex.h>
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | //NamespaceImp(MMath);
|
---|
47 |
|
---|
48 | // --------------------------------------------------------------------------
|
---|
49 | //
|
---|
50 | // Calculate Significance as
|
---|
51 | // significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
|
---|
52 | //
|
---|
53 | // s: total number of events in signal region
|
---|
54 | // b: number of background events in signal region
|
---|
55 | //
|
---|
56 | Double_t MMath::Significance(Double_t s, Double_t b)
|
---|
57 | {
|
---|
58 | const Double_t k = b==0 ? 0 : s/b;
|
---|
59 | const Double_t f = s+k*k*b;
|
---|
60 |
|
---|
61 | return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
|
---|
62 | }
|
---|
63 |
|
---|
64 | // --------------------------------------------------------------------------
|
---|
65 | //
|
---|
66 | // Symmetrized significance - this is somehow analog to
|
---|
67 | // SignificanceLiMaSigned
|
---|
68 | //
|
---|
69 | // Returns Significance(s,b) if s>b otherwise -Significance(b, s);
|
---|
70 | //
|
---|
71 | Double_t MMath::SignificanceSym(Double_t s, Double_t b)
|
---|
72 | {
|
---|
73 | return s>b ? Significance(s, b) : -Significance(b, s);
|
---|
74 | }
|
---|
75 |
|
---|
76 | // --------------------------------------------------------------------------
|
---|
77 | //
|
---|
78 | // calculates the significance according to Li & Ma
|
---|
79 | // ApJ 272 (1983) 317, Formula 17
|
---|
80 | //
|
---|
81 | // s // s: number of on events
|
---|
82 | // b // b: number of off events
|
---|
83 | // alpha = t_on/t_off; // t: observation time
|
---|
84 | //
|
---|
85 | // The significance has the same (positive!) value for s>b and b>s.
|
---|
86 | //
|
---|
87 | // Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
|
---|
88 | //
|
---|
89 | // Here is some eMail written by Daniel Mazin about the meaning of the arguments:
|
---|
90 | //
|
---|
91 | // > Ok. Here is my understanding:
|
---|
92 | // > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
|
---|
93 | // > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
|
---|
94 | // > exactly this. If you scale OFF to ON first (using time or using any other
|
---|
95 | // > method), then you cannot use formula 17 (9) anymore. You can just try
|
---|
96 | // > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
|
---|
97 | // > will see the result will be different.
|
---|
98 | //
|
---|
99 | // > Here are less mathematical arguments:
|
---|
100 | //
|
---|
101 | // > 1) the better background determination you have (smaller alpha) the more
|
---|
102 | // > significant is your excess, thus your analysis is more sensitive. If you
|
---|
103 | // > normalize OFF to ON first, you loose this sensitivity.
|
---|
104 | //
|
---|
105 | // > 2) the normalization OFF to ON has an error, which naturally depends on
|
---|
106 | // > the OFF and ON. This error is propagating to the significance of your
|
---|
107 | // > excess if you use the Li&Ma formula 17 correctly. But if you normalize
|
---|
108 | // > first and use then alpha=1, the error gets lost completely, you loose
|
---|
109 | // > somehow the criteria of goodness of the normalization.
|
---|
110 | //
|
---|
111 | Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
|
---|
112 | {
|
---|
113 | const Double_t sum = s+b;
|
---|
114 |
|
---|
115 | if (s<0 || b<0 || alpha<=0)
|
---|
116 | return -1;
|
---|
117 |
|
---|
118 | const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
|
---|
119 | const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
|
---|
120 |
|
---|
121 | return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
|
---|
122 | }
|
---|
123 |
|
---|
124 | // --------------------------------------------------------------------------
|
---|
125 | //
|
---|
126 | // Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
|
---|
127 | // calculation has failed. Otherwise the Li/Ma significance which was
|
---|
128 | // calculated. If s<b a negative value is returned.
|
---|
129 | //
|
---|
130 | Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
|
---|
131 | {
|
---|
132 | const Double_t sig = SignificanceLiMa(s, b, alpha);
|
---|
133 | if (sig<=0)
|
---|
134 | return 0;
|
---|
135 |
|
---|
136 | return TMath::Sign(sig, s-alpha*b);
|
---|
137 | }
|
---|
138 |
|
---|
139 | // --------------------------------------------------------------------------
|
---|
140 | //
|
---|
141 | // Return Li/Ma (5) for the error of the excess, under the assumption that
|
---|
142 | // the existance of a signal is already known.
|
---|
143 | //
|
---|
144 | Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
|
---|
145 | {
|
---|
146 | Double_t Ns = s - alpha*b;
|
---|
147 | Double_t sN = s + alpha*alpha*b;
|
---|
148 |
|
---|
149 | return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
|
---|
150 | }
|
---|
151 |
|
---|
152 | // --------------------------------------------------------------------------
|
---|
153 | //
|
---|
154 | // Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
|
---|
155 | //
|
---|
156 | Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
|
---|
157 | {
|
---|
158 | static const Double_t sqrt2 = TMath::Sqrt(2.);
|
---|
159 |
|
---|
160 | const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
|
---|
161 |
|
---|
162 | if (rc<0)
|
---|
163 | return 0;
|
---|
164 | if (rc>1)
|
---|
165 | return 1;
|
---|
166 |
|
---|
167 | return rc;
|
---|
168 | }
|
---|
169 |
|
---|
170 | // ------------------------------------------------------------------------
|
---|
171 | //
|
---|
172 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
173 | // abs(a[i]-Median)
|
---|
174 | //
|
---|
175 | template <class Size, class Element>
|
---|
176 | Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
|
---|
177 | {
|
---|
178 | static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0);
|
---|
179 |
|
---|
180 | // Sanity check
|
---|
181 | if (n <= 0 || !a)
|
---|
182 | return 0;
|
---|
183 |
|
---|
184 | // Get median of distribution
|
---|
185 | med = TMath::Median(n, a);
|
---|
186 |
|
---|
187 | // Create the abs(a[i]-med) distribution
|
---|
188 | Double_t arr[n];
|
---|
189 | for (int i=0; i<n; i++)
|
---|
190 | arr[i] = TMath::Abs(a[i]-med);
|
---|
191 |
|
---|
192 | // FIXME: GausProb() is a workaround. It should be taken into account in Median!
|
---|
193 | //return TMath::Median(n, arr);
|
---|
194 |
|
---|
195 | // Sort distribution
|
---|
196 | Long64_t idx[n];
|
---|
197 | TMath::SortImp(n, arr, idx, kTRUE);
|
---|
198 |
|
---|
199 | // Define where to divide
|
---|
200 | const Int_t div = TMath::Nint(n*prob);
|
---|
201 |
|
---|
202 | // Calculate result
|
---|
203 | Double_t dev = TMath::KOrdStat(n, arr, div, idx);
|
---|
204 | if (n%2 == 0)
|
---|
205 | {
|
---|
206 | dev += TMath::KOrdStat(n, arr, div-1, idx);
|
---|
207 | dev /= 2;
|
---|
208 | }
|
---|
209 |
|
---|
210 | return dev;
|
---|
211 | }
|
---|
212 |
|
---|
213 | // ------------------------------------------------------------------------
|
---|
214 | //
|
---|
215 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
216 | // abs(a[i]-Median)
|
---|
217 | //
|
---|
218 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
|
---|
219 | {
|
---|
220 | return MedianDevImp(n, a, med);
|
---|
221 | }
|
---|
222 |
|
---|
223 | // ------------------------------------------------------------------------
|
---|
224 | //
|
---|
225 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
226 | // abs(a[i]-Median)
|
---|
227 | //
|
---|
228 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
|
---|
229 | {
|
---|
230 | return MedianDevImp(n, a, med);
|
---|
231 | }
|
---|
232 |
|
---|
233 | // ------------------------------------------------------------------------
|
---|
234 | //
|
---|
235 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
236 | // abs(a[i]-Median)
|
---|
237 | //
|
---|
238 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
|
---|
239 | {
|
---|
240 | return MedianDevImp(n, a, med);
|
---|
241 | }
|
---|
242 |
|
---|
243 | // ------------------------------------------------------------------------
|
---|
244 | //
|
---|
245 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
246 | // abs(a[i]-Median)
|
---|
247 | //
|
---|
248 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
|
---|
249 | {
|
---|
250 | return MedianDevImp(n, a, med);
|
---|
251 | }
|
---|
252 |
|
---|
253 | // ------------------------------------------------------------------------
|
---|
254 | //
|
---|
255 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
256 | // abs(a[i]-Median)
|
---|
257 | //
|
---|
258 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
|
---|
259 | {
|
---|
260 | return MedianDevImp(n, a, med);
|
---|
261 | }
|
---|
262 |
|
---|
263 | // ------------------------------------------------------------------------
|
---|
264 | //
|
---|
265 | // Return the "median" (at 68.3%) value of the distribution of
|
---|
266 | // abs(a[i]-Median)
|
---|
267 | //
|
---|
268 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
|
---|
269 | {
|
---|
270 | return MedianDevImp(n, a, med);
|
---|
271 | }
|
---|
272 |
|
---|
273 | Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
274 | Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
275 | Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
276 | Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
277 | Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
278 | Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
|
---|
279 |
|
---|
280 | // --------------------------------------------------------------------------
|
---|
281 | //
|
---|
282 | // This function reduces the precision to roughly 0.5% of a Float_t by
|
---|
283 | // changing its bit-pattern (Be carefull, in rare cases this function must
|
---|
284 | // be adapted to different machines!). This is usefull to enforce better
|
---|
285 | // compression by eg. gzip.
|
---|
286 | //
|
---|
287 | void MMath::ReducePrecision(Float_t &val)
|
---|
288 | {
|
---|
289 | UInt_t &f = (UInt_t&)val;
|
---|
290 |
|
---|
291 | f += 0x00004000;
|
---|
292 | f &= 0xffff8000;
|
---|
293 | }
|
---|
294 |
|
---|
295 | // -------------------------------------------------------------------------
|
---|
296 | //
|
---|
297 | // Quadratic interpolation
|
---|
298 | //
|
---|
299 | // calculate the parameters of a parabula such that
|
---|
300 | // y(i) = a + b*x(i) + c*x(i)^2
|
---|
301 | //
|
---|
302 | // If the determinant==0 an empty TVector3 is returned.
|
---|
303 | //
|
---|
304 | TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
|
---|
305 | {
|
---|
306 | Double_t x1 = x(0);
|
---|
307 | Double_t x2 = x(1);
|
---|
308 | Double_t x3 = x(2);
|
---|
309 |
|
---|
310 | Double_t y1 = y(0);
|
---|
311 | Double_t y2 = y(1);
|
---|
312 | Double_t y3 = y(2);
|
---|
313 |
|
---|
314 | const double det =
|
---|
315 | + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
|
---|
316 | - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
|
---|
317 |
|
---|
318 |
|
---|
319 | if (det==0)
|
---|
320 | return TVector3();
|
---|
321 |
|
---|
322 | const double det1 = 1.0/det;
|
---|
323 |
|
---|
324 | const double ai11 = x2*x3*x3 - x3*x2*x2;
|
---|
325 | const double ai12 = x3*x1*x1 - x1*x3*x3;
|
---|
326 | const double ai13 = x1*x2*x2 - x2*x1*x1;
|
---|
327 |
|
---|
328 | const double ai21 = x2*x2 - x3*x3;
|
---|
329 | const double ai22 = x3*x3 - x1*x1;
|
---|
330 | const double ai23 = x1*x1 - x2*x2;
|
---|
331 |
|
---|
332 | const double ai31 = x3 - x2;
|
---|
333 | const double ai32 = x1 - x3;
|
---|
334 | const double ai33 = x2 - x1;
|
---|
335 |
|
---|
336 | return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
|
---|
337 | (ai21*y1 + ai22*y2 + ai23*y3) * det1,
|
---|
338 | (ai31*y1 + ai32*y2 + ai33*y3) * det1);
|
---|
339 | }
|
---|
340 |
|
---|
341 | Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
342 | {
|
---|
343 | const TVector3 c = GetParab(vx, vy);
|
---|
344 | return c(0) + c(1)*x + c(2)*x*x;
|
---|
345 | }
|
---|
346 |
|
---|
347 | Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
348 | {
|
---|
349 | const Double_t l0 = TMath::Log10(vx(0));
|
---|
350 | const Double_t l1 = TMath::Log10(vx(1));
|
---|
351 | const Double_t l2 = TMath::Log10(vx(2));
|
---|
352 |
|
---|
353 | const TVector3 vx0(l0, l1, l2);
|
---|
354 | return InterpolParabLin(vx0, vy, TMath::Log10(x));
|
---|
355 | }
|
---|
356 |
|
---|
357 | Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
|
---|
358 | {
|
---|
359 | const Double_t l0 = TMath::Cos(vx(0));
|
---|
360 | const Double_t l1 = TMath::Cos(vx(1));
|
---|
361 | const Double_t l2 = TMath::Cos(vx(2));
|
---|
362 |
|
---|
363 | const TVector3 vx0(l0, l1, l2);
|
---|
364 | return InterpolParabLin(vx0, vy, TMath::Cos(x));
|
---|
365 | }
|
---|
366 |
|
---|
367 | // --------------------------------------------------------------------------
|
---|
368 | //
|
---|
369 | // Analytically calculated result of a least square fit of:
|
---|
370 | // y = A*e^(B*x)
|
---|
371 | // Equal weights
|
---|
372 | //
|
---|
373 | // It returns TArrayD(2) = { A, B };
|
---|
374 | //
|
---|
375 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
---|
376 | //
|
---|
377 | TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
|
---|
378 | {
|
---|
379 | Double_t sumxsqy = 0;
|
---|
380 | Double_t sumylny = 0;
|
---|
381 | Double_t sumxy = 0;
|
---|
382 | Double_t sumy = 0;
|
---|
383 | Double_t sumxylny = 0;
|
---|
384 | for (int i=0; i<n; i++)
|
---|
385 | {
|
---|
386 | sumylny += y[i]*TMath::Log(y[i]);
|
---|
387 | sumxy += x[i]*y[i];
|
---|
388 | sumxsqy += x[i]*x[i]*y[i];
|
---|
389 | sumxylny += x[i]*y[i]*TMath::Log(y[i]);
|
---|
390 | sumy += y[i];
|
---|
391 | }
|
---|
392 |
|
---|
393 | const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
|
---|
394 |
|
---|
395 | const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
|
---|
396 | const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
|
---|
397 |
|
---|
398 | TArrayD rc(2);
|
---|
399 | rc[0] = TMath::Exp(a);
|
---|
400 | rc[1] = b;
|
---|
401 | return rc;
|
---|
402 | }
|
---|
403 |
|
---|
404 | // --------------------------------------------------------------------------
|
---|
405 | //
|
---|
406 | // Analytically calculated result of a least square fit of:
|
---|
407 | // y = A*e^(B*x)
|
---|
408 | // Greater weights to smaller values
|
---|
409 | //
|
---|
410 | // It returns TArrayD(2) = { A, B };
|
---|
411 | //
|
---|
412 | // see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
|
---|
413 | //
|
---|
414 | TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
|
---|
415 | {
|
---|
416 | // -------- Greater weights to smaller values ---------
|
---|
417 | Double_t sumlny = 0;
|
---|
418 | Double_t sumxlny = 0;
|
---|
419 | Double_t sumxsq = 0;
|
---|
420 | Double_t sumx = 0;
|
---|
421 | for (int i=0; i<n; i++)
|
---|
422 | {
|
---|
423 | sumlny += TMath::Log(y[i]);
|
---|
424 | sumxlny += x[i]*TMath::Log(y[i]);
|
---|
425 |
|
---|
426 | sumxsq += x[i]*x[i];
|
---|
427 | sumx += x[i];
|
---|
428 | }
|
---|
429 |
|
---|
430 | const Double_t dev = n*sumxsq-sumx*sumx;
|
---|
431 |
|
---|
432 | const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
|
---|
433 | const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
|
---|
434 |
|
---|
435 | TArrayD rc(2);
|
---|
436 | rc[0] = TMath::Exp(a);
|
---|
437 | rc[1] = b;
|
---|
438 | return rc;
|
---|
439 | }
|
---|
440 |
|
---|
441 | // --------------------------------------------------------------------------
|
---|
442 | //
|
---|
443 | // Analytically calculated result of a least square fit of:
|
---|
444 | // y = A+B*ln(x)
|
---|
445 | //
|
---|
446 | // It returns TArrayD(2) = { A, B };
|
---|
447 | //
|
---|
448 | // see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
|
---|
449 | //
|
---|
450 | TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
|
---|
451 | {
|
---|
452 | Double_t sumylnx = 0;
|
---|
453 | Double_t sumy = 0;
|
---|
454 | Double_t sumlnx = 0;
|
---|
455 | Double_t sumlnxsq = 0;
|
---|
456 | for (int i=0; i<n; i++)
|
---|
457 | {
|
---|
458 | sumylnx += y[i]*TMath::Log(x[i]);
|
---|
459 | sumy += y[i];
|
---|
460 | sumlnx += TMath::Log(x[i]);
|
---|
461 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
---|
462 | }
|
---|
463 |
|
---|
464 | const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
|
---|
465 | const Double_t a = (sumy-b*sumlnx)/n;
|
---|
466 |
|
---|
467 | TArrayD rc(2);
|
---|
468 | rc[0] = a;
|
---|
469 | rc[1] = b;
|
---|
470 | return rc;
|
---|
471 | }
|
---|
472 |
|
---|
473 | // --------------------------------------------------------------------------
|
---|
474 | //
|
---|
475 | // Analytically calculated result of a least square fit of:
|
---|
476 | // y = A*x^B
|
---|
477 | //
|
---|
478 | // It returns TArrayD(2) = { A, B };
|
---|
479 | //
|
---|
480 | // see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
|
---|
481 | //
|
---|
482 | TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
|
---|
483 | {
|
---|
484 | Double_t sumlnxlny = 0;
|
---|
485 | Double_t sumlnx = 0;
|
---|
486 | Double_t sumlny = 0;
|
---|
487 | Double_t sumlnxsq = 0;
|
---|
488 | for (int i=0; i<n; i++)
|
---|
489 | {
|
---|
490 | sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
|
---|
491 | sumlnx += TMath::Log(x[i]);
|
---|
492 | sumlny += TMath::Log(y[i]);
|
---|
493 | sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
|
---|
494 | }
|
---|
495 |
|
---|
496 | const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
|
---|
497 | const Double_t a = (sumlny-b*sumlnx)/n;
|
---|
498 |
|
---|
499 | TArrayD rc(2);
|
---|
500 | rc[0] = TMath::Exp(a);
|
---|
501 | rc[1] = b;
|
---|
502 | return rc;
|
---|
503 | }
|
---|
504 |
|
---|
505 | // --------------------------------------------------------------------------
|
---|
506 | //
|
---|
507 | // Solves: x^2 + ax + b = 0;
|
---|
508 | // Return number of solutions returned as x1, x2
|
---|
509 | //
|
---|
510 | Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
|
---|
511 | {
|
---|
512 | const Double_t r = a*a - 4*b;
|
---|
513 | if (r<0)
|
---|
514 | return 0;
|
---|
515 |
|
---|
516 | if (r==0)
|
---|
517 | {
|
---|
518 | x1 = -a/2;
|
---|
519 | return 1;
|
---|
520 | }
|
---|
521 |
|
---|
522 | const Double_t s = TMath::Sqrt(r);
|
---|
523 |
|
---|
524 | x1 = (-a+s)/2;
|
---|
525 | x2 = (-a-s)/2;
|
---|
526 |
|
---|
527 | return 2;
|
---|
528 | }
|
---|
529 |
|
---|
530 | // --------------------------------------------------------------------------
|
---|
531 | //
|
---|
532 | // This is a helper function making the execution of SolverPol3 a bit faster
|
---|
533 | //
|
---|
534 | static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
|
---|
535 | {
|
---|
536 | const TComplex c2 = TComplex::Cos(th/3.);
|
---|
537 | return c1.Re() * c2.Re() - c1.Im() * c2.Im();
|
---|
538 | }
|
---|
539 |
|
---|
540 | // --------------------------------------------------------------------------
|
---|
541 | //
|
---|
542 | // Solves: x^3 + ax^2 + bx + c = 0;
|
---|
543 | // Return number of the real solutions, returned as z1, z2, z3
|
---|
544 | //
|
---|
545 | // Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
|
---|
546 | // Which is based on the solution given in
|
---|
547 | // http://mathworld.wolfram.com/CubicEquation.html
|
---|
548 | //
|
---|
549 | // -------------------------------------------------------------------------
|
---|
550 | //
|
---|
551 | // Exact solutions of cubic polynomial equations
|
---|
552 | // by Stephen R. Schmitt Algorithm
|
---|
553 | //
|
---|
554 | // An exact solution of the cubic polynomial equation:
|
---|
555 | //
|
---|
556 | // x^3 + a*x^2 + b*x + c = 0
|
---|
557 | //
|
---|
558 | // was first published by Gerolamo Cardano (1501-1576) in his treatise,
|
---|
559 | // Ars Magna. He did not discoverer of the solution; a professor of
|
---|
560 | // mathematics at the University of Bologna named Scipione del Ferro (ca.
|
---|
561 | // 1465-1526) is credited as the first to find an exact solution. In the
|
---|
562 | // years since, several improvements to the original solution have been
|
---|
563 | // discovered. Zeno source code
|
---|
564 | //
|
---|
565 | // % compute real or complex roots of cubic polynomial
|
---|
566 | // function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
|
---|
567 | //
|
---|
568 | // var Q, R, D, S, T : real
|
---|
569 | // var im, th : real
|
---|
570 | //
|
---|
571 | // Q := (3*b - a^2)/9
|
---|
572 | // R := (9*b*a - 27*c - 2*a^3)/54
|
---|
573 | // D := Q^3 + R^2 % polynomial discriminant
|
---|
574 | //
|
---|
575 | // if (D >= 0) then % complex or duplicate roots
|
---|
576 | //
|
---|
577 | // S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
|
---|
578 | // T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
|
---|
579 | //
|
---|
580 | // z1 := -a/3 + (S + T) % real root
|
---|
581 | // z2 := -a/3 - (S + T)/2 % real part of complex root
|
---|
582 | // z3 := -a/3 - (S + T)/2 % real part of complex root
|
---|
583 | // im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
|
---|
584 | //
|
---|
585 | // else % distinct real roots
|
---|
586 | //
|
---|
587 | // th := arccos(R/sqrt( -Q^3))
|
---|
588 | //
|
---|
589 | // z1 := 2*sqrt(-Q)*cos(th/3) - a/3
|
---|
590 | // z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
|
---|
591 | // z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
|
---|
592 | // im := 0
|
---|
593 | //
|
---|
594 | // end if
|
---|
595 | //
|
---|
596 | // return im % imaginary part
|
---|
597 | //
|
---|
598 | // end function
|
---|
599 | //
|
---|
600 | Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
|
---|
601 | Double_t &x1, Double_t &x2, Double_t &x3)
|
---|
602 | {
|
---|
603 | const Double_t Q = (a*a - 3*b)/9;
|
---|
604 | const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
|
---|
605 | const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
|
---|
606 |
|
---|
607 | // ----- The single-real / duplicate-roots solution -----
|
---|
608 |
|
---|
609 | if (D==0)
|
---|
610 | {
|
---|
611 | const Double_t r = MMath::Sqrt3(R);
|
---|
612 |
|
---|
613 | x1 = 2*r - a/3.; // real root
|
---|
614 | x2 = r - a/3.; // real root
|
---|
615 |
|
---|
616 | return 2;
|
---|
617 | }
|
---|
618 |
|
---|
619 | if (D>0) // complex or duplicate roots
|
---|
620 | {
|
---|
621 | const Double_t sqrtd = TMath::Sqrt(D);
|
---|
622 |
|
---|
623 | const Double_t S = MMath::Sqrt3(R + sqrtd);
|
---|
624 | const Double_t T = MMath::Sqrt3(R - sqrtd);
|
---|
625 |
|
---|
626 | x1 = (S+T) - a/3.; // real root
|
---|
627 |
|
---|
628 | return 1;
|
---|
629 |
|
---|
630 | //z2 = (S + T)/2 - a/3.; // real part of complex root
|
---|
631 | //z3 = (S + T)/2 - a/3.; // real part of complex root
|
---|
632 | //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
|
---|
633 | }
|
---|
634 |
|
---|
635 | // ----- The general solution with three roots ---
|
---|
636 |
|
---|
637 | if (Q==0)
|
---|
638 | return 0;
|
---|
639 |
|
---|
640 | if (Q>0) // This is here for speed reasons
|
---|
641 | {
|
---|
642 | const Double_t sqrtq = TMath::Sqrt(Q);
|
---|
643 | const Double_t rq = R/TMath::Abs(Q);
|
---|
644 |
|
---|
645 | const Double_t th1 = TMath::ACos(rq/sqrtq);
|
---|
646 | const Double_t th2 = th1 + TMath::TwoPi();
|
---|
647 | const Double_t th3 = th2 + TMath::TwoPi();
|
---|
648 |
|
---|
649 | x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
|
---|
650 | x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
|
---|
651 | x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
|
---|
652 |
|
---|
653 | return 3;
|
---|
654 | }
|
---|
655 |
|
---|
656 | const TComplex sqrtq = TComplex::Sqrt(Q);
|
---|
657 | const Double_t rq = R/TMath::Abs(Q);
|
---|
658 |
|
---|
659 | const TComplex th1 = TComplex::ACos(rq/sqrtq);
|
---|
660 | const TComplex th2 = th1 + TMath::TwoPi();
|
---|
661 | const TComplex th3 = th2 + TMath::TwoPi();
|
---|
662 |
|
---|
663 | // For ReMul, see bove
|
---|
664 | x1 = ReMul(2.*sqrtq, th1) - a/3.;
|
---|
665 | x2 = ReMul(2.*sqrtq, th2) - a/3.;
|
---|
666 | x3 = ReMul(2.*sqrtq, th3) - a/3.;
|
---|
667 |
|
---|
668 | return 3;
|
---|
669 | }
|
---|