1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | ! Author(s): Harald Kornmayer, 1/2001
|
---|
20 | ! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
|
---|
21 | !
|
---|
22 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
23 | !
|
---|
24 | !
|
---|
25 | \* ======================================================================== */
|
---|
26 |
|
---|
27 | /////////////////////////////////////////////////////////////////////////////
|
---|
28 | //
|
---|
29 | // MImgCleanStd
|
---|
30 | //
|
---|
31 | // The Image Cleaning task selects the pixels you use for the Hillas
|
---|
32 | // parameters calculation.
|
---|
33 | //
|
---|
34 | // There are two methods to make the selection: the standard one, as done
|
---|
35 | // in the analysis of CT1 data, and the democratic one, as suggested by
|
---|
36 | // W.Wittek. The number of photo-electrons of a pixel is compared with the
|
---|
37 | // pedestal RMS of the pixel itself (standard method) or with the average
|
---|
38 | // RMS of the inner pixels (democratic method).
|
---|
39 | // In both cases, the possibility to have a camera with pixels of
|
---|
40 | // different area is taken into account.
|
---|
41 | // The too noisy pixels can be recognized and eventally switched off
|
---|
42 | // (Unmap: set blind pixels to UNUSED) separately, using the
|
---|
43 | // MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
|
---|
44 | // function to replace the value of the noisy pixels with the interpolation
|
---|
45 | // of the content of the neighbors (SetUseInterpolation).
|
---|
46 | //
|
---|
47 | // Example:
|
---|
48 | // ...
|
---|
49 | // MBlindPixelCalc blind;
|
---|
50 | // blind.SetUseInterpolation();
|
---|
51 | // blind.SetUseBlindPixels();
|
---|
52 | //
|
---|
53 | // MImgCleanStd clean;
|
---|
54 | // ...
|
---|
55 | // tlist.AddToList(&blind);
|
---|
56 | // tlist.AddToList(&clean);
|
---|
57 | //
|
---|
58 | // Look at the MBlindPixelCalc Class for more details.
|
---|
59 | //
|
---|
60 | // Starting point: default values ----------------------------------------
|
---|
61 | //
|
---|
62 | // When an event is read, before the image cleaning, all the pixels that
|
---|
63 | // are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
|
---|
64 | // to RING number 1 (like USED pixels).
|
---|
65 | // Look at MCerPhotPix.h to see how these informations of the pixel are
|
---|
66 | // stored.
|
---|
67 | // The default cleaning METHOD is the STANDARD one and the number of the
|
---|
68 | // rings around the CORE pixel it analyzes is 1. Look at the Constructor
|
---|
69 | // of the class in MImgCleanStd.cc to see (or change) the default values.
|
---|
70 | //
|
---|
71 | // Example: To modify this setting, use the member functions
|
---|
72 | // SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
|
---|
73 | //
|
---|
74 | // MImgCleanStd:CleanStep1 -----------------------------------------------
|
---|
75 | //
|
---|
76 | // The first step of cleaning defines the CORE pixels. The CORE pixels are
|
---|
77 | // the ones which contain the informations about the core of the electro-
|
---|
78 | // magnetic shower.
|
---|
79 | // The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
|
---|
80 | // the area of the central pixel of the camera, A_i is the area of the
|
---|
81 | // examined pixel. In this way, if we have a MAGIC-like camera, with the
|
---|
82 | // outer pixels bigger than the inner ones, the level of cleaning in the
|
---|
83 | // two different regions is weighted.
|
---|
84 | // This avoids problems of deformations of the shower images.
|
---|
85 | // The signal S_i and the pedestal RMS Prms_i of the pixel are called from
|
---|
86 | // the object MCerPhotPix.
|
---|
87 | // If (default method = kStandard)
|
---|
88 | //Begin_Html
|
---|
89 | // <img src="images/MImgCleanStd-f1.png">
|
---|
90 | //End_Html
|
---|
91 | // the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
|
---|
92 | // cleaning" (default: fCleanLvl1 = 3).
|
---|
93 | // All the other pixels are set as UNUSED and belong to RING 0.
|
---|
94 | // After this point, only the CORE pixels are set as USED, with RING
|
---|
95 | // number 1.
|
---|
96 | //
|
---|
97 | // MImgCleanStd:CleanStep2 ----------------------------------------------
|
---|
98 | //
|
---|
99 | // The second step of cleaning looks at the isolated CORE pixels and sets
|
---|
100 | // them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
|
---|
101 | // At the end of this point, we have set as USED only CORE pixels with at
|
---|
102 | // least one CORE neighbor.
|
---|
103 | //
|
---|
104 | // MImgCleanStd:CleanStep3 ----------------------------------------------
|
---|
105 | //
|
---|
106 | // The third step of cleaning looks at all the pixels (USED or UNUSED) that
|
---|
107 | // surround the USED pixels.
|
---|
108 | // If the content of the analyzed pixel survives at the second level of
|
---|
109 | // cleaning, i.e. if
|
---|
110 | //Begin_Html
|
---|
111 | // <img src="images/MImgCleanStd-f1.png">
|
---|
112 | //End_Html
|
---|
113 | // the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
|
---|
114 | // (default:fCleanLvl2 = 2.5).
|
---|
115 | //
|
---|
116 | // When the number of RINGS to analyze is 1 (default value), only the
|
---|
117 | // pixels that have a neighbor CORE pixel are analyzed.
|
---|
118 | //
|
---|
119 | // There is the option to decide the number of times you want to repeat
|
---|
120 | // this procedure (number of RINGS analyzed around the core pixels = n).
|
---|
121 | // Every time the level of cleaning is the same (fCleanLvl2) and the pixel
|
---|
122 | // will belong to ring r+1, 1 < r < n+1. This is described in
|
---|
123 | // MImgCleanStd:CleanStep4 .
|
---|
124 | //
|
---|
125 | // Dictionary and member functions ---------------------------------------
|
---|
126 | //
|
---|
127 | // Here there is the detailed description of the member functions and of
|
---|
128 | // the terms commonly used in the class.
|
---|
129 | //
|
---|
130 | //
|
---|
131 | // STANDARD CLEANING:
|
---|
132 | // =================
|
---|
133 | // This is the method used for the CT1 data analysis. It is the default
|
---|
134 | // method of the class.
|
---|
135 | // The number of photo-electrons of a pixel (S_i) is compared to the
|
---|
136 | // pedestal RMS of the pixel itself (Prms_i). To have the comparison to
|
---|
137 | // the same photon density for all the pixels, taking into account they
|
---|
138 | // can have different areas, we have to keep in mind that the number of
|
---|
139 | // photons that hit each pixel, goes linearly with the area of the pixel.
|
---|
140 | // The fluctuations of the LONS are proportional to sqrt(A_i), so when we
|
---|
141 | // compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
|
---|
142 | // have the same (N.photons/Area) threshold for all the pixels.
|
---|
143 | //
|
---|
144 | // !!WARNING: if noise independent from the
|
---|
145 | // pixel size (example: electronic noise) is introduced,
|
---|
146 | // then the noise fluctuations are no longer proportional
|
---|
147 | // to sqrt(A_i), and then the cut value (for a camera with
|
---|
148 | // pixels of different sizes) resulting from the above
|
---|
149 | // procedure would not be proportional to pixel size as we
|
---|
150 | // intend. In that case, democratic cleaning is preferred.
|
---|
151 | //
|
---|
152 | // If
|
---|
153 | //Begin_Html
|
---|
154 | // <img src="images/MImgCleanStd-f1.png">
|
---|
155 | //End_Html
|
---|
156 | // the pixel survives the cleaning and it is set as CORE (when L_n is the
|
---|
157 | // first level of cleaning, fCleanLvl1) or USED (when L_n is the second
|
---|
158 | // level of cleaning, fCleanLvl2).
|
---|
159 | //
|
---|
160 | // Example:
|
---|
161 | //
|
---|
162 | // MImgCleanStd clean;
|
---|
163 | // //creates a default Cleaning object, with default setting
|
---|
164 | // ...
|
---|
165 | // tlist.AddToList(&clean);
|
---|
166 | // // add the image cleaning to the main task list
|
---|
167 | //
|
---|
168 | //
|
---|
169 | // DEMOCRATIC CLEANING:
|
---|
170 | // ===================
|
---|
171 | // You use this cleaning method when you want to compare the number of
|
---|
172 | // photo-electons of each pixel with the average pedestal RMS of the
|
---|
173 | // inner pixels (for the MAGIC camera they are the smaller ones):
|
---|
174 | //Begin_Html
|
---|
175 | // <img src="images/MImgCleanStd-f2.png">
|
---|
176 | //End_Html
|
---|
177 | // In this case, the simple ratio (A_0/A_i) is used to weight the level of
|
---|
178 | // cleaning, because both the inner and the outer pixels (that in MAGIC
|
---|
179 | // have a different area) are compared to the same pedestal RMS, coming
|
---|
180 | // from the inner pixels.
|
---|
181 | //
|
---|
182 | // Make sure that you used a class calculating the MPedPhotCam which also
|
---|
183 | // updated the contents of the mean values (Recalc) correctly.
|
---|
184 | //
|
---|
185 | //
|
---|
186 | // Member Function: SetMethod()
|
---|
187 | // ============================
|
---|
188 | // When you call the MImgCleanStd task, the default method is kStandard.
|
---|
189 | //
|
---|
190 | // If you want to switch to the kDemocratic method you have to
|
---|
191 | // call this member function.
|
---|
192 | //
|
---|
193 | // Example:
|
---|
194 | //
|
---|
195 | // MImgCleanStd clean;
|
---|
196 | // //creates a default Cleaning object, with default setting
|
---|
197 | //
|
---|
198 | // clean.SetMethod(MImgCleanStd::kDemocratic);
|
---|
199 | // //now the method of cleaning is changed to Democratic
|
---|
200 | //
|
---|
201 | //
|
---|
202 | // FIRST AND SECOND CLEANING LEVEL
|
---|
203 | // ===============================
|
---|
204 | // When you call the MImgCleanStd task, the default cleaning levels are
|
---|
205 | // fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
|
---|
206 | // create the MImgCleanStd object.
|
---|
207 | //
|
---|
208 | // Example:
|
---|
209 | //
|
---|
210 | // MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
|
---|
211 | // //creates a default cleaning object, but the cleaning levels are now
|
---|
212 | // //lvl1 and lvl2.
|
---|
213 | //
|
---|
214 | // RING NUMBER
|
---|
215 | // ===========
|
---|
216 | // The standard cleaning procedure is such that it looks for the
|
---|
217 | // informations of the boundary part of the shower only on the first
|
---|
218 | // neighbors of the CORE pixels.
|
---|
219 | // There is the possibility now to look not only at the firs neighbors
|
---|
220 | // (first ring),but also further away, around the CORE pixels. All the new
|
---|
221 | // pixels you can find with this method, are tested with the second level
|
---|
222 | // of cleaning and have to have at least an USED neighbor.
|
---|
223 | //
|
---|
224 | // They will be also set as USED and will be taken into account during the
|
---|
225 | // calculation of the image parameters.
|
---|
226 | // The only way to distinguish them from the other USED pixels, is the
|
---|
227 | // Ring number, that is bigger than 1.
|
---|
228 | //
|
---|
229 | // Example: You can decide how many rings you want to analyze using:
|
---|
230 | //
|
---|
231 | // MImgCleanStd clean;
|
---|
232 | // //creates a default cleaning object (default number of rings =1)
|
---|
233 | // clean.SetCleanRings(UShort_t r);
|
---|
234 | // //now it looks r times around the CORE pixels to find new pixels with
|
---|
235 | // //signal.
|
---|
236 | //
|
---|
237 | //
|
---|
238 | // Input Containers:
|
---|
239 | // MGeomCam
|
---|
240 | // MPedPhotCam
|
---|
241 | // MCerPhotEvt
|
---|
242 | //
|
---|
243 | // Output Containers:
|
---|
244 | // MCerPhotEvt
|
---|
245 | //
|
---|
246 | /////////////////////////////////////////////////////////////////////////////
|
---|
247 | #include "MImgCleanStd.h"
|
---|
248 |
|
---|
249 | #include <stdlib.h> // atof
|
---|
250 | #include <fstream> // ofstream, SavePrimitive
|
---|
251 |
|
---|
252 | #include <TGFrame.h> // TGFrame
|
---|
253 | #include <TGLabel.h> // TGLabel
|
---|
254 | #include <TGTextEntry.h> // TGTextEntry
|
---|
255 |
|
---|
256 | #include "MLog.h"
|
---|
257 | #include "MLogManip.h"
|
---|
258 |
|
---|
259 | #include "MParList.h"
|
---|
260 | #include "MCameraData.h"
|
---|
261 |
|
---|
262 | #include "MGeomPix.h"
|
---|
263 | #include "MGeomCam.h"
|
---|
264 |
|
---|
265 | #include "MCerPhotPix.h"
|
---|
266 | #include "MCerPhotEvt.h"
|
---|
267 |
|
---|
268 | #include "MGGroupFrame.h" // MGGroupFrame
|
---|
269 |
|
---|
270 | ClassImp(MImgCleanStd);
|
---|
271 |
|
---|
272 | using namespace std;
|
---|
273 |
|
---|
274 | enum {
|
---|
275 | kImgCleanLvl1,
|
---|
276 | kImgCleanLvl2
|
---|
277 | };
|
---|
278 |
|
---|
279 | static const TString gsDefName = "MImgCleanStd";
|
---|
280 | static const TString gsDefTitle = "Task to perform image cleaning";
|
---|
281 |
|
---|
282 | // --------------------------------------------------------------------------
|
---|
283 | //
|
---|
284 | // Default constructor. Here you can specify the cleaning method and levels.
|
---|
285 | // If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
|
---|
286 | // above mean) are used.
|
---|
287 | // Here you can also specify how many rings around the core pixels you want
|
---|
288 | // to analyze (with the fixed lvl2). The default value for "rings" is 1.
|
---|
289 | //
|
---|
290 | MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
|
---|
291 | const char *name, const char *title)
|
---|
292 | : fCleaningMethod(kStandard), fCleanLvl1(lvl1),
|
---|
293 | fCleanLvl2(lvl2), fCleanRings(1)
|
---|
294 |
|
---|
295 | {
|
---|
296 | fName = name ? name : gsDefName.Data();
|
---|
297 | fTitle = title ? title : gsDefTitle.Data();
|
---|
298 |
|
---|
299 | Print();
|
---|
300 | }
|
---|
301 |
|
---|
302 | // --------------------------------------------------------------------------
|
---|
303 | //
|
---|
304 | // The first step of cleaning defines the CORE pixels. All the other pixels
|
---|
305 | // are set as UNUSED and belong to RING 0.
|
---|
306 | // After this point, only the CORE pixels are set as USED, with RING
|
---|
307 | // number 1.
|
---|
308 | //
|
---|
309 | // NT 28/04/2003: now the option to use the standard method or the
|
---|
310 | // democratic method is implemented:
|
---|
311 | //
|
---|
312 | // kStandard: This method looks for all pixels with an entry (photons)
|
---|
313 | // that is three times bigger than the noise of the pixel
|
---|
314 | // (default: 3 sigma, clean level 1)
|
---|
315 | //
|
---|
316 | // kDemocratic: this method looks for all pixels with an entry (photons)
|
---|
317 | // that is n times bigger than the noise of the mean of the
|
---|
318 | // inner pixels (default: 3 sigmabar, clean level 1)
|
---|
319 | //
|
---|
320 | //
|
---|
321 | void MImgCleanStd::CleanStep1()
|
---|
322 | {
|
---|
323 | const TArrayD &data = fData->GetData();
|
---|
324 |
|
---|
325 | //
|
---|
326 | // check the number of all pixels against the noise level and
|
---|
327 | // set them to 'unused' state if necessary
|
---|
328 | //
|
---|
329 | MCerPhotPix *pix;
|
---|
330 |
|
---|
331 | // Loop over all pixels
|
---|
332 | MCerPhotEvtIter Next(fEvt, kFALSE);
|
---|
333 | while ((pix=static_cast<MCerPhotPix*>(Next())))
|
---|
334 | if (!pix->IsPixelUnmapped() && data[pix->GetPixId()] <= fCleanLvl1)
|
---|
335 | pix->SetPixelUnused();
|
---|
336 | }
|
---|
337 |
|
---|
338 | // --------------------------------------------------------------------------
|
---|
339 | //
|
---|
340 | // Check if the survived pixel have a neighbor, that also
|
---|
341 | // survived, otherwise set pixel to unused (removes pixels without
|
---|
342 | // neighbors).
|
---|
343 | //
|
---|
344 | void MImgCleanStd::CleanStep2()
|
---|
345 | {
|
---|
346 | MCerPhotPix *pix;
|
---|
347 |
|
---|
348 | // Loop over used pixels only
|
---|
349 | TIter Next(*fEvt);
|
---|
350 |
|
---|
351 | while ((pix=static_cast<MCerPhotPix*>(Next())))
|
---|
352 | {
|
---|
353 | // get pixel id of this entry
|
---|
354 | const Int_t idx = pix->GetPixId();
|
---|
355 |
|
---|
356 | // check for 'used' neighbors of this pixel
|
---|
357 | const MGeomPix &gpix = (*fCam)[idx];
|
---|
358 | const Int_t nnmax = gpix.GetNumNeighbors();
|
---|
359 |
|
---|
360 | Bool_t hasNeighbor = kFALSE;
|
---|
361 |
|
---|
362 | //loop on the neighbors to check if they are used
|
---|
363 | for (Int_t j=0; j<nnmax; j++)
|
---|
364 | {
|
---|
365 | const Int_t idx2 = gpix.GetNeighbor(j);
|
---|
366 |
|
---|
367 | // when you find an used neighbor, break the loop
|
---|
368 | if (fEvt->IsPixelUsed(idx2))
|
---|
369 | {
|
---|
370 | hasNeighbor = kTRUE;
|
---|
371 | break;
|
---|
372 | }
|
---|
373 | }
|
---|
374 |
|
---|
375 | if (hasNeighbor == kFALSE)
|
---|
376 | pix->SetPixelUnused();
|
---|
377 | }
|
---|
378 |
|
---|
379 | //
|
---|
380 | // now we declare all pixels that survive as CorePixels
|
---|
381 | //
|
---|
382 |
|
---|
383 | Next.Reset();
|
---|
384 | while ((pix=static_cast<MCerPhotPix*>(Next())))
|
---|
385 | {
|
---|
386 | if (pix->IsPixelUsed())
|
---|
387 | pix->SetPixelCore();
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 | void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
|
---|
392 | {
|
---|
393 | const Int_t idx = pix.GetPixId();
|
---|
394 |
|
---|
395 | //
|
---|
396 | // check if the pixel's next neighbor is a core pixel.
|
---|
397 | // if it is a core pixel set pixel state to: used.
|
---|
398 | //
|
---|
399 | MGeomPix &gpix = (*fCam)[idx];
|
---|
400 | const Int_t nnmax = gpix.GetNumNeighbors();
|
---|
401 |
|
---|
402 | for (Int_t j=0; j<nnmax; j++)
|
---|
403 | {
|
---|
404 | const Int_t idx2 = gpix.GetNeighbor(j);
|
---|
405 |
|
---|
406 | if (!fEvt->IsPixelCore(idx2))
|
---|
407 | continue;
|
---|
408 |
|
---|
409 | pix.SetPixelUsed();
|
---|
410 | break;
|
---|
411 | }
|
---|
412 | }
|
---|
413 |
|
---|
414 | // --------------------------------------------------------------------------
|
---|
415 | //
|
---|
416 | // NT: Add option "rings": default value = 1.
|
---|
417 | // Look n (n>1) times for the boundary pixels around the used pixels.
|
---|
418 | // If a pixel has more than 2.5 (clean level 2.5) sigma,
|
---|
419 | // it is declared as used.
|
---|
420 | //
|
---|
421 | // If a value<2 for fCleanRings is used, no CleanStep4 is done.
|
---|
422 | //
|
---|
423 | void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
|
---|
424 | {
|
---|
425 | //
|
---|
426 | // Skip events that have already a defined status;
|
---|
427 | //
|
---|
428 | if (pix.GetRing() != 0)
|
---|
429 | return;
|
---|
430 |
|
---|
431 | //
|
---|
432 | // check if the pixel's next neighbor is a used pixel.
|
---|
433 | // if it is a used pixel set pixel state to: used,
|
---|
434 | // and tell to which ring it belongs to.
|
---|
435 | //
|
---|
436 | const Int_t idx = pix.GetPixId();
|
---|
437 |
|
---|
438 | MGeomPix &gpix = (*fCam)[idx];
|
---|
439 |
|
---|
440 | const Int_t nnmax = gpix.GetNumNeighbors();
|
---|
441 |
|
---|
442 | for (Int_t j=0; j<nnmax; j++)
|
---|
443 | {
|
---|
444 | const Int_t idx2 = gpix.GetNeighbor(j);
|
---|
445 |
|
---|
446 | MCerPhotPix *npix = fEvt->GetPixById(idx2);
|
---|
447 | if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
|
---|
448 | continue;
|
---|
449 |
|
---|
450 | pix.SetRing(r);
|
---|
451 | break;
|
---|
452 | }
|
---|
453 | }
|
---|
454 |
|
---|
455 | // --------------------------------------------------------------------------
|
---|
456 | //
|
---|
457 | // Look for the boundary pixels around the core pixels
|
---|
458 | // if a pixel has more than 2.5 (clean level 2.5) sigma, and
|
---|
459 | // a core neigbor, it is declared as used.
|
---|
460 | //
|
---|
461 | void MImgCleanStd::CleanStep3()
|
---|
462 | {
|
---|
463 | const TArrayD &data = fData->GetData();
|
---|
464 |
|
---|
465 | for (UShort_t r=1; r<fCleanRings+1; r++)
|
---|
466 | {
|
---|
467 | MCerPhotPix *pix;
|
---|
468 |
|
---|
469 | // Loop over all pixels
|
---|
470 |
|
---|
471 | MCerPhotEvtIter NextAll(fEvt, kFALSE);
|
---|
472 | while ((pix=static_cast<MCerPhotPix*>(NextAll())))
|
---|
473 | {
|
---|
474 | //
|
---|
475 | // if pixel is a core pixel or unmapped, go to the next pixel
|
---|
476 | //
|
---|
477 | if (pix->IsPixelCore() || pix->IsPixelUnmapped())
|
---|
478 | continue;
|
---|
479 |
|
---|
480 | if (data[pix->GetPixId()] <= fCleanLvl2)
|
---|
481 | continue;
|
---|
482 |
|
---|
483 | if (r==1)
|
---|
484 | CleanStep3b(*pix);
|
---|
485 | else
|
---|
486 | CleanStep4(r, *pix);
|
---|
487 | }
|
---|
488 | }
|
---|
489 | }
|
---|
490 |
|
---|
491 | // --------------------------------------------------------------------------
|
---|
492 | //
|
---|
493 | // Check if MEvtHeader exists in the Parameter list already.
|
---|
494 | // if not create one and add them to the list
|
---|
495 | //
|
---|
496 | Int_t MImgCleanStd::PreProcess (MParList *pList)
|
---|
497 | {
|
---|
498 | fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
|
---|
499 | if (!fCam)
|
---|
500 | {
|
---|
501 | *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
|
---|
502 | return kFALSE;
|
---|
503 | }
|
---|
504 |
|
---|
505 | fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
|
---|
506 | if (!fEvt)
|
---|
507 | {
|
---|
508 | *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
|
---|
509 | return kFALSE;
|
---|
510 | }
|
---|
511 |
|
---|
512 | fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber("MPedPhotCam"));
|
---|
513 | if (!fPed)
|
---|
514 | {
|
---|
515 | *fLog << dbginf << "MPedPhotCam not found... aborting." << endl;
|
---|
516 | return kFALSE;
|
---|
517 | }
|
---|
518 |
|
---|
519 | fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
|
---|
520 | if (!fData)
|
---|
521 | return kFALSE;
|
---|
522 |
|
---|
523 | return kTRUE;
|
---|
524 | }
|
---|
525 |
|
---|
526 | // --------------------------------------------------------------------------
|
---|
527 | //
|
---|
528 | // Cleans the image.
|
---|
529 | //
|
---|
530 | Int_t MImgCleanStd::Process()
|
---|
531 | {
|
---|
532 | switch (fCleaningMethod)
|
---|
533 | {
|
---|
534 | case kStandard:
|
---|
535 | fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
|
---|
536 | break;
|
---|
537 | case kScaled:
|
---|
538 | fData->CalcCleaningLevel2(*fEvt, *fPed, *fCam);
|
---|
539 | break;
|
---|
540 | case kDemocratic:
|
---|
541 | fData->CalcCleaningLevelDemocratic(*fEvt, *fPed, *fCam);
|
---|
542 | break;
|
---|
543 | }
|
---|
544 |
|
---|
545 | #ifdef DEBUG
|
---|
546 | *fLog << all << "CleanStep 1" << endl;
|
---|
547 | #endif
|
---|
548 | CleanStep1();
|
---|
549 |
|
---|
550 | // For speed reasons skip the rest of the cleaning if no
|
---|
551 | // action will be taken!
|
---|
552 | if (fCleanLvl1>=fCleanLvl2)
|
---|
553 | return kTRUE;
|
---|
554 |
|
---|
555 | #ifdef DEBUG
|
---|
556 | *fLog << all << "CleanStep 2" << endl;
|
---|
557 | #endif
|
---|
558 | CleanStep2();
|
---|
559 | #ifdef DEBUG
|
---|
560 | *fLog << all << "CleanStep 3" << endl;
|
---|
561 | #endif
|
---|
562 | CleanStep3();
|
---|
563 | #ifdef DEBUG
|
---|
564 | *fLog << all << "Done." << endl;
|
---|
565 | #endif
|
---|
566 |
|
---|
567 | return kTRUE;
|
---|
568 | }
|
---|
569 |
|
---|
570 | // --------------------------------------------------------------------------
|
---|
571 | //
|
---|
572 | // Print descriptor and cleaning levels.
|
---|
573 | //
|
---|
574 | void MImgCleanStd::Print(Option_t *o) const
|
---|
575 | {
|
---|
576 | *fLog << all << GetDescriptor() << " using ";
|
---|
577 | switch (fCleaningMethod)
|
---|
578 | {
|
---|
579 | case kDemocratic:
|
---|
580 | *fLog << "democratic";
|
---|
581 | break;
|
---|
582 | case kStandard:
|
---|
583 | *fLog << "standard";
|
---|
584 | break;
|
---|
585 | case kScaled:
|
---|
586 | *fLog << "scaled";
|
---|
587 | break;
|
---|
588 | }
|
---|
589 | *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
|
---|
590 | *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
|
---|
591 | }
|
---|
592 |
|
---|
593 | // --------------------------------------------------------------------------
|
---|
594 | //
|
---|
595 | // Create two text entry fields, one for each cleaning level and a
|
---|
596 | // describing text line.
|
---|
597 | //
|
---|
598 | void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
|
---|
599 | {
|
---|
600 | //
|
---|
601 | // Create a frame for line 3 and 4 to be able
|
---|
602 | // to align entry field and label in one line
|
---|
603 | //
|
---|
604 | TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
|
---|
605 | TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
|
---|
606 |
|
---|
607 | /*
|
---|
608 | * --> use with root >=3.02 <--
|
---|
609 | *
|
---|
610 |
|
---|
611 | TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
|
---|
612 | TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
|
---|
613 |
|
---|
614 | */
|
---|
615 | TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
|
---|
616 | TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
|
---|
617 |
|
---|
618 | // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
|
---|
619 | // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
|
---|
620 |
|
---|
621 | entry1->SetText("3.0");
|
---|
622 | entry2->SetText("2.5");
|
---|
623 |
|
---|
624 | entry1->Associate(f);
|
---|
625 | entry2->Associate(f);
|
---|
626 |
|
---|
627 | TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
|
---|
628 | TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
|
---|
629 |
|
---|
630 | l1->SetTextJustify(kTextLeft);
|
---|
631 | l2->SetTextJustify(kTextLeft);
|
---|
632 |
|
---|
633 | //
|
---|
634 | // Align the text of the label centered, left in the row
|
---|
635 | // with a left padding of 10
|
---|
636 | //
|
---|
637 | TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
|
---|
638 | TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
|
---|
639 |
|
---|
640 | //
|
---|
641 | // Add one entry field and the corresponding label to each line
|
---|
642 | //
|
---|
643 | f1->AddFrame(entry1);
|
---|
644 | f2->AddFrame(entry2);
|
---|
645 |
|
---|
646 | f1->AddFrame(l1, laylabel);
|
---|
647 | f2->AddFrame(l2, laylabel);
|
---|
648 |
|
---|
649 | f->AddFrame(f1, layframe);
|
---|
650 | f->AddFrame(f2, layframe);
|
---|
651 |
|
---|
652 | f->AddToList(entry1);
|
---|
653 | f->AddToList(entry2);
|
---|
654 | f->AddToList(l1);
|
---|
655 | f->AddToList(l2);
|
---|
656 | f->AddToList(laylabel);
|
---|
657 | f->AddToList(layframe);
|
---|
658 | }
|
---|
659 |
|
---|
660 | // --------------------------------------------------------------------------
|
---|
661 | //
|
---|
662 | // Process the GUI Events comming from the two text entry fields.
|
---|
663 | //
|
---|
664 | Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
|
---|
665 | {
|
---|
666 | if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
|
---|
667 | return kTRUE;
|
---|
668 |
|
---|
669 | TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
|
---|
670 |
|
---|
671 | if (!txt)
|
---|
672 | return kTRUE;
|
---|
673 |
|
---|
674 | Float_t lvl = atof(txt->GetText());
|
---|
675 |
|
---|
676 | switch (param1)
|
---|
677 | {
|
---|
678 | case kImgCleanLvl1:
|
---|
679 | fCleanLvl1 = lvl;
|
---|
680 | *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
|
---|
681 | return kTRUE;
|
---|
682 |
|
---|
683 | case kImgCleanLvl2:
|
---|
684 | fCleanLvl2 = lvl;
|
---|
685 | *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
|
---|
686 | return kTRUE;
|
---|
687 | }
|
---|
688 |
|
---|
689 | return kTRUE;
|
---|
690 | }
|
---|
691 |
|
---|
692 | // --------------------------------------------------------------------------
|
---|
693 | //
|
---|
694 | // Implementation of SavePrimitive. Used to write the call to a constructor
|
---|
695 | // to a macro. In the original root implementation it is used to write
|
---|
696 | // gui elements to a macro-file.
|
---|
697 | //
|
---|
698 | void MImgCleanStd::StreamPrimitive(ofstream &out) const
|
---|
699 | {
|
---|
700 | out << " MImgCleanStd " << GetUniqueName() << "(";
|
---|
701 | out << fCleanLvl1 << ", " << fCleanLvl2;
|
---|
702 |
|
---|
703 | if (fName!=gsDefName || fTitle!=gsDefTitle)
|
---|
704 | {
|
---|
705 | out << ", \"" << fName << "\"";
|
---|
706 | if (fTitle!=gsDefTitle)
|
---|
707 | out << ", \"" << fTitle << "\"";
|
---|
708 | }
|
---|
709 | out << ");" << endl;
|
---|
710 |
|
---|
711 | if (fCleaningMethod!=kDemocratic)
|
---|
712 | return;
|
---|
713 |
|
---|
714 | out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
|
---|
715 |
|
---|
716 | if (fCleanRings==1)
|
---|
717 | return;
|
---|
718 |
|
---|
719 | out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
|
---|
720 | }
|
---|