1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 01/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // Fast Fourier Transforms //
|
---|
28 | // //
|
---|
29 | // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., //
|
---|
30 | // pp. 509-563) //
|
---|
31 | // //
|
---|
32 | // Usage: //
|
---|
33 | // //
|
---|
34 | // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) //
|
---|
35 | // * Take as argument arrays of real numbers, //
|
---|
36 | // in some cases the dimension of the array has to be given separately//
|
---|
37 | // * Return a COMPLEX array with the following meaning: //
|
---|
38 | // array[0]: The value of F(0) (has only real component) //
|
---|
39 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
40 | // array[2i]: The real part of F(i) //
|
---|
41 | // array[2i+1]: The imaginary part of F(i) //
|
---|
42 | // * Note that F(N-i)* = F(i), therefore only the positive frequency //
|
---|
43 | // half is stored. //
|
---|
44 | // * The dimension MUST be an integer power of 2, //
|
---|
45 | // otherwise, the array will be shortened!! //
|
---|
46 | // //
|
---|
47 | // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) //
|
---|
48 | // * Take as argument a COMPLEX array //
|
---|
49 | // of Fourier-transformed REAL numbers //
|
---|
50 | // with the following meaning: //
|
---|
51 | // array[0]: The value of F(0) (has only real component) //
|
---|
52 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
53 | // array[2i]: The real part of F(i) //
|
---|
54 | // array[2i+1]: The imaginary part of F(i) //
|
---|
55 | // * Returns the original complex array of dimension 2N-1 //
|
---|
56 | // //
|
---|
57 | // 3) Functions PowerSpectrumDensity: //
|
---|
58 | // * Return a histogram with the spectral density, i.e. //
|
---|
59 | // P(k) = 1/(N*N) * |F(k)|*|F(k)| //
|
---|
60 | // * The histogram is ranged between 0 and 1./(2*binwidth) //
|
---|
61 | // * The number of bins equals N/2+1 //
|
---|
62 | // * Note that histograms with unequal binwidth can not yet be treated! //
|
---|
63 | // * If the PSD does NOT CONVERGE to 0 at the maximum bin, //
|
---|
64 | // you HAVE TO sample your data finer! //
|
---|
65 | //
|
---|
66 | // Fourier-Transformation:
|
---|
67 | // =======================
|
---|
68 |
|
---|
69 | // (taken from http://www.parasitaere-kapazitaeten.net/Pd/ft.htm)
|
---|
70 | //
|
---|
71 | // The Fourier-Transformation is a mathematical function that breaks
|
---|
72 | // down a signal (like sound) into its frequency-spectrum as a set of
|
---|
73 | // sinusoidal components, converting it from the Time Domain to the
|
---|
74 | // Frequency Domain.
|
---|
75 | //
|
---|
76 | // In the Time Domain the signal x[ ] consists of N samples, labeled
|
---|
77 | // from 0 to N-1. In the Frequency Domain the RFFT produces two signals
|
---|
78 | // (signalvectors), treated as complex numbers representing the Real Part:
|
---|
79 | // Re X[ ] and the Imaginary Part: Im X[ ]. They are seen as the Cosine-
|
---|
80 | // und Sine-Components of the base frequencies. Each of these two signals
|
---|
81 | // contains one more sample than the half of the original signal: N/2 + 1
|
---|
82 | // samples. (this results from the fact, that the sine-components of the
|
---|
83 | // first frequency (0) and the last (nyquist, N/2) are always 0). With the
|
---|
84 | // complex Fourier-Transformation N complexe values are transformed to N
|
---|
85 | // new complex values. For both it applies to: the Frequency Domain
|
---|
86 | // contains exactly the same information as the Time-Domain.
|
---|
87 | //
|
---|
88 | // A Real FFT over 64 samples produces values for 33 cosine- and 33
|
---|
89 | // sine-wave-amplitudes with the frequencies 0, 1, 2, 3, ..., 30, 31, 32.
|
---|
90 | // The first value (frequency 0) is the DC (direct current), the other
|
---|
91 | // values have to be seen in practice as factors of a
|
---|
92 | // fundamental-frequency which can be calculated by dividing samplerate by
|
---|
93 | // windowsize. The highest frequency is the nyquist-frequency
|
---|
94 | // (samplerate/2).
|
---|
95 | //
|
---|
96 | //////////////////////////////////////////////////////////////////////////////
|
---|
97 |
|
---|
98 | #include "MFFT.h"
|
---|
99 |
|
---|
100 | #include <TMath.h>
|
---|
101 |
|
---|
102 | #include "MLog.h"
|
---|
103 | #include "MLogManip.h"
|
---|
104 |
|
---|
105 | ClassImp(MFFT);
|
---|
106 |
|
---|
107 | using namespace std;
|
---|
108 |
|
---|
109 | // ---------------------------------------------------------------------------
|
---|
110 | //
|
---|
111 | // Default Constructor
|
---|
112 | // Initializes random number generator and default variables
|
---|
113 | //
|
---|
114 | MFFT::MFFT() : fDim(0)
|
---|
115 | {
|
---|
116 | }
|
---|
117 |
|
---|
118 | // --------------------------------------------------------------------------
|
---|
119 | //
|
---|
120 | // Destructor.
|
---|
121 | //
|
---|
122 | MFFT::~MFFT()
|
---|
123 | {
|
---|
124 | }
|
---|
125 |
|
---|
126 | void MFFT::TransformF(const Int_t isign, TArrayF &data)
|
---|
127 | {
|
---|
128 |
|
---|
129 | UInt_t n,mmax,m,j,istep,i;
|
---|
130 | Float_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
131 | Float_t tempr,tempi;
|
---|
132 |
|
---|
133 | Int_t nn = fDim/2;
|
---|
134 | n = nn << 1;
|
---|
135 |
|
---|
136 | //
|
---|
137 | // The bit-reversal section of the routine:
|
---|
138 | // Exchange the two complex numbers
|
---|
139 | //
|
---|
140 | j=1;
|
---|
141 | for (i=1;i<n;i+=2) {
|
---|
142 | if (j > i) {
|
---|
143 | Swap(data[j-1],data[i-1]);
|
---|
144 | Swap(data[j],data[i]);
|
---|
145 | }
|
---|
146 | m=nn;
|
---|
147 | while (m >= 2 && j > m) {
|
---|
148 | j -= m;
|
---|
149 | m >>= 1;
|
---|
150 | }
|
---|
151 | j += m;
|
---|
152 | }
|
---|
153 | //
|
---|
154 | // Here begins the Danielson-Lanczos section of the routine
|
---|
155 | //
|
---|
156 | mmax=2;
|
---|
157 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
158 |
|
---|
159 | istep = mmax << 1;
|
---|
160 | //
|
---|
161 | // Initialize the trigonometric recurrence:
|
---|
162 | //
|
---|
163 | theta = isign*(6.28318530717959/mmax);
|
---|
164 |
|
---|
165 | wtemp = TMath::Sin(0.5*theta);
|
---|
166 | wpr = -2.0*wtemp*wtemp;
|
---|
167 | wpi = TMath::Sin(theta);
|
---|
168 |
|
---|
169 | wr=1.0;
|
---|
170 | wi=0.0;
|
---|
171 |
|
---|
172 | for (m=1; m<mmax; m+=2) {
|
---|
173 | for (i=m; i<=n; i+=istep) {
|
---|
174 | //
|
---|
175 | // The Danielson-Lanczos formula:
|
---|
176 | //
|
---|
177 | j = i+mmax;
|
---|
178 | tempr = wr*data[j-1] - wi*data[j];
|
---|
179 | tempi = wr*data[j] + wi*data[j-1];
|
---|
180 | data[j-1] = data[i-1] - tempr;
|
---|
181 | data[j] = data[i] - tempi;
|
---|
182 | data[i-1] += tempr;
|
---|
183 | data[i] += tempi;
|
---|
184 | }
|
---|
185 |
|
---|
186 | //
|
---|
187 | // Trigonometric recurrence
|
---|
188 | //
|
---|
189 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
190 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
191 |
|
---|
192 | }
|
---|
193 | mmax=istep;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|
198 | void MFFT::TransformD(const Int_t isign, TArrayD &data)
|
---|
199 | {
|
---|
200 |
|
---|
201 | UInt_t n,mmax,m,j,istep,i;
|
---|
202 | Double_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
203 | Double_t tempr,tempi;
|
---|
204 |
|
---|
205 | Int_t nn = fDim/2;
|
---|
206 | n = nn << 1;
|
---|
207 |
|
---|
208 | //
|
---|
209 | // The bit-reversal section of the routine:
|
---|
210 | // Exchange the two complex numbers
|
---|
211 | //
|
---|
212 | j=1;
|
---|
213 | for (i=1;i<n;i+=2) {
|
---|
214 | if (j > i) {
|
---|
215 | Swap(data[j-1],data[i-1]);
|
---|
216 | Swap(data[j],data[i]);
|
---|
217 | }
|
---|
218 | m=nn;
|
---|
219 | while (m >= 2 && j > m) {
|
---|
220 | j -= m;
|
---|
221 | m >>= 1;
|
---|
222 | }
|
---|
223 | j += m;
|
---|
224 | }
|
---|
225 | //
|
---|
226 | // Here begins the Danielson-Lanczos section of the routine
|
---|
227 | //
|
---|
228 | mmax=2;
|
---|
229 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
230 |
|
---|
231 | istep = mmax << 1;
|
---|
232 | //
|
---|
233 | // Initialize the trigonometric recurrence:
|
---|
234 | //
|
---|
235 | theta = isign*(6.28318530717959/mmax);
|
---|
236 |
|
---|
237 | wtemp = TMath::Sin(0.5*theta);
|
---|
238 | wpr = -2.0*wtemp*wtemp;
|
---|
239 | wpi = TMath::Sin(theta);
|
---|
240 |
|
---|
241 | wr=1.0;
|
---|
242 | wi=0.0;
|
---|
243 |
|
---|
244 | for (m=1; m<mmax; m+=2) {
|
---|
245 | for (i=m; i<=n; i+=istep) {
|
---|
246 | //
|
---|
247 | // The Danielson-Lanczos formula:
|
---|
248 | //
|
---|
249 | j = i+mmax;
|
---|
250 | tempr = wr*data[j-1] - wi*data[j];
|
---|
251 | tempi = wr*data[j] + wi*data[j-1];
|
---|
252 | data[j-1] = data[i-1] - tempr;
|
---|
253 | data[j] = data[i] - tempi;
|
---|
254 | data[i-1] += tempr;
|
---|
255 | data[i] += tempi;
|
---|
256 | }
|
---|
257 |
|
---|
258 | //
|
---|
259 | // Trigonometric recurrence
|
---|
260 | //
|
---|
261 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
262 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
263 |
|
---|
264 | }
|
---|
265 | mmax=istep;
|
---|
266 | }
|
---|
267 | }
|
---|
268 |
|
---|
269 | //
|
---|
270 | // Calculates the Fourier transform of a set of n real-valued data points.
|
---|
271 | // Replaces this data (which is stored in array data[1..n]) by the positive
|
---|
272 | // frequency half of its complex Fourier transform. The real-valued first
|
---|
273 | // and last components of the complex transform are returned as elements
|
---|
274 | // data[1] and data[2], respectively. n must be a power of 2. This routine
|
---|
275 | // also calculates the inverse transform of a complex data array if it is
|
---|
276 | // the transform of real data. (Result in this case mus be multiplied by
|
---|
277 | // 2/n.). From NUMERICAL RECIPES IN C++.
|
---|
278 | //
|
---|
279 | void MFFT::RealFTF(const Int_t isign)
|
---|
280 | {
|
---|
281 |
|
---|
282 | Int_t i,i1,i2,i3,i4;
|
---|
283 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
284 | Float_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
285 |
|
---|
286 | //
|
---|
287 | // Initialize the recurrence
|
---|
288 | //
|
---|
289 | theta = TMath::Pi() / (Double_t)(fDim>>1);
|
---|
290 |
|
---|
291 | if(isign==1) // forward transform
|
---|
292 | {
|
---|
293 | c2 = -0.5;
|
---|
294 | TransformF(1,fDataF);
|
---|
295 | }
|
---|
296 | else // set up backward transform
|
---|
297 | {
|
---|
298 | c2 = 0.5;
|
---|
299 | theta = -theta;
|
---|
300 | }
|
---|
301 |
|
---|
302 | wtemp = TMath::Sin(0.5*theta);
|
---|
303 | wpr = -2.0*wtemp*wtemp;
|
---|
304 | wpi = TMath::Sin(theta);
|
---|
305 |
|
---|
306 | wr = 1.0 + wpr;
|
---|
307 | wi = wpi;
|
---|
308 |
|
---|
309 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
310 | {
|
---|
311 |
|
---|
312 | i2 = 1 + (i1 = i+i);
|
---|
313 | i4 = 1 + (i3 = fDim-i1);
|
---|
314 |
|
---|
315 | //
|
---|
316 | // The two separate transforms are separated out of the data
|
---|
317 | //
|
---|
318 | h1r = c1*(fDataF[i1]+fDataF[i3]);
|
---|
319 | h1i = c1*(fDataF[i2]-fDataF[i4]);
|
---|
320 | h2r = -c2*(fDataF[i2]+fDataF[i4]);
|
---|
321 | h2i = c2*(fDataF[i1]-fDataF[i3]);
|
---|
322 |
|
---|
323 | //
|
---|
324 | // Here, they are recombined to from the true transform
|
---|
325 | // of the orginal real data
|
---|
326 | //
|
---|
327 | fDataF[i1] = h1r + wr*h2r - wi*h2i;
|
---|
328 | fDataF[i2] = h1i + wr*h2i + wi*h2r;
|
---|
329 | fDataF[i3] = h1r - wr*h2r + wi*h2i;
|
---|
330 | fDataF[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
331 |
|
---|
332 | //
|
---|
333 | // The recurrence
|
---|
334 | //
|
---|
335 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
336 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
337 | }
|
---|
338 |
|
---|
339 | //
|
---|
340 | // Squeeze the first and last data together to get them all
|
---|
341 | // within the original array
|
---|
342 | //
|
---|
343 | if(isign==1)
|
---|
344 | {
|
---|
345 | fDataF[0] = (h1r=fDataF[0]) + fDataF[1];
|
---|
346 | fDataF[1] = h1r - fDataF[1];
|
---|
347 | }
|
---|
348 | else
|
---|
349 | {
|
---|
350 |
|
---|
351 | fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]);
|
---|
352 | fDataF[1] = c1*(h1r-fDataF[1]);
|
---|
353 |
|
---|
354 | //
|
---|
355 | // The inverse transform for the case isign = -1
|
---|
356 | //
|
---|
357 | TransformF(-1,fDataF);
|
---|
358 |
|
---|
359 | //
|
---|
360 | // normalize correctly (not done in original NR's)
|
---|
361 | //
|
---|
362 | for(i=1;i<=fDim;i++)
|
---|
363 | fDataF[i] *= (2./fDim);
|
---|
364 | }
|
---|
365 | }
|
---|
366 | void MFFT::RealFTD(const Int_t isign)
|
---|
367 | {
|
---|
368 |
|
---|
369 | Int_t i,i1,i2,i3,i4;
|
---|
370 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
371 | Double_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
372 |
|
---|
373 | //
|
---|
374 | // Initialize the recurrence
|
---|
375 | //
|
---|
376 | theta=3.141592653589793/(Double_t) (fDim>>1);
|
---|
377 |
|
---|
378 | if(isign==1) // forward transform
|
---|
379 | {
|
---|
380 | c2 = -0.5;
|
---|
381 | TransformD(1,fDataD);
|
---|
382 | }
|
---|
383 | else // set up backward transform
|
---|
384 | {
|
---|
385 | c2 = 0.5;
|
---|
386 | theta = -theta;
|
---|
387 | }
|
---|
388 |
|
---|
389 | wtemp = TMath::Sin(0.5*theta);
|
---|
390 | wpr = -2.0*wtemp*wtemp;
|
---|
391 | wpi = TMath::Sin(theta);
|
---|
392 |
|
---|
393 | wr = 1.0 + wpr;
|
---|
394 | wi = wpi;
|
---|
395 |
|
---|
396 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
397 | {
|
---|
398 |
|
---|
399 | i2 = 1 + (i1 = i+i);
|
---|
400 | i4 = 1 + (i3 = fDim-i1);
|
---|
401 |
|
---|
402 | //
|
---|
403 | // The two separate transforms are separated out of the data
|
---|
404 | //
|
---|
405 | h1r = c1*(fDataD[i1]+fDataD[i3]);
|
---|
406 | h1i = c1*(fDataD[i2]-fDataD[i4]);
|
---|
407 | h2r = -c2*(fDataD[i2]+fDataD[i4]);
|
---|
408 | h2i = c2*(fDataD[i1]-fDataD[i3]);
|
---|
409 |
|
---|
410 | //
|
---|
411 | // Here, they are recombined to from the true transform
|
---|
412 | // of the orginal real data
|
---|
413 | //
|
---|
414 | fDataD[i1] = h1r + wr*h2r - wi*h2i;
|
---|
415 | fDataD[i2] = h1i + wr*h2i + wi*h2r;
|
---|
416 | fDataD[i3] = h1r - wr*h2r + wi*h2i;
|
---|
417 | fDataD[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
418 |
|
---|
419 | //
|
---|
420 | // The recurrence
|
---|
421 | //
|
---|
422 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
423 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
424 | }
|
---|
425 |
|
---|
426 | //
|
---|
427 | // Squeeze the first and last data together to get them all
|
---|
428 | // within the original array
|
---|
429 | //
|
---|
430 | if(isign==1)
|
---|
431 | {
|
---|
432 | fDataD[0] = (h1r=fDataD[0]) + fDataD[1];
|
---|
433 | fDataD[1] = h1r - fDataD[1];
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 |
|
---|
438 | fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]);
|
---|
439 | fDataD[1] = c1*(h1r-fDataD[1]);
|
---|
440 |
|
---|
441 | //
|
---|
442 | // The inverse transform for the case isign = -1
|
---|
443 | //
|
---|
444 | TransformD(-1,fDataD);
|
---|
445 |
|
---|
446 | //
|
---|
447 | // normalize correctly (not done in original NR's)
|
---|
448 | //
|
---|
449 | for(i=1;i<=fDim;i++)
|
---|
450 | fDataD[i] *= (2./fDim);
|
---|
451 | }
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 | //
|
---|
456 | // Fast Fourier Transform for float arrays
|
---|
457 | //
|
---|
458 | Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data)
|
---|
459 | {
|
---|
460 |
|
---|
461 | fDim = n;
|
---|
462 | CheckDim(n);
|
---|
463 |
|
---|
464 | fDataF.Set(fDim);
|
---|
465 | //
|
---|
466 | // Clone the array
|
---|
467 | //
|
---|
468 | for (Int_t i=0;i<fDim;i++)
|
---|
469 | fDataF[i] = data[i];
|
---|
470 |
|
---|
471 | RealFTF(1);
|
---|
472 |
|
---|
473 | return fDataF.GetArray();
|
---|
474 |
|
---|
475 | }
|
---|
476 |
|
---|
477 | //
|
---|
478 | // Fast Inverse Fourier Transform for float arrays
|
---|
479 | //
|
---|
480 | Float_t* MFFT::RealFunctionIFFT(const Int_t n, const Float_t *data)
|
---|
481 | {
|
---|
482 |
|
---|
483 | fDim = n;
|
---|
484 | CheckDim(fDim);
|
---|
485 |
|
---|
486 | fDataF.Set(fDim);
|
---|
487 | //
|
---|
488 | // Clone the array
|
---|
489 | //
|
---|
490 | for (Int_t i=0;i<fDim;i++)
|
---|
491 | fDataF[i] = data[i];
|
---|
492 |
|
---|
493 | RealFTF(-1);
|
---|
494 |
|
---|
495 | return fDataF.GetArray();
|
---|
496 |
|
---|
497 | }
|
---|
498 |
|
---|
499 | //
|
---|
500 | // Fast Fourier Transform for double arrays
|
---|
501 | //
|
---|
502 | Double_t* MFFT::RealFunctionFFT(const Int_t n, const Double_t *data)
|
---|
503 | {
|
---|
504 |
|
---|
505 | fDim = n;
|
---|
506 | CheckDim(n);
|
---|
507 |
|
---|
508 | fDataD.Set(fDim);
|
---|
509 | //
|
---|
510 | // Clone the array
|
---|
511 | //
|
---|
512 | for (Int_t i=0;i<fDim;i++)
|
---|
513 | fDataD[i] = data[i];
|
---|
514 |
|
---|
515 | RealFTD(1);
|
---|
516 |
|
---|
517 | return fDataD.GetArray();
|
---|
518 |
|
---|
519 | }
|
---|
520 |
|
---|
521 | //
|
---|
522 | // Fast Inverse Fourier Transform for double arrays
|
---|
523 | //
|
---|
524 | Double_t* MFFT::RealFunctionIFFT(const Int_t n, const Double_t *data)
|
---|
525 | {
|
---|
526 |
|
---|
527 | fDim = n;
|
---|
528 | CheckDim(fDim);
|
---|
529 |
|
---|
530 | fDataD.Set(fDim);
|
---|
531 | //
|
---|
532 | // Clone the array
|
---|
533 | //
|
---|
534 | for (Int_t i=0;i<fDim;i++)
|
---|
535 | fDataD[i] = data[i];
|
---|
536 |
|
---|
537 | RealFTD(-1);
|
---|
538 |
|
---|
539 | return fDataD.GetArray();
|
---|
540 |
|
---|
541 | }
|
---|
542 |
|
---|
543 | //
|
---|
544 | // Fast Fourier Transform for TArrayF's
|
---|
545 | //
|
---|
546 | TArrayF* MFFT::RealFunctionFFT(const TArrayF *data)
|
---|
547 | {
|
---|
548 |
|
---|
549 | fDim = data->GetSize();
|
---|
550 | CheckDim(fDim);
|
---|
551 |
|
---|
552 | fDataF.Set(fDim);
|
---|
553 | //
|
---|
554 | // Clone the array
|
---|
555 | //
|
---|
556 | for (Int_t i=0;i<fDim;i++)
|
---|
557 | fDataF[i] = data->At(i);
|
---|
558 |
|
---|
559 | RealFTF(1);
|
---|
560 |
|
---|
561 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
562 |
|
---|
563 | }
|
---|
564 |
|
---|
565 | //
|
---|
566 | // Inverse Fast Fourier Transform for TArrayF's
|
---|
567 | //
|
---|
568 | TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data)
|
---|
569 | {
|
---|
570 |
|
---|
571 | fDim = data->GetSize();
|
---|
572 | CheckDim(fDim);
|
---|
573 |
|
---|
574 | fDataF.Set(fDim);
|
---|
575 | //
|
---|
576 | // Clone the array
|
---|
577 | //
|
---|
578 | for (Int_t i=0;i<fDim;i++)
|
---|
579 | fDataF[i] = data->At(i);
|
---|
580 |
|
---|
581 | RealFTF(-1);
|
---|
582 |
|
---|
583 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
584 | }
|
---|
585 |
|
---|
586 |
|
---|
587 | //
|
---|
588 | // Fast Fourier Transform for TArrayD's
|
---|
589 | //
|
---|
590 | TArrayD* MFFT::RealFunctionFFT(const TArrayD *data)
|
---|
591 | {
|
---|
592 |
|
---|
593 | fDim = data->GetSize();
|
---|
594 | CheckDim(fDim);
|
---|
595 |
|
---|
596 | fDataD.Set(fDim);
|
---|
597 | //
|
---|
598 | // Clone the array
|
---|
599 | //
|
---|
600 | for (Int_t i=0;i<fDim;i++)
|
---|
601 | fDataD[i] = data->At(i);
|
---|
602 |
|
---|
603 | RealFTD(1);
|
---|
604 |
|
---|
605 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
606 |
|
---|
607 | }
|
---|
608 |
|
---|
609 | //
|
---|
610 | // Inverse Fast Fourier Transform for TArrayD's
|
---|
611 | //
|
---|
612 | TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data)
|
---|
613 | {
|
---|
614 |
|
---|
615 | fDim = data->GetSize();
|
---|
616 | CheckDim(fDim);
|
---|
617 |
|
---|
618 | fDataD.Set(fDim);
|
---|
619 | //
|
---|
620 | // Clone the array
|
---|
621 | //
|
---|
622 | for (Int_t i=0;i<fDim;i++)
|
---|
623 | fDataD[i] = data->At(i);
|
---|
624 |
|
---|
625 | RealFTD(-1);
|
---|
626 |
|
---|
627 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
628 | }
|
---|
629 |
|
---|
630 |
|
---|
631 | //
|
---|
632 | // Power Spectrum Density Calculation
|
---|
633 | //
|
---|
634 | TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist)
|
---|
635 | {
|
---|
636 |
|
---|
637 | TH1D *newhist = (TH1D*)CheckHist(hist,1);
|
---|
638 |
|
---|
639 | fDataD.Set(fDim);
|
---|
640 | //
|
---|
641 | // Copy the hist into an array
|
---|
642 | //
|
---|
643 | for (Int_t i=0;i<fDim;i++)
|
---|
644 | fDataD[i] = hist->GetBinContent(i);
|
---|
645 |
|
---|
646 | RealFTD(1);
|
---|
647 |
|
---|
648 | Int_t dim2 = fDim*fDim;
|
---|
649 | Double_t c02;
|
---|
650 | Double_t ck2;
|
---|
651 | Double_t cn2;
|
---|
652 | //
|
---|
653 | // Fill the new histogram:
|
---|
654 | //
|
---|
655 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
656 | // (stored in fData{0])
|
---|
657 | //
|
---|
658 | c02 = fDataD[0]*fDataD[0];
|
---|
659 | newhist->Fill(c02/dim2);
|
---|
660 | //
|
---|
661 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|)
|
---|
662 | //
|
---|
663 | for (Int_t k=2;k<fDim-2;k+=2)
|
---|
664 | {
|
---|
665 |
|
---|
666 | Int_t ki = k+1;
|
---|
667 | ck2 = (fDataD[k]*fDataD[k] + fDataD[ki]*fDataD[ki]);
|
---|
668 | newhist->Fill(ck2/dim2);
|
---|
669 | }
|
---|
670 | //
|
---|
671 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
672 | // (stored in fData[1])
|
---|
673 | //
|
---|
674 | cn2 = (fDataD[1]*fDataD[1]);
|
---|
675 | newhist->Fill(cn2/dim2);
|
---|
676 |
|
---|
677 | return newhist;
|
---|
678 | }
|
---|
679 |
|
---|
680 | //
|
---|
681 | // Power Spectrum Density calculation for TArrayF
|
---|
682 | //
|
---|
683 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayF *array)
|
---|
684 | {
|
---|
685 |
|
---|
686 | fDim = array->GetSize();
|
---|
687 | CheckDim(fDim);
|
---|
688 |
|
---|
689 | fDataF.Set(fDim);
|
---|
690 | //
|
---|
691 | // Copy the hist into an array
|
---|
692 | //
|
---|
693 | for (Int_t i=0;i<fDim;i++)
|
---|
694 | fDataF[i] = array->At(i);
|
---|
695 |
|
---|
696 | RealFTF(1);
|
---|
697 |
|
---|
698 | const Int_t dim2 = fDim*fDim;
|
---|
699 | const Int_t dim05 = fDim/2;
|
---|
700 | Float_t c02;
|
---|
701 | Float_t ck2;
|
---|
702 | Float_t cn2;
|
---|
703 |
|
---|
704 | TArrayF *newarray = new TArrayF(dim05);
|
---|
705 |
|
---|
706 | //
|
---|
707 | // Fill the new histogram:
|
---|
708 | //
|
---|
709 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
710 | //
|
---|
711 | c02 = (fDataF[0]*fDataF[0]);
|
---|
712 | // newarray->AddAt(c02/dim2,0);
|
---|
713 | //
|
---|
714 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
715 | //
|
---|
716 | for (Int_t k=1;k<dim05-1;k++)
|
---|
717 | {
|
---|
718 | const Int_t k2 = k+k;
|
---|
719 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
720 | newarray->AddAt(ck2/dim2,k);
|
---|
721 | }
|
---|
722 | //
|
---|
723 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
724 | //
|
---|
725 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
726 | // newarray->AddAt(cn2,dim05-1);
|
---|
727 |
|
---|
728 | return newarray;
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | //
|
---|
733 | // Power Spectrum Density calculation for TArrayI
|
---|
734 | //
|
---|
735 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayI *array)
|
---|
736 | {
|
---|
737 |
|
---|
738 | fDim = array->GetSize();
|
---|
739 | CheckDim(fDim);
|
---|
740 |
|
---|
741 | fDataF.Set(fDim);
|
---|
742 | //
|
---|
743 | // Copy the hist into an array
|
---|
744 | //
|
---|
745 | for (Int_t i=0;i<fDim;i++)
|
---|
746 | fDataF[i] = (Float_t)array->At(i);
|
---|
747 |
|
---|
748 | RealFTF(1);
|
---|
749 |
|
---|
750 | const Int_t dim2 = fDim*fDim;
|
---|
751 | const Int_t dim05 = fDim/2;
|
---|
752 | Float_t c02;
|
---|
753 | Float_t ck2;
|
---|
754 | Float_t cn2;
|
---|
755 |
|
---|
756 | TArrayF *newarray = new TArrayF(dim05);
|
---|
757 |
|
---|
758 | //
|
---|
759 | // Fill the new histogram:
|
---|
760 | //
|
---|
761 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
762 | //
|
---|
763 | c02 = (fDataF[0]*fDataF[0]);
|
---|
764 | // newarray->AddAt(c02/dim2,0);
|
---|
765 | //
|
---|
766 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
767 | //
|
---|
768 | for (Int_t k=1;k<dim05-1;k++)
|
---|
769 | {
|
---|
770 | const Int_t k2 = k+k;
|
---|
771 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
772 | newarray->AddAt(ck2/dim2,k);
|
---|
773 | }
|
---|
774 | //
|
---|
775 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
776 | //
|
---|
777 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
778 | // newarray->AddAt(cn2,dim05-1);
|
---|
779 |
|
---|
780 | return newarray;
|
---|
781 | }
|
---|
782 |
|
---|
783 |
|
---|
784 | TArrayD* MFFT::PowerSpectrumDensity(const TArrayD *array)
|
---|
785 | {
|
---|
786 |
|
---|
787 | fDim = array->GetSize();
|
---|
788 | CheckDim(fDim);
|
---|
789 |
|
---|
790 | fDataD.Set(fDim);
|
---|
791 | //
|
---|
792 | // Copy the hist into an array
|
---|
793 | //
|
---|
794 | for (Int_t i=0;i<fDim;i++)
|
---|
795 | fDataD[i] = array->At(i);
|
---|
796 |
|
---|
797 | RealFTD(1);
|
---|
798 |
|
---|
799 | const Int_t dim2 = fDim*fDim;
|
---|
800 | const Int_t dim05 = fDim/2;
|
---|
801 | Float_t c02;
|
---|
802 | Float_t ck2;
|
---|
803 | Float_t cn2;
|
---|
804 |
|
---|
805 | TArrayD *newarray = new TArrayD(dim05);
|
---|
806 |
|
---|
807 | //
|
---|
808 | // Fill the new histogram:
|
---|
809 | //
|
---|
810 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
811 | //
|
---|
812 | c02 = (fDataD[0]*fDataD[0]);
|
---|
813 | // newarray->AddAt(c02/dim2,0);
|
---|
814 | //
|
---|
815 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
816 | //
|
---|
817 | for (Int_t k=1;k<dim05-1;k++)
|
---|
818 | {
|
---|
819 | const Int_t k2 = k+k;
|
---|
820 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
---|
821 | newarray->AddAt(ck2/dim2,k);
|
---|
822 | }
|
---|
823 | //
|
---|
824 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
825 | //
|
---|
826 | cn2 = (fDataD[1]*fDataD[1]);
|
---|
827 | // newarray->AddAt(cn2,dim05-1);
|
---|
828 |
|
---|
829 | return newarray;
|
---|
830 | }
|
---|
831 |
|
---|
832 |
|
---|
833 | //
|
---|
834 | // Power Spectrum Density calculation for TH1
|
---|
835 | //
|
---|
836 | TH1F* MFFT::PowerSpectrumDensity(const TH1 *hist)
|
---|
837 | {
|
---|
838 |
|
---|
839 | TH1F *newhist = (TH1F*)CheckHist(hist,0);
|
---|
840 |
|
---|
841 | fDataF.Set(fDim);
|
---|
842 | //
|
---|
843 | // Copy the hist into an array
|
---|
844 | //
|
---|
845 | for (Int_t i=0;i<fDim;i++)
|
---|
846 | fDataF[i] = hist->GetBinContent(i);
|
---|
847 |
|
---|
848 | RealFTF(1);
|
---|
849 |
|
---|
850 | Int_t dim2 = fDim*fDim;
|
---|
851 | Float_t c02;
|
---|
852 | Float_t ck2;
|
---|
853 | Float_t cn2;
|
---|
854 | //
|
---|
855 | // Fill the new histogram:
|
---|
856 | //
|
---|
857 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
858 | //
|
---|
859 | c02 = (fDataF[0]*fDataF[0]);
|
---|
860 | newhist->Fill(0.,c02/dim2);
|
---|
861 | //
|
---|
862 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
863 | //
|
---|
864 | for (Int_t k=2;k<fDim;k+=2)
|
---|
865 | {
|
---|
866 | ck2 = (fDataF[k]*fDataF[k] + fDataF[k+1]*fDataF[k+1]);
|
---|
867 | newhist->Fill(k/2.,ck2/dim2);
|
---|
868 | }
|
---|
869 | //
|
---|
870 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
871 | //
|
---|
872 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
873 | newhist->Fill(fDim/2.-1.,cn2/dim2);
|
---|
874 |
|
---|
875 | return newhist;
|
---|
876 | }
|
---|
877 |
|
---|
878 |
|
---|
879 | //
|
---|
880 | // Power Spectrum Density calculation for TH1I
|
---|
881 | //
|
---|
882 | TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist)
|
---|
883 | {
|
---|
884 | return PowerSpectrumDensity((TH1*)hist);
|
---|
885 | }
|
---|
886 |
|
---|
887 | //
|
---|
888 | // Power Spectrum Density calculation for TH1I
|
---|
889 | //
|
---|
890 | TH1F* MFFT::PowerSpectrumDensity(const TH1I *hist)
|
---|
891 | {
|
---|
892 | return PowerSpectrumDensity((TH1*)hist);
|
---|
893 | }
|
---|
894 |
|
---|
895 |
|
---|
896 | void MFFT::CheckDim(Int_t a)
|
---|
897 | {
|
---|
898 |
|
---|
899 | // If even number, return 0
|
---|
900 | if (a==2) return;
|
---|
901 |
|
---|
902 | // If odd number, return the closest power of 2
|
---|
903 | if (a & 1)
|
---|
904 | {
|
---|
905 | Int_t b = 1;
|
---|
906 | while (b < fDim/2+1)
|
---|
907 | b <<= 1;
|
---|
908 |
|
---|
909 | fDim = b;
|
---|
910 | // gLog << warn << "Dimension of Data is not a multiple of 2, will take only first "
|
---|
911 | // << fDim << " entries! " << endl;
|
---|
912 | return;
|
---|
913 | }
|
---|
914 |
|
---|
915 | CheckDim(a>>1);
|
---|
916 | }
|
---|
917 |
|
---|
918 | TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag)
|
---|
919 | {
|
---|
920 |
|
---|
921 | // number of entries
|
---|
922 | fDim = hist->GetNbinsX();
|
---|
923 | CheckDim(fDim);
|
---|
924 |
|
---|
925 | // Step width
|
---|
926 | Double_t delta = hist->GetBinWidth(1);
|
---|
927 |
|
---|
928 | // Nyquist frequency
|
---|
929 | Axis_t fcrit = 1./(2.*delta);
|
---|
930 | Axis_t low = -0.5;
|
---|
931 | Axis_t up = fcrit;
|
---|
932 |
|
---|
933 | switch (flag)
|
---|
934 | {
|
---|
935 | case 0:
|
---|
936 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
---|
937 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
938 | fDim/2,low,up);
|
---|
939 | break;
|
---|
940 | case 1:
|
---|
941 | return new TH1D(Form("%s%s",hist->GetName()," PSD"),
|
---|
942 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
943 | fDim/2,low,up);
|
---|
944 | break;
|
---|
945 | default:
|
---|
946 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
---|
947 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
948 | fDim/2,low,up);
|
---|
949 | break;
|
---|
950 | }
|
---|
951 | }
|
---|
952 |
|
---|
953 | //
|
---|
954 | // Real function spectrum with data windowing
|
---|
955 | //
|
---|
956 | TArrayF* MFFT::RealFunctionSpectrum(const TArrayF *data)
|
---|
957 | {
|
---|
958 |
|
---|
959 | fDim = data->GetSize();
|
---|
960 | CheckDim(fDim);
|
---|
961 |
|
---|
962 | fDataF.Set(fDim);
|
---|
963 | //
|
---|
964 | // Copy the hist into an array
|
---|
965 | //
|
---|
966 | for (Int_t i=0;i<fDim;i++)
|
---|
967 | fDataF[i] = data->At(i);
|
---|
968 |
|
---|
969 | fWindowF.Set(fDim);
|
---|
970 |
|
---|
971 | Int_t dim2 = fDim/2;
|
---|
972 |
|
---|
973 | TArrayF *power = new TArrayF(dim2);
|
---|
974 |
|
---|
975 | //
|
---|
976 | // Start program spctrm from NR's
|
---|
977 | //
|
---|
978 | Float_t w, facp, facm, sumw=0.;
|
---|
979 |
|
---|
980 | facm = dim2;
|
---|
981 | facp = 1./dim2;
|
---|
982 |
|
---|
983 | for (Int_t j=0;j<dim2;j++)
|
---|
984 | {
|
---|
985 | Int_t j2 = j+j;
|
---|
986 | w = ApplyWindow(j,facm,facp);
|
---|
987 | sumw += w*w;
|
---|
988 | fWindowF[j2] = fDataF[j]*w;
|
---|
989 | fWindowF[j2+1] = fDataF[dim2+j]*w;
|
---|
990 | }
|
---|
991 |
|
---|
992 | TransformF(1,fWindowF);
|
---|
993 |
|
---|
994 | power->AddAt(fWindowF[0]*fWindowF[0] + fWindowF[1]*fWindowF[1],0);
|
---|
995 |
|
---|
996 | // power->AddAt(fWindowF[0]*fWindowF[0],0);
|
---|
997 | // power->AddAt(fWindowF[1]*fWindowF[1],dim2-1);
|
---|
998 |
|
---|
999 |
|
---|
1000 | for (Int_t j=1;j<dim2;j++)
|
---|
1001 | // for (Int_t j=1;j<dim2;j++)
|
---|
1002 | {
|
---|
1003 | Int_t j2 = j+j;
|
---|
1004 | Float_t buf = fWindowF[j2+1] *fWindowF[j2+1]
|
---|
1005 | + fWindowF[j2 ] *fWindowF[j2 ]
|
---|
1006 | + fWindowF[fDim-j2+1]*fWindowF[fDim-j2+1]
|
---|
1007 | + fWindowF[fDim-j2 ]*fWindowF[fDim-j2 ] ;
|
---|
1008 | power->AddAt(buf/sumw/(fDim+fDim),j);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | return power;
|
---|
1012 |
|
---|
1013 | }
|
---|