source: tags/Mars-V0.9.5/mimage/MImgCleanStd.cc

Last change on this file was 7358, checked in by tbretz, 19 years ago
*** empty log message ***
File size: 28.9 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventually switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MSignalCam are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MSignalPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MSignalPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130//
131// STANDARD CLEANING:
132// =================
133// This is the method used for the CT1 data analysis. It is the default
134// method of the class.
135// The number of photo-electrons of a pixel (S_i) is compared to the
136// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
137// the same photon density for all the pixels, taking into account they
138// can have different areas, we have to keep in mind that the number of
139// photons that hit each pixel, goes linearly with the area of the pixel.
140// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
141// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
142// have the same (N.photons/Area) threshold for all the pixels.
143//
144// !!WARNING: if noise independent from the
145// pixel size (example: electronic noise) is introduced,
146// then the noise fluctuations are no longer proportional
147// to sqrt(A_i), and then the cut value (for a camera with
148// pixels of different sizes) resulting from the above
149// procedure would not be proportional to pixel size as we
150// intend. In that case, democratic cleaning is preferred.
151//
152// If
153//Begin_Html
154//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
155//End_Html
156// the pixel survives the cleaning and it is set as CORE (when L_n is the
157// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
158// level of cleaning, fCleanLvl2).
159//
160// Example:
161//
162// MImgCleanStd clean;
163// //creates a default Cleaning object, with default setting
164// ...
165// tlist.AddToList(&clean);
166// // add the image cleaning to the main task list
167//
168//
169// DEMOCRATIC CLEANING:
170// ===================
171// You use this cleaning method when you want to compare the number of
172// photo-electrons of each pixel with the average pedestal RMS of the
173// inner pixels (for the MAGIC camera they are the smaller ones):
174//Begin_Html
175//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
176//End_Html
177// In this case, the simple ratio (A_0/A_i) is used to weight the level of
178// cleaning, because both the inner and the outer pixels (that in MAGIC
179// have a different area) are compared to the same pedestal RMS, coming
180// from the inner pixels.
181//
182// Make sure that you used a class calculating the MPedPhotCam which also
183// updated the contents of the mean values (Recalc) correctly.
184//
185//
186// PROBABILITY CLEANING
187// ====================
188// This method takes signal height (over signal noise) and arrival time
189// into account. Instead of comparing signal/Noise with cleaning level
190// one and two, we calculate
191// - P_ped: The probability that a signal is a pedestal (using
192// the signal height and the pedestal) For this probability the
193// same algorithm like in kScaled is used (which is a standard
194// cleaning which scales the noise with the mean noise of pixels
195// with the same size)
196// - P_sig: The probability that the signal corresponds to the pixel
197// with the highest signal. For this probability we use the
198// arrival time only.
199//
200// The cleaning now is done in levels of Probability (eg. 0.2, 0.05)
201// The meaning of the cleaning levels is essentially the same (the same cleaning
202// algorithm is used) but the cleaning is not done in levels of signal/noise
203// but in level of this probability.
204//
205// This probability is calculated as (1-P_ped)*P_sig
206//
207// Example:
208//
209// MImgCleanStd clean(0.2, 0.05);
210// clean.SetMethod(MImgCleanStd::kProbability);
211//
212//
213// ABSOLUTE CLEANING
214// =================
215// This method takes signal height (photons) times area ratio
216// ad the cleaning levels.
217//
218// The cleaning now is done in these levels (eg. 16, 20)
219// The meaning of the cleaning levels is essentially the same (the same cleaning
220// algorithm is used) but the cleaning is not done in different 'units'
221//
222// Example:
223//
224// MImgCleanStd clean(20, 16);
225// clean.SetMethod(MImgCleanStd::kAbsolulte);
226//
227//
228// Member Function: SetMethod()
229// ============================
230// When you call the MImgCleanStd task, the default method is kStandard.
231//
232// If you want to switch to the kDemocratic method you have to
233// call this member function.
234//
235// Example:
236//
237// MImgCleanStd clean;
238// //creates a default Cleaning object, with default setting
239//
240// clean.SetMethod(MImgCleanStd::kDemocratic);
241// //now the method of cleaning is changed to Democratic
242//
243//
244// FIRST AND SECOND CLEANING LEVEL
245// ===============================
246// When you call the MImgCleanStd task, the default cleaning levels are
247// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
248// create the MImgCleanStd object.
249//
250// Example:
251//
252// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
253// //creates a default cleaning object, but the cleaning levels are now
254// //lvl1 and lvl2.
255//
256// RING NUMBER
257// ===========
258// The standard cleaning procedure is such that it looks for the
259// informations of the boundary part of the shower only on the first
260// neighbors of the CORE pixels.
261// There is the possibility now to look not only at the first neighbors
262// (first ring),but also further away, around the CORE pixels. All the new
263// pixels you can find with this method, are tested with the second level
264// of cleaning and have to have at least an USED neighbor.
265//
266// They will be also set as USED and will be taken into account during the
267// calculation of the image parameters.
268// The only way to distinguish them from the other USED pixels, is the
269// Ring number, that is bigger than 1.
270//
271// Example: You can decide how many rings you want to analyze using:
272//
273// MImgCleanStd clean;
274// //creates a default cleaning object (default number of rings =1)
275// clean.SetCleanRings(UShort_t r);
276// //now it looks r times around the CORE pixels to find new pixels with
277// //signal.
278//
279//
280// Input Containers:
281// MGeomCam
282// MPedPhotCam
283// MSignalCam
284//
285// Output Containers:
286// MSignalCam
287//
288/////////////////////////////////////////////////////////////////////////////
289#include "MImgCleanStd.h"
290
291#include <stdlib.h> // atof
292#include <fstream> // ofstream, SavePrimitive
293
294#include <TEnv.h>
295
296#include <TGFrame.h> // TGFrame
297#include <TGLabel.h> // TGLabel
298#include <TGTextEntry.h> // TGTextEntry
299
300#include "MLog.h"
301#include "MLogManip.h"
302
303#include "MParList.h"
304#include "MCameraData.h"
305
306#include "MGeomPix.h"
307#include "MGeomCam.h"
308
309#include "MSignalPix.h"
310#include "MSignalCam.h"
311
312#include "MGGroupFrame.h" // MGGroupFrame
313
314ClassImp(MImgCleanStd);
315
316using namespace std;
317
318enum {
319 kImgCleanLvl1,
320 kImgCleanLvl2
321};
322
323static const TString gsDefName = "MImgCleanStd";
324static const TString gsDefTitle = "Task to perform image cleaning";
325
326const TString MImgCleanStd::gsNamePedPhotCam="MPedPhotCam"; // default name of the 'MPedPhotCam' container
327const TString MImgCleanStd::gsNameSignalCam ="MSignalCam"; // default name of the 'MSignalCam' container
328const TString MImgCleanStd::gsNameGeomCam ="MGeomCam"; // default name of the 'MGeomCam' container
329
330// --------------------------------------------------------------------------
331//
332// Default constructor. Here you can specify the cleaning method and levels.
333// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
334// above mean) are used.
335// Here you can also specify how many rings around the core pixels you want
336// to analyze (with the fixed lvl2). The default value for "rings" is 1.
337//
338MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
339 const char *name, const char *title)
340 : fCleaningMethod(kStandard), fCleanLvl1(lvl1),
341 fCleanLvl2(lvl2), fCleanRings(1), fKeepSinglePixels(kFALSE),
342 fNamePedPhotCam(gsNamePedPhotCam), fNameGeomCam(gsNameGeomCam),
343 fNameSignalCam(gsNameSignalCam)
344{
345 fName = name ? name : gsDefName.Data();
346 fTitle = title ? title : gsDefTitle.Data();
347}
348
349// --------------------------------------------------------------------------
350//
351// The first step of cleaning defines the CORE pixels. All the other pixels
352// are set as UNUSED and belong to RING 0.
353// After this point, only the CORE pixels are set as USED, with RING
354// number 1.
355//
356// NT 28/04/2003: now the option to use the standard method or the
357// democratic method is implemented:
358//
359// kStandard: This method looks for all pixels with an entry (photons)
360// that is three times bigger than the noise of the pixel
361// (default: 3 sigma, clean level 1)
362//
363// kDemocratic: this method looks for all pixels with an entry (photons)
364// that is n times bigger than the noise of the mean of the
365// inner pixels (default: 3 sigmabar, clean level 1)
366//
367//
368void MImgCleanStd::CleanStep1()
369{
370 const TArrayD &data = fData->GetData();
371
372 //
373 // check the number of all pixels against the noise level and
374 // set them to 'unused' state if necessary
375 //
376 const UInt_t npixevt = fEvt->GetNumPixels();
377 for (UInt_t idx=0; idx<npixevt; idx++)
378 {
379 // The default for pixels is "used" set by
380 // MParContainer::Reset before processing
381 if (data[idx]>fCleanLvl1)
382 continue;
383
384 // Setting a pixel to unused if it is unmapped would overwrite
385 // the unmapped-status. Therefor this pixels are excluded.
386 MSignalPix &pix = (*fEvt)[idx];
387 if (!pix.IsPixelUnmapped())
388 pix.SetPixelUnused();
389 }
390}
391
392// --------------------------------------------------------------------------
393//
394// Check if the survived pixel have a neighbor, that also
395// survived. Set all single pixels Unused if !fKeepSinglePixels. Now we
396// declare all pixels that survived previous CleanSteps as CorePixels.
397// Return number of single pixels, and there cumulative size in size.
398//
399Short_t MImgCleanStd::CleanStep2(Float_t &size)
400{
401 Short_t n=0;
402 size = 0;
403
404 const UInt_t npixevt = fEvt->GetNumPixels();
405 for (UInt_t idx=0; idx<npixevt; idx++)
406 {
407 // Exclude all unused (this includes all unmapped) pixels
408 MSignalPix &pix = (*fEvt)[idx];
409 if (!pix.IsPixelUsed())
410 continue;
411
412 // check for 'used' neighbors of this pixel
413 const MGeomPix &gpix = (*fCam)[idx];
414 const Int_t nnmax = gpix.GetNumNeighbors();
415
416 Bool_t hasNeighbor = kFALSE;
417
418 //loop on the neighbors to check if they are used
419 for (Int_t j=0; j<nnmax; j++)
420 {
421 const Int_t idx2 = gpix.GetNeighbor(j);
422
423 // when you find an used neighbor (this excludes unused
424 // and unmapped pixels) break the loop
425 if ((*fEvt)[idx2].IsPixelUsed())
426 {
427 hasNeighbor = kTRUE;
428 break;
429 }
430 }
431
432 // If the pixel has at least one core-neighbor
433 // go on with the next pixel
434 if (hasNeighbor)
435 continue;
436
437 // If the pixel has no neighbors and the single pixels
438 // should not be kept turn the used- into an unused-status
439 if (!fKeepSinglePixels)
440 pix.SetPixelUnused();
441
442 // count size and number of single core-pixels
443 size += pix.GetNumPhotons();
444 n++;
445 }
446
447 // Now turn the used-status into the core-status
448 // (FIXME: A more intelligent handling of used/core in clean step1/2
449 // would make this loop obsolete!)
450 for (UInt_t idx=0; idx<npixevt; idx++)
451 {
452 MSignalPix &pix = (*fEvt)[idx];
453 pix.SetPixelCore(pix.IsPixelUsed());
454 }
455
456 return n;
457}
458
459void MImgCleanStd::CleanStep3b(Int_t idx)
460{
461 MSignalPix &pix = (*fEvt)[idx];
462
463 //
464 // check if the pixel's next neighbor is a core pixel.
465 // if it is a core pixel set pixel state to: used.
466 //
467 MGeomPix &gpix = (*fCam)[idx];
468 const Int_t nnmax = gpix.GetNumNeighbors();
469
470 for (Int_t j=0; j<nnmax; j++)
471 {
472 const Int_t idx2 = gpix.GetNeighbor(j);
473
474 // Check if the neighbor pixel is a core pixel. (Rem: Unampped
475 // pixels are never assigned the core-pixel status)
476 if (!(*fEvt)[idx2].IsPixelCore())
477 continue;
478
479 pix.SetPixelUsed();
480 break;
481 }
482}
483
484// --------------------------------------------------------------------------
485//
486// NT: Add option "rings": default value = 1.
487// Look n (n>1) times for the boundary pixels around the used pixels.
488// If a pixel has more than 2.5 (clean level 2.5) sigma,
489// it is declared as used.
490//
491// If a value<2 for fCleanRings is used, no CleanStep4 is done.
492//
493void MImgCleanStd::CleanStep4(UShort_t r, Int_t idx)
494{
495 MSignalPix &pix = (*fEvt)[idx];
496
497 //
498 // Skip events that have already a defined status;
499 //
500 if (pix.GetRing() != 0)
501 return;
502
503 //
504 // check if the pixel's next neighbor is a used pixel.
505 // if it is a used pixel set pixel state to: used,
506 // and tell to which ring it belongs to.
507 //
508 MGeomPix &gpix = (*fCam)[idx];
509
510 const Int_t nnmax = gpix.GetNumNeighbors();
511
512 for (Int_t j=0; j<nnmax; j++)
513 {
514 const Int_t idx2 = gpix.GetNeighbor(j);
515
516 const MSignalPix &npix = (*fEvt)[idx2];
517 if (!npix.IsPixelUsed() || npix.GetRing()>r-1 )
518 continue;
519
520 pix.SetRing(r);
521 break;
522 }
523}
524
525// --------------------------------------------------------------------------
526//
527// Look for the boundary pixels around the core pixels
528// if a pixel has more than 2.5 (clean level 2.5) sigma, and
529// a core neighbor, it is declared as used.
530//
531void MImgCleanStd::CleanStep3()
532{
533 const TArrayD &data = fData->GetData();
534
535 for (UShort_t r=1; r<fCleanRings+1; r++)
536 {
537 // Loop over all pixels
538 const UInt_t npixevt = fEvt->GetNumPixels();
539 for (UInt_t idx=0; idx<npixevt; idx++)
540 {
541 MSignalPix &pix = (*fEvt)[idx];
542
543 //
544 // if pixel is a core pixel or unmapped, go to the next pixel
545 //
546 if (pix.IsPixelCore() || pix.IsPixelUnmapped())
547 continue;
548
549 if (data[idx] <= fCleanLvl2)
550 continue;
551
552 if (r==1)
553 CleanStep3b(idx);
554 else
555 CleanStep4(r, idx);
556 }
557 }
558}
559
560// --------------------------------------------------------------------------
561//
562// Check if MEvtHeader exists in the Parameter list already.
563// if not create one and add them to the list
564//
565Int_t MImgCleanStd::PreProcess (MParList *pList)
566{
567 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber(fNameGeomCam), "MGeomCam");
568 if (!fCam)
569 {
570 *fLog << err << fNameGeomCam << " [MGeomCam] not found (no geometry information available)... aborting." << endl;
571 return kFALSE;
572 }
573
574 fEvt = (MSignalCam*)pList->FindObject(AddSerialNumber(fNameSignalCam), "MSignalCam");
575 if (!fEvt)
576 {
577 *fLog << err << fNameSignalCam << " [MSignalCam] not found... aborting." << endl;
578 return kFALSE;
579 }
580
581 fPed=0;
582 if (fCleaningMethod!=kAbsolute)
583 {
584 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber(fNamePedPhotCam), "MPedPhotCam");
585 if (!fPed)
586 {
587 *fLog << err << fNamePedPhotCam << " [MPedPhotCam] not found... aborting." << endl;
588 return kFALSE;
589 }
590 }
591
592 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
593 if (!fData)
594 return kFALSE;
595
596 Print();
597
598 return kTRUE;
599}
600
601// --------------------------------------------------------------------------
602//
603// Cleans the image.
604//
605Int_t MImgCleanStd::Process()
606{
607 switch (fCleaningMethod)
608 {
609 case kStandard:
610 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
611 break;
612 case kScaled:
613 fData->CalcCleaningLevel2(*fEvt, *fPed, *fCam);
614 break;
615 case kDemocratic:
616 fData->CalcCleaningLevelDemocratic(*fEvt, *fPed, *fCam);
617 break;
618 case kProbability:
619 fData->CalcCleaningProbability(*fEvt, *fPed, *fCam);
620 break;
621 case kAbsolute:
622 fData->CalcCleaningAbsolute(*fEvt, *fCam);
623 break;
624 default:
625 break;
626 }
627
628#ifdef DEBUG
629 *fLog << all << "CleanStep 1" << endl;
630#endif
631 CleanStep1();
632
633
634#ifdef DEBUG
635 *fLog << all << "CleanStep 2" << endl;
636#endif
637 Float_t size;
638 const Short_t n = CleanStep2(size);
639 fEvt->SetSinglePixels(n, size);
640
641 // For speed reasons skip the rest of the cleaning if no
642 // action will be taken!
643 if (fCleanLvl1>fCleanLvl2)
644 {
645#ifdef DEBUG
646 *fLog << all << "CleanStep 3" << endl;
647#endif
648 CleanStep3();
649 }
650
651#ifdef DEBUG
652 *fLog << all << "Calc Islands" << endl;
653#endif
654 // Takes roughly 10% of the time
655 fEvt->CalcIslands(*fCam);
656
657#ifdef DEBUG
658 *fLog << all << "Done." << endl;
659#endif
660
661 return kTRUE;
662}
663
664// --------------------------------------------------------------------------
665//
666// Print descriptor and cleaning levels.
667//
668void MImgCleanStd::Print(Option_t *o) const
669{
670 *fLog << all << GetDescriptor() << " using ";
671 switch (fCleaningMethod)
672 {
673 case kDemocratic:
674 *fLog << "democratic";
675 break;
676 case kStandard:
677 *fLog << "standard";
678 break;
679 case kScaled:
680 *fLog << "scaled";
681 break;
682 case kProbability:
683 *fLog << "probability";
684 break;
685 case kAbsolute:
686 *fLog << "absolute";
687 break;
688 }
689 *fLog << " cleaning" << endl;
690 *fLog << "initialized with level " << fCleanLvl1 << " and " << fCleanLvl2;
691 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
692
693 *fLog << "Name of MPedPhotCam container used: ";
694 *fLog << (fPed?((MParContainer*)fPed)->GetName():(const char*)fNamePedPhotCam) << endl;
695}
696
697// --------------------------------------------------------------------------
698//
699// Create two text entry fields, one for each cleaning level and a
700// describing text line.
701//
702void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
703{
704 //
705 // Create a frame for line 3 and 4 to be able
706 // to align entry field and label in one line
707 //
708 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
709 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
710
711 /*
712 * --> use with root >=3.02 <--
713 *
714
715 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
716 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
717
718 */
719 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
720 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
721
722 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
723 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
724
725 entry1->SetText("3.0");
726 entry2->SetText("2.5");
727
728 entry1->Associate(f);
729 entry2->Associate(f);
730
731 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
732 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
733
734 l1->SetTextJustify(kTextLeft);
735 l2->SetTextJustify(kTextLeft);
736
737 //
738 // Align the text of the label centered, left in the row
739 // with a left padding of 10
740 //
741 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
742 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
743
744 //
745 // Add one entry field and the corresponding label to each line
746 //
747 f1->AddFrame(entry1);
748 f2->AddFrame(entry2);
749
750 f1->AddFrame(l1, laylabel);
751 f2->AddFrame(l2, laylabel);
752
753 f->AddFrame(f1, layframe);
754 f->AddFrame(f2, layframe);
755
756 f->AddToList(entry1);
757 f->AddToList(entry2);
758 f->AddToList(l1);
759 f->AddToList(l2);
760 f->AddToList(laylabel);
761 f->AddToList(layframe);
762}
763
764// --------------------------------------------------------------------------
765//
766// Process the GUI Events coming from the two text entry fields.
767//
768Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
769{
770 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
771 return kTRUE;
772
773 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
774
775 if (!txt)
776 return kTRUE;
777
778 Float_t lvl = atof(txt->GetText());
779
780 switch (param1)
781 {
782 case kImgCleanLvl1:
783 fCleanLvl1 = lvl;
784 *fLog << "Cleaning level 1 set to " << lvl << endl;
785 return kTRUE;
786
787 case kImgCleanLvl2:
788 fCleanLvl2 = lvl;
789 *fLog << "Cleaning level 2 set to " << lvl << endl;
790 return kTRUE;
791 }
792
793 return kTRUE;
794}
795
796// --------------------------------------------------------------------------
797//
798// Implementation of SavePrimitive. Used to write the call to a constructor
799// to a macro. In the original root implementation it is used to write
800// gui elements to a macro-file.
801//
802void MImgCleanStd::StreamPrimitive(ofstream &out) const
803{
804 out << " MImgCleanStd " << GetUniqueName() << "(";
805 out << fCleanLvl1 << ", " << fCleanLvl2;
806
807 if (fName!=gsDefName || fTitle!=gsDefTitle)
808 {
809 out << ", \"" << fName << "\"";
810 if (fTitle!=gsDefTitle)
811 out << ", \"" << fTitle << "\"";
812 }
813 out << ");" << endl;
814
815 if (fCleaningMethod!=kStandard)
816 {
817 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::k";
818 switch (fCleaningMethod)
819 {
820 case kScaled: out << "Scaled"; break;
821 case kDemocratic: out << "Democratic"; break;
822 case kProbability: out << "Probability"; break;
823 case kAbsolute: out << "Absolute"; break;
824 default:
825 break;
826 }
827 out << ");" << endl;
828 }
829 if (fCleanRings!=1)
830 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
831
832 if (gsNamePedPhotCam!=fNamePedPhotCam)
833 out << " " << GetUniqueName() << ".SetNamePedPhotCam(\"" << fNamePedPhotCam << "\");" << endl;
834 if (gsNameGeomCam!=fNameGeomCam)
835 out << " " << GetUniqueName() << ".SetNameGeomCam(\"" << fNameGeomCam << "\");" << endl;
836 if (gsNameSignalCam!=fNameSignalCam)
837 out << " " << GetUniqueName() << ".SetNameSignalCam(\"" << fNameSignalCam << "\");" << endl;
838 if (fKeepSinglePixels)
839 out << " " << GetUniqueName() << ".SetKeepSinglePixels();" << endl;
840
841}
842
843// --------------------------------------------------------------------------
844//
845// Read the setup from a TEnv, eg:
846// MImgCleanStd.CleanLevel1: 3.0
847// MImgCleanStd.CleanLevel2: 2.5
848// MImgCleanStd.CleanMethod: Standard, Scaled, Democratic, Probability, Absolute
849// MImgCleanStd.CleanRings: 1
850// MImgCleanStd.KeepSinglePixels: yes, no
851//
852Int_t MImgCleanStd::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
853{
854 Bool_t rc = kFALSE;
855 if (IsEnvDefined(env, prefix, "CleanRings", print))
856 {
857 rc = kTRUE;
858 SetCleanRings(GetEnvValue(env, prefix, "CleanRings", fCleanRings));
859 }
860 if (IsEnvDefined(env, prefix, "CleanLevel1", print))
861 {
862 rc = kTRUE;
863 fCleanLvl1 = GetEnvValue(env, prefix, "CleanLevel1", fCleanLvl1);
864 }
865 if (IsEnvDefined(env, prefix, "CleanLevel2", print))
866 {
867 rc = kTRUE;
868 fCleanLvl2 = GetEnvValue(env, prefix, "CleanLevel2", fCleanLvl2);
869 }
870 if (IsEnvDefined(env, prefix, "KeepSinglePixels", print))
871 {
872 rc = kTRUE;
873 fKeepSinglePixels = GetEnvValue(env, prefix, "KeepSinglePixels", fKeepSinglePixels);
874 }
875
876 if (IsEnvDefined(env, prefix, "CleanMethod", print))
877 {
878 rc = kTRUE;
879 TString s = GetEnvValue(env, prefix, "CleanMethod", "");
880 s.ToLower();
881 if (s.BeginsWith("standard"))
882 SetMethod(kStandard);
883 if (s.BeginsWith("scaled"))
884 SetMethod(kScaled);
885 if (s.BeginsWith("democratic"))
886 SetMethod(kDemocratic);
887 if (s.BeginsWith("probability"))
888 SetMethod(kProbability);
889 if (s.BeginsWith("absolute"))
890 SetMethod(kAbsolute);
891 }
892
893 return rc;
894}
Note: See TracBrowser for help on using the repository browser.