source: tags/Mars-V2.2/melectronics/MAvalanchePhotoDiode.cc

Last change on this file was 9261, checked in by tbretz, 16 years ago
*** empty log message ***
File size: 9.3 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: CheObs Software Development, 2000-2009
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// APD
28//
29// All times in this class are relative times. Therefor the unit for the
30// time is not intrinsically fixed. In fact the dead-time and recovery-
31// time given in the constructor must have the same units. This is what
32// defines the unit of the times given in the function and the unit of
33// rates given.
34// For example, if recovery and dead time are given in nanoseconds the
35// all times must be in nanoseconds and rates are given per nanosecond,
36// i.e. GHz.
37//
38// Hamamatsu 30x30 cells: APD(30, 0.2, 3, 35)
39// Hamamatsu 60x60 cells: APD(60, 0.2, 3, 8.75)
40//
41//////////////////////////////////////////////////////////////////////////////
42#include "MAvalanchePhotoDiode.h"
43
44#include <TRandom.h>
45
46#include "MMath.h"
47
48ClassImp(APD);
49
50using namespace std;
51
52/*
53class MyProfile : public TProfile2D
54{
55public:
56 void AddBinEntry(Int_t cell) { fBinEntries.fArray[cell]++; }
57};
58*/
59
60// --------------------------------------------------------------------------
61//
62// Default Constructor.
63//
64// n is the number od cells in x or y. The APD is assumed to
65// be square.
66// prob is the crosstalk probability, i.e., the probability that a
67// photon which produced an avalanche will create another
68// photon in a neighboring cell
69// dt is the deadtime, i.e., the time in which the APD cell will show
70// no response to a photon after a hit
71// rt is the recovering tims, i.e. the exponential (e^(-dt/rt))
72// with which the cell is recovering after being dead
73//
74// prob, dt and ar can be set to 0 to switch the effect off.
75// 0 is also the dfeault for all three.
76//
77APD::APD(Int_t n, Float_t prob, Float_t dt, Float_t rt)
78 : fHist("APD", "", n, 0.5, n+0.5, n, 0.5, n+0.5),
79 fCrosstalkProb(prob), fDeadTime(dt), fRecoveryTime(rt)
80{
81 fHist.SetDirectory(0);
82}
83
84// --------------------------------------------------------------------------
85//
86// This is the recursive implementation of a hit. If a photon hits a cell
87// at x and y (must be a valid cell!) at time t, at first we check if the
88// cell is still dead. If it is not dead we calculate the signal height
89// from the recovery time. Now we check with the crosstalk probability
90// whether another photon is created. If another photon is created we
91// calculate randomly which of the four neighbor cells are hit.
92// If the cell is outside the APD the photon is ignored. As many
93// new photons are created until our random number is below the crosstak-
94// probability.
95//
96// The total height of the signal (in units of photons) is returned.
97// Note, that this can be a fractional number.
98//
99// This function looks a bit fancy accessing the histogram and works around
100// a few histogram functions. This is a speed optimization which works
101// around a lot of sanity checks which are obsolete in our case.
102//
103// The default time is 0.
104//
105Float_t APD::HitCellImp(Int_t x, Int_t y, Float_t t)
106{
107 // if (x<1 || x>fHist.GetNbinsX() ||
108 // y<1 || y>fHist.GetNbinsY())
109 // return 0;
110
111 // const Int_t cell = fHist.GetBin(x, y);
112 const Int_t cell = x + (fHist.GetNbinsX()+2)*y;
113
114 // This is the fastes way to access the bin-contents in fArray
115 Float_t &cont = fHist.GetArray()[cell];
116
117 // const Double_t dt = t-fHist.GetBinContent(x, y)-fDeadTime; //
118 const Float_t dt = t-cont-fDeadTime;
119
120 // Photons within the dead time are just ignored
121 if (/*hx.GetBinContent(x,y)>0 &&*/ dt<=0)
122 return 0;
123
124 // Signal height (in units of one photon) produced after dead time
125 const Float_t weight = fRecoveryTime<=0 ? 1 : 1.-exp(-dt/fRecoveryTime);
126
127 cont = t; // fHist.SetBinContent(x, y, t)
128
129 // Counter for the numbers of produced photons
130 Float_t n = weight;
131
132 /*
133 // Check if a photon in a neighboring cell is produced (crosstalk)
134 while (gRandom->Rndm()<fCrosstalkProb)
135 {
136 // Get a random neighbor which is hit.
137 switch (gRandom->Integer(4))
138 {
139 case 0: x++; if (x>fHist.GetNbinsX()) continue; break;
140 case 1: x--; if (x<1) continue; break;
141 case 2: y++; if (y>fHist.GetNbinsY()) continue; break;
142 case 3: y--; if (y<1) continue; break;
143 }
144
145 n += HitCellImp(x, y, t);
146 }
147 */
148
149 //for (int i=0; i<1; i++)
150 while (1)
151 {
152 const Double_t rndm = gRandom->Rndm();
153 if (rndm>=fCrosstalkProb)
154 break;
155
156 // We can re-use the random number becuase it is uniformely
157 // distributed. This saves cpu power
158 const Int_t dir = TMath::FloorNint(4*rndm/fCrosstalkProb);
159
160 // Get a random neighbor which is hit.
161 switch (dir)
162 {
163 case 0: if (x<fHist.GetNbinsX()) n += HitCellImp(x+1, y, t); break;
164 case 1: if (x>1) n += HitCellImp(x-1, y, t); break;
165 case 2: if (y<fHist.GetNbinsY()) n += HitCellImp(x, y+1, t); break;
166 case 3: if (y>1) n += HitCellImp(x, y-1, t); break;
167 }
168
169 // In the unlikely case the calculated direction is out-of-range,
170 // i.e. <0 or >3, we would just try to fill the same cell again which
171 }
172
173 return n;
174}
175
176// --------------------------------------------------------------------------
177//
178// Check if x and y is a valid cell. If not return 0, otherwise
179// HitCelImp(x, y, t)
180//
181// The default time is 0.
182//
183Float_t APD::HitCell(Int_t x, Int_t y, Float_t t)
184{
185 if (x<1 || x>fHist.GetNbinsX() ||
186 y<1 || y>fHist.GetNbinsY())
187 return 0;
188
189 return HitCellImp(x, y, t);
190}
191
192// --------------------------------------------------------------------------
193//
194// Determine randomly (uniformly) a cell which was hit. Return
195// HitCellImp for this cell and the given time.
196//
197// The default time is 0.
198//
199Float_t APD::HitRandomCell(Float_t t)
200{
201 const UInt_t nx = fHist.GetNbinsX();
202 const UInt_t ny = fHist.GetNbinsY();
203
204 const UInt_t idx = gRandom->Integer(nx*ny);
205
206 const UInt_t x = idx%nx;
207 const UInt_t y = idx/nx;
208
209 return HitCellImp(x+1, y+1, t);
210}
211
212// --------------------------------------------------------------------------
213//
214// Sets all cells with a contents whihc is well before the time t such that
215// the chip is "virgin". Therefore all cells are set to a time which
216// is twice the deadtime before the given time and 1000 times the recovery
217// time.
218//
219// If deadtime and recovery time are 0 then t-1 is set.
220//
221// The default time is 0.
222//
223void APD::FillEmpty(Float_t t)
224{
225 const Int_t n = (fHist.GetNbinsX()+2)*(fHist.GetNbinsY()+2);
226
227 const Double_t tm = fDeadTime<=0 && fRecoveryTime<=0 ? t-1 : t-2*fDeadTime-1000*fRecoveryTime;
228
229 for (int i=0; i<n; i++)
230 fHist.GetArray()[i] = tm;
231
232 fHist.SetEntries(1);
233}
234
235// --------------------------------------------------------------------------
236//
237// First call FillEmpty for the given time t. Then fill each cell by
238// by calling HitCellImp with time t-gRandom->Exp(n/rate) with n being
239// the total number of cells.
240// The default time is 0.
241//
242void APD::FillRandom(Float_t rate, Float_t t)
243{
244 FillEmpty(t);
245
246 const Int_t nx = fHist.GetNbinsX();
247 const Int_t ny = fHist.GetNbinsY();
248
249 const Double_t f = (nx*ny)/rate;
250
251 // FIXME: This is not perfect, is it? What about the dead time?
252
253 for (int x=1; x<=nx; x++)
254 for (int y=1; y<=ny; y++)
255 {
256 HitCellImp(x, y, t-MMath::RndmExp(f));
257 }
258}
259
260// --------------------------------------------------------------------------
261//
262// Retunrs the number of cells which have a time t<=fDeadTime, i.e. which are
263// dead.
264// The default time is 0.
265//
266Int_t APD::CountDeadCells(Float_t t) const
267{
268 const Int_t nx = fHist.GetNbinsX();
269 const Int_t ny = fHist.GetNbinsY();
270
271 Int_t n=0;
272 for (int x=1; x<=nx; x++)
273 for (int y=1; y<=ny; y++)
274 if ((t-fHist.GetBinContent(x, y))<=fDeadTime)
275 n++;
276
277 return n;
278}
279
280// --------------------------------------------------------------------------
281//
282// Returs the number of cells which have a time t<=fDeadTime+fRecoveryTime.
283// The default time is 0.
284//
285Int_t APD::CountRecoveringCells(Float_t t) const
286{
287 const Int_t nx = fHist.GetNbinsX();
288 const Int_t ny = fHist.GetNbinsY();
289
290 Int_t n=0;
291 for (int x=1; x<=nx; x++)
292 for (int y=1; y<=ny; y++)
293 {
294 Float_t dt = t-fHist.GetBinContent(x, y);
295 if (dt>fDeadTime && dt<=fDeadTime+fRecoveryTime)
296 n++;
297 }
298 return n;
299}
Note: See TracBrowser for help on using the repository browser.