1 | #include <LSM303.h>
|
---|
2 | #include <Wire.h>
|
---|
3 | #include <math.h>
|
---|
4 |
|
---|
5 | // Defines ////////////////////////////////////////////////////////////////
|
---|
6 |
|
---|
7 | // The Arduino two-wire interface uses a 7-bit number for the address,
|
---|
8 | // and sets the last bit correctly based on reads and writes
|
---|
9 | #define D_SA0_HIGH_ADDRESS 0b0011101 // D with SA0 high
|
---|
10 | #define D_SA0_LOW_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
---|
11 | #define NON_D_MAG_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
---|
12 | #define NON_D_ACC_SA0_LOW_ADDRESS 0b0011000 // non-D accelerometer with SA0 low
|
---|
13 | #define NON_D_ACC_SA0_HIGH_ADDRESS 0b0011001 // non-D accelerometer with SA0 high
|
---|
14 |
|
---|
15 | #define TEST_REG_NACK -1
|
---|
16 |
|
---|
17 | #define D_WHO_ID 0x49
|
---|
18 | #define DLM_WHO_ID 0x3C
|
---|
19 |
|
---|
20 | // Constructors ////////////////////////////////////////////////////////////////
|
---|
21 |
|
---|
22 | LSM303::LSM303(void)
|
---|
23 | {
|
---|
24 | /*
|
---|
25 | These values lead to an assumed magnetometer bias of 0.
|
---|
26 | Use the Calibrate example program to determine appropriate values
|
---|
27 | for your particular unit. The Heading example demonstrates how to
|
---|
28 | adjust these values in your own sketch.
|
---|
29 | */
|
---|
30 | m_min = (LSM303::vector<int16_t>){-32767, -32767, -32767};
|
---|
31 | m_max = (LSM303::vector<int16_t>){+32767, +32767, +32767};
|
---|
32 |
|
---|
33 | _device = device_auto;
|
---|
34 |
|
---|
35 | io_timeout = 0; // 0 = no timeout
|
---|
36 | did_timeout = false;
|
---|
37 | }
|
---|
38 |
|
---|
39 | // Public Methods //////////////////////////////////////////////////////////////
|
---|
40 |
|
---|
41 | // Did a timeout occur in readAcc(), readMag(), or read() since the last call to timeoutOccurred()?
|
---|
42 | bool LSM303::timeoutOccurred()
|
---|
43 | {
|
---|
44 | bool tmp = did_timeout;
|
---|
45 | did_timeout = false;
|
---|
46 | return tmp;
|
---|
47 |
|
---|
48 | }
|
---|
49 |
|
---|
50 | void LSM303::setTimeout(unsigned int timeout)
|
---|
51 | {
|
---|
52 | io_timeout = timeout;
|
---|
53 | }
|
---|
54 |
|
---|
55 | unsigned int LSM303::getTimeout()
|
---|
56 | {
|
---|
57 | return io_timeout;
|
---|
58 | }
|
---|
59 |
|
---|
60 | bool LSM303::init(deviceType device, sa0State sa0)
|
---|
61 | {
|
---|
62 | // determine device type if necessary
|
---|
63 | if (device == device_auto)
|
---|
64 | {
|
---|
65 | if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
---|
66 | {
|
---|
67 | // device responds to address 0011101 with D ID; it's a D with SA0 high
|
---|
68 | device = device_D;
|
---|
69 | sa0 = sa0_high;
|
---|
70 | }
|
---|
71 | else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
---|
72 | {
|
---|
73 | // device responds to address 0011110 with D ID; it's a D with SA0 low
|
---|
74 | device = device_D;
|
---|
75 | sa0 = sa0_low;
|
---|
76 | }
|
---|
77 | // Remaining possibilities: DLHC, DLM, or DLH. DLHC seems to respond to WHO_AM_I request the
|
---|
78 | // same way as DLM, even though this register isn't documented in its datasheet, so instead,
|
---|
79 | // guess if it's a DLHC based on acc address (Pololu boards pull SA0 low on DLM and DLH;
|
---|
80 | // DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high).
|
---|
81 | else if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
---|
82 | {
|
---|
83 | // device responds to address 0011001; guess that it's a DLHC
|
---|
84 | device = device_DLHC;
|
---|
85 | sa0 = sa0_high;
|
---|
86 | }
|
---|
87 | // Remaining possibilities: DLM or DLH. Check acc with SA0 low address to make sure it's responsive
|
---|
88 | else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
---|
89 | {
|
---|
90 | // device responds to address 0011000 with DLM ID; guess that it's a DLM
|
---|
91 | sa0 = sa0_low;
|
---|
92 |
|
---|
93 | // Now check WHO_AM_I_M
|
---|
94 | if (testReg(NON_D_MAG_ADDRESS, WHO_AM_I_M) == DLM_WHO_ID)
|
---|
95 | {
|
---|
96 | device = device_DLM;
|
---|
97 | }
|
---|
98 | else
|
---|
99 | {
|
---|
100 | device = device_DLH;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | else
|
---|
104 | {
|
---|
105 | // device hasn't responded meaningfully, so give up
|
---|
106 | return false;
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | // determine SA0 if necessary
|
---|
111 | if (sa0 == sa0_auto)
|
---|
112 | {
|
---|
113 | if (device == device_D)
|
---|
114 | {
|
---|
115 | if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
---|
116 | {
|
---|
117 | sa0 = sa0_high;
|
---|
118 | }
|
---|
119 | else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
---|
120 | {
|
---|
121 | sa0 = sa0_low;
|
---|
122 | }
|
---|
123 | else
|
---|
124 | {
|
---|
125 | // no response on either possible address; give up
|
---|
126 | return false;
|
---|
127 | }
|
---|
128 | }
|
---|
129 | else if (device == device_DLM || device == device_DLH)
|
---|
130 | {
|
---|
131 | if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
---|
132 | {
|
---|
133 | sa0 = sa0_high;
|
---|
134 | }
|
---|
135 | else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
---|
136 | {
|
---|
137 | sa0 = sa0_low;
|
---|
138 | }
|
---|
139 | else
|
---|
140 | {
|
---|
141 | // no response on either possible address; give up
|
---|
142 | return false;
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | _device = device;
|
---|
148 |
|
---|
149 | // set device addresses and translated register addresses
|
---|
150 | switch (device)
|
---|
151 | {
|
---|
152 | case device_D:
|
---|
153 | acc_address = mag_address = (sa0 == sa0_high) ? D_SA0_HIGH_ADDRESS : D_SA0_LOW_ADDRESS;
|
---|
154 | translated_regs[-OUT_X_L_M] = D_OUT_X_L_M;
|
---|
155 | translated_regs[-OUT_X_H_M] = D_OUT_X_H_M;
|
---|
156 | translated_regs[-OUT_Y_L_M] = D_OUT_Y_L_M;
|
---|
157 | translated_regs[-OUT_Y_H_M] = D_OUT_Y_H_M;
|
---|
158 | translated_regs[-OUT_Z_L_M] = D_OUT_Z_L_M;
|
---|
159 | translated_regs[-OUT_Z_H_M] = D_OUT_Z_H_M;
|
---|
160 | break;
|
---|
161 |
|
---|
162 | case device_DLHC:
|
---|
163 | acc_address = NON_D_ACC_SA0_HIGH_ADDRESS; // DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high
|
---|
164 | mag_address = NON_D_MAG_ADDRESS;
|
---|
165 | translated_regs[-OUT_X_H_M] = DLHC_OUT_X_H_M;
|
---|
166 | translated_regs[-OUT_X_L_M] = DLHC_OUT_X_L_M;
|
---|
167 | translated_regs[-OUT_Y_H_M] = DLHC_OUT_Y_H_M;
|
---|
168 | translated_regs[-OUT_Y_L_M] = DLHC_OUT_Y_L_M;
|
---|
169 | translated_regs[-OUT_Z_H_M] = DLHC_OUT_Z_H_M;
|
---|
170 | translated_regs[-OUT_Z_L_M] = DLHC_OUT_Z_L_M;
|
---|
171 | break;
|
---|
172 |
|
---|
173 | case device_DLM:
|
---|
174 | acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
---|
175 | mag_address = NON_D_MAG_ADDRESS;
|
---|
176 | translated_regs[-OUT_X_H_M] = DLM_OUT_X_H_M;
|
---|
177 | translated_regs[-OUT_X_L_M] = DLM_OUT_X_L_M;
|
---|
178 | translated_regs[-OUT_Y_H_M] = DLM_OUT_Y_H_M;
|
---|
179 | translated_regs[-OUT_Y_L_M] = DLM_OUT_Y_L_M;
|
---|
180 | translated_regs[-OUT_Z_H_M] = DLM_OUT_Z_H_M;
|
---|
181 | translated_regs[-OUT_Z_L_M] = DLM_OUT_Z_L_M;
|
---|
182 | break;
|
---|
183 |
|
---|
184 | case device_DLH:
|
---|
185 | acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
---|
186 | mag_address = NON_D_MAG_ADDRESS;
|
---|
187 | translated_regs[-OUT_X_H_M] = DLH_OUT_X_H_M;
|
---|
188 | translated_regs[-OUT_X_L_M] = DLH_OUT_X_L_M;
|
---|
189 | translated_regs[-OUT_Y_H_M] = DLH_OUT_Y_H_M;
|
---|
190 | translated_regs[-OUT_Y_L_M] = DLH_OUT_Y_L_M;
|
---|
191 | translated_regs[-OUT_Z_H_M] = DLH_OUT_Z_H_M;
|
---|
192 | translated_regs[-OUT_Z_L_M] = DLH_OUT_Z_L_M;
|
---|
193 | break;
|
---|
194 | }
|
---|
195 | return true;
|
---|
196 | }
|
---|
197 |
|
---|
198 | /*
|
---|
199 | Enables the LSM303's accelerometer and magnetometer. Also:
|
---|
200 | - Sets sensor full scales (gain) to default power-on values, which are
|
---|
201 | +/- 2 g for accelerometer and +/- 1.3 gauss for magnetometer
|
---|
202 | (+/- 4 gauss on LSM303D).
|
---|
203 | - Selects 50 Hz ODR (output data rate) for accelerometer and 7.5 Hz
|
---|
204 | ODR for magnetometer (6.25 Hz on LSM303D). (These are the ODR
|
---|
205 | settings for which the electrical characteristics are specified in
|
---|
206 | the datasheets.)
|
---|
207 | - Enables high resolution modes (if available).
|
---|
208 | Note that this function will also reset other settings controlled by
|
---|
209 | the registers it writes to.
|
---|
210 | */
|
---|
211 | void LSM303::enableDefault(void)
|
---|
212 | {
|
---|
213 |
|
---|
214 | if (_device == device_D)
|
---|
215 | {
|
---|
216 | // Accelerometer
|
---|
217 |
|
---|
218 | // 0x57 = 0b01010111
|
---|
219 | // AFS = 0 (+/- 2 g full scale)
|
---|
220 | writeReg(CTRL2, 0x00);
|
---|
221 |
|
---|
222 | // 0x57 = 0b01010111
|
---|
223 | // AODR = 0101 (50 Hz ODR); AZEN = AYEN = AXEN = 1 (all axes enabled)
|
---|
224 | writeReg(CTRL1, 0x57);
|
---|
225 |
|
---|
226 | // Magnetometer
|
---|
227 |
|
---|
228 | // 0x64 = 0b01100100
|
---|
229 | // M_RES = 11 (high resolution mode); M_ODR = 001 (6.25 Hz ODR)
|
---|
230 | writeReg(CTRL5, 0x64);
|
---|
231 |
|
---|
232 | // 0x20 = 0b00100000
|
---|
233 | // MFS = 01 (+/- 4 gauss full scale)
|
---|
234 | writeReg(CTRL6, 0x20);
|
---|
235 |
|
---|
236 | // 0x00 = 0b00000000
|
---|
237 | // MLP = 0 (low power mode off); MD = 00 (continuous-conversion mode)
|
---|
238 | writeReg(CTRL7, 0x00);
|
---|
239 | }
|
---|
240 | else if (_device == device_DLHC)
|
---|
241 | {
|
---|
242 | // Accelerometer
|
---|
243 |
|
---|
244 | // 0x08 = 0b00001000
|
---|
245 | // FS = 00 (+/- 2 g full scale); HR = 1 (high resolution enable)
|
---|
246 | writeAccReg(CTRL_REG4_A, 0x08);
|
---|
247 |
|
---|
248 | // 0x47 = 0b01000111
|
---|
249 | // ODR = 0100 (50 Hz ODR); LPen = 0 (normal mode); Zen = Yen = Xen = 1 (all axes enabled)
|
---|
250 | writeAccReg(CTRL_REG1_A, 0x47);
|
---|
251 |
|
---|
252 | // Magnetometer
|
---|
253 |
|
---|
254 | // 0x0C = 0b00001100
|
---|
255 | // DO = 011 (7.5 Hz ODR)
|
---|
256 | writeMagReg(CRA_REG_M, 0x0C);
|
---|
257 |
|
---|
258 | // 0x20 = 0b00100000
|
---|
259 | // GN = 001 (+/- 1.3 gauss full scale)
|
---|
260 | writeMagReg(CRB_REG_M, 0x20);
|
---|
261 |
|
---|
262 | // 0x00 = 0b00000000
|
---|
263 | // MD = 00 (continuous-conversion mode)
|
---|
264 | writeMagReg(MR_REG_M, 0x00);
|
---|
265 | }
|
---|
266 | else // DLM, DLH
|
---|
267 | {
|
---|
268 | // Accelerometer
|
---|
269 |
|
---|
270 | // 0x00 = 0b00000000
|
---|
271 | // FS = 00 (+/- 2 g full scale)
|
---|
272 | writeAccReg(CTRL_REG4_A, 0x00);
|
---|
273 |
|
---|
274 | // 0x27 = 0b00100111
|
---|
275 | // PM = 001 (normal mode); DR = 00 (50 Hz ODR); Zen = Yen = Xen = 1 (all axes enabled)
|
---|
276 | writeAccReg(CTRL_REG1_A, 0x27);
|
---|
277 |
|
---|
278 | // Magnetometer
|
---|
279 |
|
---|
280 | // 0x0C = 0b00001100
|
---|
281 | // DO = 011 (7.5 Hz ODR)
|
---|
282 | writeMagReg(CRA_REG_M, 0x0C);
|
---|
283 |
|
---|
284 | // 0x20 = 0b00100000
|
---|
285 | // GN = 001 (+/- 1.3 gauss full scale)
|
---|
286 | writeMagReg(CRB_REG_M, 0x20);
|
---|
287 |
|
---|
288 | // 0x00 = 0b00000000
|
---|
289 | // MD = 00 (continuous-conversion mode)
|
---|
290 | writeMagReg(MR_REG_M, 0x00);
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | // Writes an accelerometer register
|
---|
295 | void LSM303::writeAccReg(regAddr reg, byte value)
|
---|
296 | {
|
---|
297 | Wire.beginTransmission(acc_address);
|
---|
298 | Wire.write((byte)reg);
|
---|
299 | Wire.write(value);
|
---|
300 | last_status = Wire.endTransmission();
|
---|
301 | }
|
---|
302 |
|
---|
303 | // Reads an accelerometer register
|
---|
304 | byte LSM303::readAccReg(regAddr reg)
|
---|
305 | {
|
---|
306 | byte value;
|
---|
307 |
|
---|
308 | Wire.beginTransmission(acc_address);
|
---|
309 | Wire.write((byte)reg);
|
---|
310 | last_status = Wire.endTransmission();
|
---|
311 | Wire.requestFrom(acc_address, (byte)1);
|
---|
312 | value = Wire.read();
|
---|
313 | Wire.endTransmission();
|
---|
314 |
|
---|
315 | return value;
|
---|
316 | }
|
---|
317 |
|
---|
318 | // Writes a magnetometer register
|
---|
319 | void LSM303::writeMagReg(regAddr reg, byte value)
|
---|
320 | {
|
---|
321 | Wire.beginTransmission(mag_address);
|
---|
322 | Wire.write((byte)reg);
|
---|
323 | Wire.write(value);
|
---|
324 | last_status = Wire.endTransmission();
|
---|
325 | }
|
---|
326 |
|
---|
327 | // Reads a magnetometer register
|
---|
328 | byte LSM303::readMagReg(regAddr reg)
|
---|
329 | {
|
---|
330 | byte value;
|
---|
331 |
|
---|
332 | // if dummy register address (magnetometer Y/Z), look up actual translated address (based on device type)
|
---|
333 | if (reg < 0)
|
---|
334 | {
|
---|
335 | reg = translated_regs[-reg];
|
---|
336 | }
|
---|
337 |
|
---|
338 | Wire.beginTransmission(mag_address);
|
---|
339 | Wire.write((byte)reg);
|
---|
340 | last_status = Wire.endTransmission();
|
---|
341 | Wire.requestFrom(mag_address, (byte)1);
|
---|
342 | value = Wire.read();
|
---|
343 | Wire.endTransmission();
|
---|
344 |
|
---|
345 | return value;
|
---|
346 | }
|
---|
347 |
|
---|
348 | void LSM303::writeReg(regAddr reg, byte value)
|
---|
349 | {
|
---|
350 | // mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
---|
351 | // Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
---|
352 | if (_device == device_D || reg < CTRL_REG1_A)
|
---|
353 | {
|
---|
354 | writeMagReg(reg, value);
|
---|
355 | }
|
---|
356 | else
|
---|
357 | {
|
---|
358 | writeAccReg(reg, value);
|
---|
359 | }
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Note that this function will not work for reading TEMP_OUT_H_M and TEMP_OUT_L_M on the DLHC.
|
---|
363 | // To read those two registers, use readMagReg() instead.
|
---|
364 | byte LSM303::readReg(regAddr reg)
|
---|
365 | {
|
---|
366 | // mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
---|
367 | // Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
---|
368 | if (_device == device_D || reg < CTRL_REG1_A)
|
---|
369 | {
|
---|
370 | return readMagReg(reg);
|
---|
371 | }
|
---|
372 | else
|
---|
373 | {
|
---|
374 | return readAccReg(reg);
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | // Reads the 3 accelerometer channels and stores them in vector a
|
---|
379 | void LSM303::readAcc(void)
|
---|
380 | {
|
---|
381 | Wire.beginTransmission(acc_address);
|
---|
382 | // assert the MSB of the address to get the accelerometer
|
---|
383 | // to do slave-transmit subaddress updating.
|
---|
384 | Wire.write(OUT_X_L_A | (1 << 7));
|
---|
385 | last_status = Wire.endTransmission();
|
---|
386 | Wire.requestFrom(acc_address, (byte)6);
|
---|
387 |
|
---|
388 | unsigned int millis_start = millis();
|
---|
389 | while (Wire.available() < 6) {
|
---|
390 | if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
---|
391 | {
|
---|
392 | did_timeout = true;
|
---|
393 | return;
|
---|
394 | }
|
---|
395 | }
|
---|
396 |
|
---|
397 | byte xla = Wire.read();
|
---|
398 | byte xha = Wire.read();
|
---|
399 | byte yla = Wire.read();
|
---|
400 | byte yha = Wire.read();
|
---|
401 | byte zla = Wire.read();
|
---|
402 | byte zha = Wire.read();
|
---|
403 |
|
---|
404 | // combine high and low bytes
|
---|
405 | // This no longer drops the lowest 4 bits of the readings from the DLH/DLM/DLHC, which are always 0
|
---|
406 | // (12-bit resolution, left-aligned). The D has 16-bit resolution
|
---|
407 | a.x = (int16_t)(xha << 8 | xla);
|
---|
408 | a.y = (int16_t)(yha << 8 | yla);
|
---|
409 | a.z = (int16_t)(zha << 8 | zla);
|
---|
410 | }
|
---|
411 |
|
---|
412 | // Reads the 3 magnetometer channels and stores them in vector m
|
---|
413 | void LSM303::readMag(void)
|
---|
414 | {
|
---|
415 | Wire.beginTransmission(mag_address);
|
---|
416 | // If LSM303D, assert MSB to enable subaddress updating
|
---|
417 | // OUT_X_L_M comes first on D, OUT_X_H_M on others
|
---|
418 | Wire.write((_device == device_D) ? translated_regs[-OUT_X_L_M] | (1 << 7) : translated_regs[-OUT_X_H_M]);
|
---|
419 | last_status = Wire.endTransmission();
|
---|
420 | Wire.requestFrom(mag_address, (byte)6);
|
---|
421 |
|
---|
422 | unsigned int millis_start = millis();
|
---|
423 | while (Wire.available() < 6) {
|
---|
424 | if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
---|
425 | {
|
---|
426 | did_timeout = true;
|
---|
427 | return;
|
---|
428 | }
|
---|
429 | }
|
---|
430 |
|
---|
431 | byte xlm, xhm, ylm, yhm, zlm, zhm;
|
---|
432 |
|
---|
433 | if (_device == device_D)
|
---|
434 | {
|
---|
435 | /// D: X_L, X_H, Y_L, Y_H, Z_L, Z_H
|
---|
436 | xlm = Wire.read();
|
---|
437 | xhm = Wire.read();
|
---|
438 | ylm = Wire.read();
|
---|
439 | yhm = Wire.read();
|
---|
440 | zlm = Wire.read();
|
---|
441 | zhm = Wire.read();
|
---|
442 | }
|
---|
443 | else
|
---|
444 | {
|
---|
445 | // DLHC, DLM, DLH: X_H, X_L...
|
---|
446 | xhm = Wire.read();
|
---|
447 | xlm = Wire.read();
|
---|
448 |
|
---|
449 | if (_device == device_DLH)
|
---|
450 | {
|
---|
451 | // DLH: ...Y_H, Y_L, Z_H, Z_L
|
---|
452 | yhm = Wire.read();
|
---|
453 | ylm = Wire.read();
|
---|
454 | zhm = Wire.read();
|
---|
455 | zlm = Wire.read();
|
---|
456 | }
|
---|
457 | else
|
---|
458 | {
|
---|
459 | // DLM, DLHC: ...Z_H, Z_L, Y_H, Y_L
|
---|
460 | zhm = Wire.read();
|
---|
461 | zlm = Wire.read();
|
---|
462 | yhm = Wire.read();
|
---|
463 | ylm = Wire.read();
|
---|
464 | }
|
---|
465 | }
|
---|
466 |
|
---|
467 | // combine high and low bytes
|
---|
468 | m.x = (int16_t)(xhm << 8 | xlm);
|
---|
469 | m.y = (int16_t)(yhm << 8 | ylm);
|
---|
470 | m.z = (int16_t)(zhm << 8 | zlm);
|
---|
471 | }
|
---|
472 |
|
---|
473 | // Reads all 6 channels of the LSM303 and stores them in the object variables
|
---|
474 | void LSM303::read(void)
|
---|
475 | {
|
---|
476 | readAcc();
|
---|
477 | readMag();
|
---|
478 | }
|
---|
479 |
|
---|
480 | /*
|
---|
481 | Returns the angular difference in the horizontal plane between a
|
---|
482 | default vector and north, in degrees.
|
---|
483 |
|
---|
484 | The default vector here is chosen to point along the surface of the
|
---|
485 | PCB, in the direction of the top of the text on the silkscreen.
|
---|
486 | This is the +X axis on the Pololu LSM303D carrier and the -Y axis on
|
---|
487 | the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers.
|
---|
488 | */
|
---|
489 | float LSM303::heading(void)
|
---|
490 | {
|
---|
491 | if (_device == device_D)
|
---|
492 | {
|
---|
493 | return heading((vector<int>){1, 0, 0});
|
---|
494 | }
|
---|
495 | else
|
---|
496 | {
|
---|
497 | return heading((vector<int>){0, -1, 0});
|
---|
498 | }
|
---|
499 | }
|
---|
500 |
|
---|
501 | /*
|
---|
502 | Returns the angular difference in the horizontal plane between the
|
---|
503 | "from" vector and north, in degrees.
|
---|
504 |
|
---|
505 | Description of heading algorithm:
|
---|
506 | Shift and scale the magnetic reading based on calibration data to find
|
---|
507 | the North vector. Use the acceleration readings to determine the Up
|
---|
508 | vector (gravity is measured as an upward acceleration). The cross
|
---|
509 | product of North and Up vectors is East. The vectors East and North
|
---|
510 | form a basis for the horizontal plane. The From vector is projected
|
---|
511 | into the horizontal plane and the angle between the projected vector
|
---|
512 | and horizontal north is returned.
|
---|
513 | */
|
---|
514 | template <typename T> float LSM303::heading(vector<T> from)
|
---|
515 | {
|
---|
516 | vector<int32_t> temp_m = {m.x, m.y, m.z};
|
---|
517 |
|
---|
518 | // subtract offset (average of min and max) from magnetometer readings
|
---|
519 | temp_m.x -= ((int32_t)m_min.x + m_max.x) / 2;
|
---|
520 | temp_m.y -= ((int32_t)m_min.y + m_max.y) / 2;
|
---|
521 | temp_m.z -= ((int32_t)m_min.z + m_max.z) / 2;
|
---|
522 |
|
---|
523 | // compute E and N
|
---|
524 | vector<float> E;
|
---|
525 | vector<float> N;
|
---|
526 | vector_cross(&temp_m, &a, &E);
|
---|
527 | vector_normalize(&E);
|
---|
528 | vector_cross(&a, &E, &N);
|
---|
529 | vector_normalize(&N);
|
---|
530 |
|
---|
531 | // compute heading
|
---|
532 | float heading = atan2(vector_dot(&E, &from), vector_dot(&N, &from)) * 180 / M_PI;
|
---|
533 | if (heading < 0) heading += 360;
|
---|
534 | return heading;
|
---|
535 | }
|
---|
536 |
|
---|
537 | template <typename Ta, typename Tb, typename To> void LSM303::vector_cross(const vector<Ta> *a,const vector<Tb> *b, vector<To> *out)
|
---|
538 | {
|
---|
539 | out->x = (a->y * b->z) - (a->z * b->y);
|
---|
540 | out->y = (a->z * b->x) - (a->x * b->z);
|
---|
541 | out->z = (a->x * b->y) - (a->y * b->x);
|
---|
542 | }
|
---|
543 |
|
---|
544 | template <typename Ta, typename Tb> float LSM303::vector_dot(const vector<Ta> *a, const vector<Tb> *b)
|
---|
545 | {
|
---|
546 | return (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
|
---|
547 | }
|
---|
548 |
|
---|
549 | void LSM303::vector_normalize(vector<float> *a)
|
---|
550 | {
|
---|
551 | float mag = sqrt(vector_dot(a, a));
|
---|
552 | a->x /= mag;
|
---|
553 | a->y /= mag;
|
---|
554 | a->z /= mag;
|
---|
555 | }
|
---|
556 |
|
---|
557 | // Private Methods //////////////////////////////////////////////////////////////
|
---|
558 |
|
---|
559 | int LSM303::testReg(byte address, regAddr reg)
|
---|
560 | {
|
---|
561 | Wire.beginTransmission(address);
|
---|
562 | Wire.write((byte)reg);
|
---|
563 | last_status = Wire.endTransmission();
|
---|
564 |
|
---|
565 | Wire.requestFrom(address, (byte)1);
|
---|
566 | if (Wire.available())
|
---|
567 | return Wire.read();
|
---|
568 | else
|
---|
569 | return TEST_REG_NACK;
|
---|
570 | } |
---|