#include "StarCatalog.h" #include // cout #include // cout #include #include #include "slalib.h" #include "slamac.h" #include "MStarList.h" #include "MAstroCatalog.h" ClassImp(StarCatalog); using namespace std; StarCatalog::StarCatalog(MObservatory::LocationName_t key) : SlaStars(key), fW(768), fH(576), fAstro(0), /*fSao(NULL), fSrt(NULL), fEntries(0),*/ fSinAngle(0), fCosAngle(1), fBoxX(768), fBoxY(576) { fAstro = new MAstroCatalog; fAstro->SetObservatory(*this); fAstro->SetPlainScreen(); } StarCatalog::~StarCatalog() { delete fAstro; } void StarCatalog::SetPixSize(const double pixsize) { // pixsize [arcsec/pixel] fPixSize = TMath::DegToRad()*pixsize/3600; // [rad / (deg*pixel)] fAstro->SetRadiusFOV(pixsize, 768, 576); // fov = hypot(768, 576)/2*pixsize/3600; } double StarCatalog::GetPixSize() const { return fPixSize*3600*TMath::RadToDeg(); } void StarCatalog::SetLimitMag(const float mag) { fLimitMag = mag; fAstro->SetLimMag(mag); } void StarCatalog::SetMjd(double mjd) { SlaStars::SetMjd(mjd); fAstro->SetTime(MTime(mjd)); } void StarCatalog::SetAltAz(const AltAz &altaz) { fAltAz = altaz * TMath::DegToRad(); fRaDec = CalcRaDec(fAltAz); fAstro->SetRaDec(fRaDec.Ra(), fRaDec.Dec()); } void StarCatalog::Reload() { fAstro->SetLimMag(99); //fAstro->ReadBSC("bsc5.dat"); //fAstro->ReadHeasarcPPM("heasarc_ppm.tdat"); fAstro->Delete(); fAstro->ReadCompressed("ppm9.bin"); fAstro->SetLimMag(fLimitMag); } void StarCatalog::SetRaDec(const RaDec &radec) { const RaDec rd = fRaDec*TMath::RadToDeg(); const Bool_t same = rd.Ra() >radec.Ra() -1e-5 && rd.Ra() radec.Dec()-1e-5 && rd.Dec()SetRaDec(fRaDec.Ra(), fRaDec.Dec()); if (!same) Reload(); } void StarCatalog::DrawCross(byte *img, const int x, const int y) { for (int dx=-4; dx<5; dx++) if (dx) img[y*768+x+dx] = 0xff; for (int dy=-4; dy<5; dy++) if (dy) img[(y+dy)*768+x] = 0xff; } void StarCatalog::GetImg(byte *img, byte *cimg, MStarList &list) const { memset(cimg, 0, 768*576); DrawStars(list, cimg); DrawCross(img, 768/2, 576/2); } void StarCatalog::DrawCircle(int color, byte *img, int xx, int yy, int size) { for (int x=xx-size; x767) continue; const float p = xx+size-x; const float q = 2*size - p; const int h = (int)sqrt(p*q); const int y1 = yy-h; if (y1>=0 && y1<576) img[y1*768+x] = color; const int y2 = yy+h; if (y2>=0 && y2<576) img[y2*768+x] = color; } } void StarCatalog::PaintImg(unsigned char *buf, int w, int h) { fAstro->PaintImg(buf, w, h); } void StarCatalog::DrawStars(MStarList &list, byte *img) { MStarListIter Next(&list); MStar *star; while ((star=Next())) { const int mag = (10 - (star->GetMag()>1 ? (int)star->GetMag() : 1))/2; Int_t color = 0xf0; //0x0f; // DrawStars flips the picture in X defaultwise now DrawCircle(color, img, 768-(int)star->GetX(), (int)star->GetY(), mag); } } /* void StarCatalog::CalcStars(MStarList &list) { // full FOV fBox=768/2; CalcStars(list, 768/2, 576/2, 0, 0); } */ void StarCatalog::CalcStars(MStarList &list, int xc, int yc, float offx, float offy) const { // const Int_t offx = 768/2 + xo; // const Int_t offy = 576/2 + yo; // Allow catalog stars to be a bit outside [0.2deg] of the // monitored window. To get the std behaviour set offset=0 const Int_t offset = TMath::Nint(0.2*TMath::DegToRad()/fPixSize); const Int_t boxx = fBoxX+offset; const Int_t boxy = fBoxY+offset; // CalcStars flips the picture in X defaultwise now // This defined the box in which stars are really returned const int x0 = TMath::Max((768-xc)-boxx, -offset); const int y0 = TMath::Max(yc-boxy, -offset); const int x1 = TMath::Min((768-xc)+boxx, fW+offset); const int y1 = TMath::Min(yc+boxy, fH+offset); /* const int x0 = TMath::Max((768-xc)-box, -offset); const int x1 = TMath::Min((768-xc)+box, fW+offset); const int y0 = TMath::Max(yc-box-100, -offset); const int y1 = TMath::Min(yc+box+100, fH+offset); */ /* // Align stars into telescope system // (Move the telescope to pointing position) TRotation align; align.RotateZ(-fAltAz.Az()); align.RotateY(-(TMath::Pi()/2-fAltAz.Alt())); align.RotateZ(TMath::Pi()/2); */ TRotation rot; rot.RotateY(-(TMath::Pi()/2-fAltAz.Alt())); // Get List of stars from catalog TIter Next(fAstro->GetList()); TVector3 *star=0; const Double_t limmag = pow(10, -fLimitMag/2.5); while ((star=(TVector3*)Next())) { // Check for limiting magnitude const Double_t mag = star->Mag(); if (mag < limmag) continue; // Get star position and do an apropiate // conversion to local coordinates const RaDec rd(star->Phi(), TMath::Pi()/2-star->Theta()); const ZdAz za(CalcZdAz(rd)); TVector3 v; //v.SetMagThetaPhi(1., TMath::Pi()/2-za.Alt(), za.Az()-fAltAz.Az()); v.SetMagThetaPhi(1., za.Zd(), za.Az()-fAltAz.Az()); v *= rot; if (v(2)<0) continue; // Stretch such, that the Z-component is alwas the same. Now // X and Y contains the intersection point between the star-light // and the plain of a virtual plain screen (ccd...) v *= 1./v(2); // Do unit conversion to pixels v *= 1./fPixSize; const Double_t x = -v.Y(); const Double_t y = v.X(); /* // Virtually move telescope to pointing position TVector3 loc; loc.SetMagThetaPhi(1, za.Zd(), za.Az()); loc *= align; // Sanity check if (loc(2)<0) continue; // Stretch such, that the Z-component is alwas the same. Now // X and Y contains the intersection point between the star-light // and the plain of a virtual plain screen (ccd...) loc *= 1./loc(2); // Do an apropriate unit conversion to pixels loc *= 1./fPixSize; const Double_t x = loc.X(); const Double_t y = loc.Y(); */ // if (loc.Mod2()>fRadiusFOV*fRadiusFOV) // continue; // Rotate by the rotation angle of the video camera // and add the offsets on both axis const Double_t xx = x*fCosAngle - y*fSinAngle + 768 - offx; const Double_t yy = x*fSinAngle + y*fCosAngle + offy; // Check if the resulting star is in the // search box for the real stars if (xx=x1 || yy=y1) continue; // Store pixel coordinates of star in list list.Add(xx, yy, -2.5*log10(mag)); } } /* AltAz StarCatalog::CalcAltAzFromPix(Double_t pixx, Double_t pixy) const { double dx = (pixx-576/2)*fCosAngle + (pixy-768/2)*fSinAngle; double dy = -(pixx-576/2)*fSinAngle + (pixy-768/2)*fCosAngle; dx *= fPixSize; dy *= fPixSize; //const double dx = (pixx-768.0)*fPixSize + fWidth+DPI; //const double dy = pixy*fPixSize - fHeight; double ha, dec; slaDh2e(dx, dy, DPI/2-fAltAz.Alt(), &ha, &dec); return AltAz(-dec, ha+fAltAz.Az()); } */ ZdAz StarCatalog::CalcDeltaZdAzFromPix(Double_t dpixx, Double_t dpixy) const { double dx = dpixx*fCosAngle + dpixy*fSinAngle; double dy = -dpixx*fSinAngle + dpixy*fCosAngle; TVector3 loc(dy, -dx, 1./fPixSize); loc.RotateY(TMath::Pi()/2-fAltAz.Alt()); return ZdAz(loc.Theta()-TMath::Pi()/2+fAltAz.Alt(), -loc.Phi()); /* // Align stars into telescope system // (Move the telescope to pointing position) TRotation align; align.RotateZ(-fAltAz.Az()); align.RotateY(-(TMath::Pi()/2-fAltAz.Alt())); align.RotateZ(TMath::Pi()/2); TVector3 loc(dx, dy, 1./fPixSize); loc *= align.Inverse(); cout << (TMath::Pi()/2-loc.Theta()-alt)*TMath::RadToDeg() << " " << (loc.Phi()-az)*TMath::RadToDeg() << endl; TVector3 loc(dx, -dy, 1./fPixSize); loc *= align.Inverse(); return ZdAz(loc.Theta(), loc.Phi());*/ }