#include "MSlewing.h" #include "MLogManip.h" #include "MCosy.h" #include "dkc.h" #include "MDriveCom.h" #include "MString.h" #include "MPointing.h" ClassImp(MSlewing); using namespace std; //#define EXPERT #undef EXPERT bool MSlewing::SetAcc(Dkc *mac, Float_t acc) { // FIXME: Get acceleration scale from DKC! mac->SetAcceleration(TMath::Nint(acc*1000000000)); return !mac->IsZombieNode(); } // -------------------------------------------------------------------------- // // set the velocity and accelerations for position maneuvers. // // The acceleratin is set as given (in percent of maximum). // The velocity is given in percent, depending on the ratio (<1 or >1) // one of the axis becomes a slower velocity. This is used for maneuvers // in which both axis are moved synchromously and should reach their // target position at the same time. // void MSlewing::SetPosVelocity(const ZdAz &res, Float_t vel) { const Double_t taz = TMath::Abs(res.Az())/fCosy->fMac1->GetVelMax(); const Double_t tzd = TMath::Abs(res.Zd())/fCosy->fMac2->GetVelMax(); if (tzd > taz) { fCosy->fMac1->SetVelocityRel(vel*TMath::Abs(res.Az()/res.Zd())); fCosy->fMac2->SetVelocityRel(vel); } else { fCosy->fMac1->SetVelocityRel(vel); fCosy->fMac2->SetVelocityRel(vel*TMath::Abs(res.Zd()/res.Az())); } } // -------------------------------------------------------------------------- // // Does an absolute positioning. // // The steps to move are given in a ZdAz object relative to the current // position. The coordinates are given in Roteryencoder steps. // Axis 1 is moved only if axe1==kTRUE, Axis 2 is moved only // if Axis 2==kTRUE. The function waits for the movement to be finished. // void MSlewing::DoAbsPos(const ZdAz &rd, const Bool_t axe1, const Bool_t axe2) { if (fCosy->HasZombie()) return; fCosy->SetStatus(MDriveCom::kMoving); if (axe1) fCosy->fMac2->StartAbsPosRev(rd.Zd()); if (axe2) fCosy->fMac1->StartAbsPosRev(rd.Az()); if (axe1) fCosy->fMac2->WaitForSdo(0x6004, 0); if (axe2) fCosy->fMac1->WaitForSdo(0x6004, 0); // FIXME: We need a delay here to account for the delay of the // toggle bit in the SPS. We need a more precise return value from // the SPS: usleep(150000); #ifdef EXPERT cout << "Waiting for positioning..." << flush; #endif fCosy->WaitForEndMovement(); #ifdef EXPERT cout << "done." << endl; #endif } bool MSlewing::Break() { return fCosy->Break() || fCosy->HasError() || fCosy->HasZombie(); } // -------------------------------------------------------------------------- // // Caluclate the difference between feedback 1 and feedback 2 at // the given zenith angle (feedback 2) // Double_t MSlewing::GetDiff(const ZdAz &za) const { const Double_t zd = za.Zd(); //[revolutions] const Double_t sh = -1.21 *(TMath::SinH(0.916*zd*TMath::TwoPi())-1); const Double_t cs = 0.667 *TMath::Cos(1.735*(zd-0.236)*TMath::TwoPi()); const Double_t of = 0.6497; return (sh+cs+of)/360; //[revolutions] } // -------------------------------------------------------------------------- // // Move the telescope to the given position. The position must be given in // a ZdAz object in rad. // // The first positioning is done absolutely. If we didn't reach the // correct psotion we try to correct for this by 10 relative position // maneuvers. If this doesn't help positioning failed. // // As a reference the shaftencoder values are used. // int MSlewing::SetPosition(const ZdAz &dst, Bool_t track) // [rad] { gLog << all << MTime(-1) << " - Target Position: " << dst.Zd()*TMath::RadToDeg() << "deg, " << dst.Az()*TMath::RadToDeg() << "deg (Zd/Az)" << endl; // // Because we agreed on I don't search for the shortest move // anymore // // const ZdAz dest = CorrectTarget(src, dst); // const ZdAz bend = fCosy->fBending(dst); // [rad] const ZdAz dest = bend/TMath::TwoPi(); // [revolutions] // Check whether bending is valid! if (!fCosy->CheckRange(bend)) return kFALSE; fCosy->fZdAzSoll = dst; int i; for (i=0; i<(track?1:10) && !Break(); i++) { gLog << inf2 << "- Step #" << i << endl; // Get feedback 2 const ZdAz sepos = fCosy->GetSePos(); // Calculate residual to move deviation const ZdAz res = dest-sepos; // [revolutions] gLog << inf2 << "- Shaftencoders show a residual deviation of dZd="; gLog << MString::Format("%.2f", res.Zd()*360*60) << "' and dAz="; gLog << MString::Format("%.2f", res.Az()*360*60) << "'" << endl; // Check which axis should still be moved ZdAz cd = res; // [revolutions] cd *= 1./fMaxResidual; // Scale to units of the maximum residual cd.Abs(); // Check if there is a control deviation on the axis const Bool_t cdzd = cd.Zd()>0.5 ? kTRUE : kFALSE; const Bool_t cdaz = cd.Az()>0.5 ? kTRUE : kFALSE; // check if we reached the correct position already if (!cdzd && !cdaz) { gLog << all << MTime(-1) << " - Positioning done in " << i << (i==1?" step.":" steps.") << endl; fCosy->SetStatus(MDriveCom::kStopped); fCosy->fCom->SendStatus("Target position reached."); return TRUE; } // ============================================== // Estimate the noncircularity of the zd axis #ifdef FACT const Double_t add = 0; #else const Double_t add = GetDiff(sepos)-GetDiff(dest); #endif const ZdAz dest2(dest.Zd()+add, dest.Az()); const ZdAz res2 = dest-sepos; // ================================================= //gLog << warn << "WARNING - The center of the elevation axis is taken as center of the drive bow" << endl; SetAcc(fCosy->fMac1, fAcc.Az()); SetAcc(fCosy->fMac2, fAcc.Zd()); SetPosVelocity(res2, fVel); gLog << inf2 << "- Do absolute positioning..." << endl; DoAbsPos(dest2, cdzd, cdaz); gLog << inf2 << "- Absolute Positioning Done" << endl; } if (i==1 && track && !Break()) { gLog << all << MTime(-1) << " - Positioning done." << endl; fCosy->SetStatus(MDriveCom::kStopped); fCosy->fCom->SendStatus("Tracking preposition reached."); return TRUE; } if (i<10) fCosy->StopMovement(); else fCosy->SetStatus(MDriveCom::kStopped); gLog << warn << MTime(-1) << " - Warning: Requested position not reached (i=" << i << ")" << endl; fCosy->fCom->SendStatus("Target position missed!"); return FALSE; }