| 1 | #!/usr/bin/env python2
|
|---|
| 2 | # coding: utf-8
|
|---|
| 3 | """
|
|---|
| 4 | authors: Max Ahnen, Dominik Neise
|
|---|
| 5 | ----------------------------------------------------------------------------
|
|---|
| 6 | "THE BEER-WARE LICENSE" (Revision 42):
|
|---|
| 7 | Max Ahnen and Dominik Neise wrote this file. As long as you retain this notice you
|
|---|
| 8 | can do whatever you want with this stuff. If we meet some day, and you think
|
|---|
| 9 | this stuff is worth it, you can buy us a beer.
|
|---|
| 10 | ----------------------------------------------------------------------------
|
|---|
| 11 |
|
|---|
| 12 | This script calculates the mean of the SQM magnitude for a given run
|
|---|
| 13 | (run is given by its start_ and stop_time)
|
|---|
| 14 | and the p-value for a linear fit.
|
|---|
| 15 |
|
|---|
| 16 | We hope that this will be used to separate good data, where
|
|---|
| 17 | the linear fit is perfect (p-value > 1e-3?) and bad fits,
|
|---|
| 18 | where clouds let the magnitude brightness fluctuate stronger,
|
|---|
| 19 | so the fit worsens.
|
|---|
| 20 |
|
|---|
| 21 | Returns: a string
|
|---|
| 22 | "results {mean magnitude:f} {p-value:f}"
|
|---|
| 23 | """
|
|---|
| 24 |
|
|---|
| 25 | from astropy.io import fits
|
|---|
| 26 | import numpy as np
|
|---|
| 27 | import scipy as sp
|
|---|
| 28 | import sys
|
|---|
| 29 | import ROOT
|
|---|
| 30 |
|
|---|
| 31 | import pandas as pd
|
|---|
| 32 | from sqlalchemy import create_engine
|
|---|
| 33 |
|
|---|
| 34 | import glob
|
|---|
| 35 |
|
|---|
| 36 | from calendar import timegm
|
|---|
| 37 | import time
|
|---|
| 38 |
|
|---|
| 39 | database = {
|
|---|
| 40 | 'user': 'factread',
|
|---|
| 41 | 'password': 'r3adfac!',
|
|---|
| 42 | 'host': '129.194.168.95',
|
|---|
| 43 | 'table': 'factdata',
|
|---|
| 44 | }
|
|---|
| 45 |
|
|---|
| 46 | root_database = {
|
|---|
| 47 | 'user': 'root',
|
|---|
| 48 | 'password': '1440Gapd',
|
|---|
| 49 | 'host': 'localhost',
|
|---|
| 50 | 'table': 'factdata',
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 |
|
|---|
| 54 | db_string = '{user}:{password}@{host}/{table}'
|
|---|
| 55 |
|
|---|
| 56 | try:
|
|---|
| 57 | factdb = create_engine('mysql+mysqldb://'+ db_string.format(**database))
|
|---|
| 58 | factdb_root = create_engine('mysql+mysqldb://'+ db_string.format(**root_database))
|
|---|
| 59 | except ImportError:
|
|---|
| 60 | factdb = create_engine('mysql+pymysql://'+db_string.format(**database))
|
|---|
| 61 | factdb_root = create_engine('mysql+pymysql://'+db_string.format(**root_database))
|
|---|
| 62 |
|
|---|
| 63 |
|
|---|
| 64 | def get_list_of_SQM_files(base_path='/daq/aux'):
|
|---|
| 65 | return sorted(glob.glob(base_path+'/*/*/*/*.SQM_CONTROL_DATA.fits'))
|
|---|
| 66 |
|
|---|
| 67 | def get_y_m_d(file_path):
|
|---|
| 68 | s = file_path.split('/')[-1].split('.')[0]
|
|---|
| 69 | return s[0:4], s[4:6], s[6:8]
|
|---|
| 70 |
|
|---|
| 71 | def get_night(file_path):
|
|---|
| 72 | return file_path.split('/')[-1].split('.')[0]
|
|---|
| 73 |
|
|---|
| 74 | def mag_mean_p_value(fits_file_path, start_time, stop_time):
|
|---|
| 75 |
|
|---|
| 76 | d = fits.open(fits_file_path)[1].data
|
|---|
| 77 | d = d[(d['Time'] > start_time) * (d['Time'] < stop_time)]
|
|---|
| 78 | if len(d)==0:
|
|---|
| 79 | return None
|
|---|
| 80 |
|
|---|
| 81 | x = d['Time'].copy() - d['Time'][0]
|
|---|
| 82 | y = d['Mag'].astype(np.float64).copy()
|
|---|
| 83 | start_time, stop_time = x[0], x[-1]
|
|---|
| 84 |
|
|---|
| 85 | sigma = 0.025 / np.sqrt(12.)
|
|---|
| 86 | g = ROOT.TGraphErrors(len(x), x, y, np.zeros(len(x), dtype=np.float64), np.ones(len(x), dtype=np.float64)*sigma)
|
|---|
| 87 | f = ROOT.TF1("linfit", "pol1", start_time, stop_time)
|
|---|
| 88 | g.Fit(f, "E")
|
|---|
| 89 |
|
|---|
| 90 | function = f.Eval
|
|---|
| 91 | y_fit = map(function, x)
|
|---|
| 92 |
|
|---|
| 93 | result = {
|
|---|
| 94 | 'fSqmMagMean' : d['Mag'].mean(),
|
|---|
| 95 | 'fSqmMagLinFitPValue' : f.GetProb(),
|
|---|
| 96 | 'fSqmMagLinFitChi2' : f.GetChisquare(),
|
|---|
| 97 | 'fSqmMagLinFitNdf' : f.GetNDF(),
|
|---|
| 98 | 'fSqmMagLinFitSlope' : f.GetParameters()[1],
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | return result
|
|---|
| 102 |
|
|---|
| 103 | def timestamp_from_string(stri):
|
|---|
| 104 | return timegm(time.strptime(stri.replace('Z', 'UTC'),'%Y-%m-%d %H:%M:%S%Z'))
|
|---|
| 105 |
|
|---|
| 106 | def update_dict_in_database(some_dict, db, primary_keys=("fNight", "fRunID")):
|
|---|
| 107 | commands = []
|
|---|
| 108 | commands.append('BEGIN;')
|
|---|
| 109 |
|
|---|
| 110 | # "UPDATE RunInfo SET weight = 160, desiredWeight = 145 WHERE id = 1;"
|
|---|
| 111 | update_string = "UPDATE RunInfo SET "
|
|---|
| 112 | first = True
|
|---|
| 113 | for k in some_dict:
|
|---|
| 114 | if k not in primary_keys:
|
|---|
| 115 | if not first:
|
|---|
| 116 | update_string += ', '
|
|---|
| 117 | else:
|
|---|
| 118 | first = False
|
|---|
| 119 |
|
|---|
| 120 | update_string += "{0} = {1}".format(k, some_dict[k])
|
|---|
| 121 | update_string += " WHERE "
|
|---|
| 122 | first = True
|
|---|
| 123 | for k in some_dict:
|
|---|
| 124 | if k in primary_keys:
|
|---|
| 125 | if not first:
|
|---|
| 126 | update_string += ' AND '
|
|---|
| 127 | else:
|
|---|
| 128 | first = False
|
|---|
| 129 | update_string += "{0} = {1}".format(k, some_dict[k])
|
|---|
| 130 | update_string += ';'
|
|---|
| 131 |
|
|---|
| 132 | commands.append(update_string)
|
|---|
| 133 | commands.append('COMMIT;')
|
|---|
| 134 |
|
|---|
| 135 | # print commands
|
|---|
| 136 | for com in commands:
|
|---|
| 137 | db.engine.execute(com)
|
|---|
| 138 |
|
|---|
| 139 |
|
|---|
| 140 | if __name__ == "__main__":
|
|---|
| 141 | aux_files = get_list_of_SQM_files()
|
|---|
| 142 | for aux_file in aux_files:
|
|---|
| 143 | night = get_night(aux_file)
|
|---|
| 144 |
|
|---|
| 145 | query = ("SELECT fRunID, fRunStart, fRunStop from RunInfo"
|
|---|
| 146 | " WHERE fNight={0}").format(night)
|
|---|
| 147 |
|
|---|
| 148 | df = pd.read_sql_query(query, factdb)
|
|---|
| 149 |
|
|---|
| 150 | for i in range(df.shape[0]):
|
|---|
| 151 | row = df.iloc[i]
|
|---|
| 152 |
|
|---|
| 153 | try:
|
|---|
| 154 | run_start = timestamp_from_string(str(row['fRunStart'])+'Z')/(24.*3600.)
|
|---|
| 155 | run_stop = timestamp_from_string(str(row['fRunStop'])+'Z')/(24.*3600.)
|
|---|
| 156 | run_id = row['fRunID']
|
|---|
| 157 | except ValueError as e:
|
|---|
| 158 | print e
|
|---|
| 159 | print row['fRunStart'], row['fRunStop']
|
|---|
| 160 | continue
|
|---|
| 161 |
|
|---|
| 162 | result= mag_mean_p_value(aux_file, run_start, run_stop)
|
|---|
| 163 | if result is None:
|
|---|
| 164 | continue
|
|---|
| 165 | result['fNight'] = int(night)
|
|---|
| 166 | result['fRunID'] = run_id
|
|---|
| 167 |
|
|---|
| 168 | update_dict_in_database(result, factdb_root)
|
|---|
| 169 |
|
|---|
| 170 | print time.asctime(), aux_file, run_start, run_stop, result
|
|---|
| 171 |
|
|---|