source: trunk/Dwarf/Documents/ApplicationDFG/application.tex@ 8609

Last change on this file since 8609 was 8609, checked in by tbretz, 17 years ago
*** empty log message ***
File size: 54.1 KB
Line 
1\documentclass[12pt,openbib]{article}
2\usepackage{german,graphicx,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr}
3\usepackage[round]{natbib}
4
5\renewcommand{\familydefault}{\sfdefault}
6\usepackage{helvet}
7
8\setlength{\parindent}{0pt}
9
10\label{dummy}
11
12%cleardoubleplain,liststotoc,bibtotoc,idxtotoc,
13
14%\documentclass[a4paper,12pt,oneside,german]{article}
15%\usepackage[ansinew]{inputenc}
16
17\input library.def
18
19\frenchspacing
20
21\newcommand{\loi}{\large \textbf{LoI:}\normalsize}
22\newcommand{\anmerk}[1]{ \marginpar
23 [{\parbox[t]{19.mm}{\footnotesize\sf {#1}}
24 \parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}}]
25 {\parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}\parbox[t]{17.mm}{
26 \footnotesize \sf {#1} } } }
27
28
29%\textwidth17cm
30%\oddsidemargin-0.5cm
31%\oddsidemargin-1.cm
32%\textheight25cm
33%\topmargin=-1.5cm
34
35\title{Neuantrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a new research project}
36\author{Prof.\ Dr.\ Karl\ Mannheim\\Prof.\ Dr.\ Dr.\ Wolfgang Rhode}
37
38\begin{document}
39
40\maketitle
41
42%\noindent {\it Das Inhaltsverzeichnis dient nur zur "Ubersicht und ist im eigentlichen Antrag nicht enthalten. \\
43%
44%\
45%
46%{\underline{\bf to do Liste}}\\
47%\begin{itemize}
48% \item [1.6] Es muss sich jemand einen der Texte (oder ein Konglomerat daraus) aussuchen.
49% \item [2.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen.
50% \item [2.2] ist noch (von Wolfgang und Karl?) zu schreiben.
51% \item [3.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen.
52% \item [3.2] ist w"ortlich aus dem LoI kopiert und bedarf wom"oglich einer "Uberarbeitung im Sinne der Kapitel"uberschrift.
53% \item [4.x] sind sprachlich, inhaltlich und optisch zu "uberarbeiten.
54% \item [5.1] ist sprachlich (in deutsch lassen?) und inhaltlich (v.A. W"urzburg) zu "uberarbeiten.
55% \item [5.2] ist inhaltlich (u.A.) um die angegebenen Stichpunkte und Informationen aus W"urzburg zu erg"anzen.
56% \item [--] Plots und Bilder sind noch zu erg"anzen.
57% \item [--] Referenzen sind im ganzen Text noch zu erg"anzen.
58% \item [{\bf alles}] muss nat"urlich noch auf Orthographie und "`sprachliche Eleganz"' hin gegengelesen werden.
59%\end{itemize}
60%\newpage
61%}
62%\tableofcontents
63%\newpage
64%%%
65
66%{\LARGE{\bf
67%\begin{center}
68%Neuantrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a research project
69%\end{center}
70%}}
71
72\section[1]{Allgemeine Angaben/General Information}
73%\anmerk{Die Gliederung ist von der DFG vorgegeben}
74
75%Neuantrag auf Gew"ahrung einer Sachbeihilfe.
76
77\subsection[1.1]{Antragsteller/Applicants}
78% IN CASE A PROJECT IS DISTRIBUTED BETWEEN SEVERAL INSTITUTES
79% PLEASE GIVE AT LEAST ONE APPLICANT FOR EACH INSTITUTE;
80% ALSO, IN THIS CASE, THE PROPOSAL MUST MAKE CLEAR WHICH
81% RESOURCES GO TO WHERE, HOW THE WORK IS SPLIT, HOW THE INTERACTION
82% SHALL PROCEED ETC.
83%\setlength{\tabcolsep}{5em}
84
85\begin{tabular}{|p{0.44\textwidth}|p{0.22\textwidth}|p{0.22\textwidth}|}\hline
86{\bf Name}&\multicolumn{2}{l|}{\bf Akademischer Grad}\\
87{\sc Rhode, Wolfgang, Prof.~Dr.~Dr.}&\multicolumn{2}{l|}{Universit"atsprofessor (C3)}\\\hline\hline
88{\ }&{\bf Birthday}&{\bf Nationality}\\
89{\ }&Oct 17 1961&German\\\hline
90\multicolumn{3}{|l|}{\bf Institut, Lehrstuhl}\\
91\multicolumn{3}{|l|}{Institut f"ur Physik}\\
92\multicolumn{3}{|l|}{Experimentelle Physik V (Astroteilchenphysik)}\\\hline
93{\bf Address at work }&\multicolumn{2}{l|}{\bf Home address}\\[0.5ex]
94{Universit"at Dortmund }&\multicolumn{2}{l|}{ }\\
95{ }&\multicolumn{2}{l|}{Am Schilken 28 }\\
96{44221 Dortmund }&\multicolumn{2}{l|}{58285 Gevelsberg}\\
97{Germany }&\multicolumn{2}{l|}{Germany }\\[0.5ex]
98{\parbox[t]{1.5cm}{Phone:}+49\,(231)\,755-3550}&\multicolumn{2}{l|}{\parbox[t]{1.5cm}{Phone:}+49\,(931)\, }\\
99{\parbox[t]{1.5cm}{Fax:}+49\,(231)\,755-4547}&\multicolumn{2}{l|}{~}\\\hline\hline
100\multicolumn{3}{|c|}{{\bf email}: wolfgang.rhode@udo.edu}\\\hline
101
102\multicolumn{3}{c}{~}\\[1ex]\hline
103
104{\bf Name}&\multicolumn{2}{l|}{\bf Akademischer Grad}\\
105{\sc Mannheim, Karl, Prof.~Dr.}&\multicolumn{2}{l|}{Universit"atsprofessor (C4)}\\\hline\hline
106{\ }&{\bf Birthday}&{\bf Nationality}\\
107{\ }&Jan 4 1960&German\\\hline
108\multicolumn{3}{|l|}{\bf Institut, Lehrstuhl}\\
109\multicolumn{3}{|l|}{Institut f"ur Theoretische Physik und Astrophysik}\\
110\multicolumn{3}{|l|}{Lehrstuhl f"ur Astronomie}\\\hline
111{\bf Address at work }&\multicolumn{2}{l|}{\bf Home address}\\[0.5ex]
112{Julius-Maximilians-Universit"at}&\multicolumn{2}{l|}{ }\\
113{ }&\multicolumn{2}{l|}{Oswald-Kunzemann-Str. 12}\\
114{97074 W"urzburg }&\multicolumn{2}{l|}{97299 Zell am Main }\\
115{Germany }&\multicolumn{2}{l|}{Germany }\\[0.5ex]
116{\parbox[t]{1.5cm}{Phone:}+49\,(931)\,888-5031}&\multicolumn{2}{l|}{\parbox[t]{1.5cm}{Phone:} }\\
117{\parbox[t]{1.5cm}{Fax:}+49\,(931)\,888-4603}&\multicolumn{2}{l|}{~}\\\hline\hline
118\multicolumn{3}{|c|}{{\bf email}: mannhein@astro.uni-wuerzbueg.de}\\\hline
119\end{tabular}
120
121\newpage
122
123\paragraph{1.2 Topic (Thema)}~\\
124%% MAXIMAL 140 Zeichen fuer den DFG Jahresbericht
125%% AUCH IN DEUTSCH BEIFšGEN
126Long-term VHE $\gamma$-ray monitoring of bright blazars with a dedicated Cherenkov telescope
127
128\paragraph{1.3 Discipline and field of work (Fachgebiet und Arbeitsrichtung)}~\\
129Astronomy and Astrophysics, Particle Astrophysics
130
131\paragraph{\bf 1.4 Scheduled duration in total (Voraussichtliche Gesamtdauer)}~\\
1323\,years (+ seit wann das Vorhaben l"auft, seit wann es von der DFG gef"ordert wird)
133(evtl. gr"o"ser als der Antragszeitraum?)
134
135\paragraph{\bf 1.5 Application period (Antragszeitraum)}~\\
1363\,years. Work on the project may and will begin immediately after the
137funding.
138
139\paragraph{\bf 1.6 Summary (Zusammenfassung)}~\\
140% AUCH IN DEUTSCH BEIFšGEN
141We propose to set up an imaging air Cherenkov telescope with low-cost
142but high performance design for robotic operation. The goal is to
143achieve long-term monitoring of bright blazars which will unravel the
144origin and nature of their variability (und den zugrunde liegen
145Beschleunigungsmachanismen). The telescope design is based on a
146technological upgrade of one of the former telescopes of the HEGRA
147collaboration still located at the Observatorio Roque de los Muchachos
148on the Canarian Island La Palma (Spain). With the upgrade an
149improvement in senitivity by xx\% and a xx\% lower energy threshold
150will be achieved.
151
152{\em Nicht gescheduled von anderen IACTs?}
153
154%Beantragt \citeauthor{Chandrasekhar:1931} wird die F"orderung eines
155%Luft-Cherenkov-Teleskops f"ur Langzeitbeobachtungen von Gamma-Quellen
156%im Energiebereich zwischen 500 GeV und 50 TeV (DWARF=Dedicated
157%multiWavelength Astroparticle Research Facility). Mit DWARF sollen zwei
158%Aufgaben bei der Beobachtung erf"ullt werden:
159
160%1. weitgehend
161%automatisierte Langzeitbeobachtungen von bekannten hochenergetischen
162%Quellen. Solche Beobachtungen stehen nicht auf dem Programm der im
163%Betrieb befindlichen Generation von Cherenkov-Teleskopen 2.
164%Multiwavelenght-Kampangen mit Photon-Detektoren in unterschiedlichen
165%Energiebreichen, insbesondere auch mit dem Neutrino-Teleskop IceCube.
166%F"ur den Aufbau von DWARF soll die bestehende Infrastruktur auf dem
167%Roque de los Muchachos auf der kanarischen Insel La Palma genutzt
168%werden. Dort befindet sich der zur Zeit ungenutzte Mount des
169%ehemaligen ``HEGRA-Cherenkov-Teleskops 3'' sowie eine zur Plazierung
170%der Elektronik geeignete H"utte samt elektrischer Versorgung bei dem
171%Teleskop. Zur Minimierung von Peronalkosten soll das Teleskop nach der
172%Aufbauphase weitestgehend robotisch "uber das Internet / einen Link
173%"uber den ESA-Satelltien XYZ betrieben werden. Die mit DWARF
174%vorgenommenen Messungen dienen der Kl"arung der Frage nach der
175%zeitlichen Variabilit"at der Gamma-Emissionen von Aktiven Galaxien und
176%den zugrundeliegenden Beschelunigungsmechanismen der kosmsichen
177%Strahlung.\\
178
179{\em
180\begin{itemize}
181\item Kerziele des Antrags f"ur die bewilligenden Gremien
182\item Bei Bewilligung: Internet Datenbank
183\item Verwendung von themenrelevanten Schl"uselbegriffe
184\item M"oglichst keine Abk"urzungen
185\item Verst"andlichkeit auch f"ur nicht Fachleute (gegeben?)
186\item nicht mehr als 15 Zeilen oder max. 1600 Zeichen.
187\end{itemize}
188}
189
190\newpage
191
192\section[2]{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer}
193
194\subsection[2.1]{Stand der Forschung/State of the art}
195
196{\em
197\begin{itemize}
198\item Knapp und pr"azise in der unmittelbaren Beziehung zum Vorhaben
199\item Als Begr"undung f"ur eigene Arbeit
200\item incl. einschl"agiger Arbeiten anderer Wissenschaftler
201\item $\to$ Einordnung eigener Arbeit, welcher Beitrag zu welchen Fragen
202\end{itemize}
203}
204
205\textbf{Introduction:} Since the termination of the HEGRA observations,
206the succeeding experiments MAGIC and H.E.S.S.\ have impressively extended
207the physical scope of gamma ray observations by detecting tens of
208formerly unknown gamma ray sources and analyzing their energy spectra
209and temporal behavior. This became possible by lowering the energy
210threshold from 700 GeV to less than 100 GeV and increasing at the same
211time the sensitivity by a factor of five.\\ To fully exploit the
212discovery potential of the improved sensitivity, the discovery of new,
213faint objects has become the major task for the new telescopes. A
214diversity of astrophysical source types such as pulsar wind nebulae,
215supernova remnants, microquasars, pulsars, radio galaxies, clusters of
216galaxies, gamma ray bursts, and blazers can be studied with these
217telescopes and limits their availability for monitoring purposes of
218well-known bright sources.\\ There are strong reasons to make an effort
219for the continuous monitoring of the few exceptionally bright blazars.
220This can be achieved by operating a dedicated monitoring telescope of
221the HEGRA-type, referred to in the following as DWARF (Dedicated
222multiWavelength Agn Research Facility). The reasons are outlined in
223detail below.
224
225
226\subsubsection{High energy gamma and neutrino sources}
227
228%============================================================
229%Der TeV-Photon-Astronomie ist es in den letzten Jahrzehnten gelungen, {\bf 14}
230%extragalaktische und {\bf ???} galaktische Objekte am Himmel zu
231%identifizieren. Hinzu kommt die Detektion von zwei diffusen Regionen in der
232%Galaxie, die von H.E.S.S. {\bf ZITAT!} und Milagro {\bf ZITAT!!!} gesehen
233%wurden. Die erste Quelle wurde im Jahr {\bf 19??} von {\bf HEGRA ???}
234%beobachtet. Im Vergleich zu R\"ontgen-Messungen, die den Himmel nach Quellen
235%abscannen k\"onnen und dementsprechend mehr als {\bf 1000 ???} Quellen
236%katalogisiert haben {\bf ZITAT KATALOG XMM Newton/Chandra}, scheint diese
237%Anzahl jedoch sehr niedrig. Ein Grund ist das kleine Sichtfeld, was
238%Luft-Cherenkov Teleskope besitzen, ein weiterer, dass das TeV-Photon Signal weit entfernter Quellen
239%($z>0.2$) vom extragalaktischen Hintegrundlicht absorbiert wird.
240%Aufgrund der geringen Statistik an Quellen ist es zu diesem Zeitpunkt ist es notwendig, dass sich hochsensitive Instrumente
241%prim"ar auf die Untersuchung neuer Objekte am TeV-Photon-Himmel konzentrieren
242%und nicht auf die quantitative, permanente Beobachtung von schon bekannten
243%Quellen. Selbst wenn eine Quelle "uber einen l"angeren Zeitraum beobachtet
244%wurde, handelt es sich hier um einen Zeitraum von {\bf $<3$~Monaten ????}. In
245%dieser Zeit fallen jedoch sowohl Schlechtwetter-Perioden wie auch Phasen mit
246%starker Mond-Einstrahlung weg. Au{\ss}erdem muss beachtet werden, dass die
247%Quelle nur eine geringe Anzahl an Stunden sichtbar am Himmel ist.
248
249The TeV photon astronomy succeeded in discovering {\bf 14}
250extragalactic and {\bf ???} galactic objects at the sky during the past
251decades. Additionally there are two diffuse regions within our galaxy
252which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro {\bf ZITAT!!! }
253 {\it Neues Millagro Papier mit "TeV Gamma-Ray Sources from a Survex
254 of the Galactic Plane with Milagro} 4+ Quellregionen: "TeV
255Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro"
256Arxiv-Nr.: 0705.0707 The first source was discovered in the year
25719{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer
258anders, die zu allererst den Crab sahen?...ZITAT?)}. In comparison to
259x-ray measurments, which are able to scan the entire sky for sources
260and thus have cataloged more than {\bf 1000 ???} sources, this number
261appears to be quite small. One reason for this is the small field of
262view of imaging air cherenkov telesopes (IACTs), another reason the
263absorption of the TeV photon signal of distant ($z>0.2$) sources due to
264extragalactic background light (EBL). Due to this small statistic at
265the moment it is of particular importance that instruments with high
266sensitivity concentrate on the analysis of new objects in the TeV sky
267and not on the quantitative, permanent observation of already known
268sources. Even when a source was observed over a longer period of time
269this does mean {\bf less than three month ???? {\it Viel l"anger sind
270die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are es
271wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten
272hervorzuheben.}} But one has to take into account that during this time
273also periods of bad weather and times with strong moon light can
274significantly reduce observation time. Furthermore on has to consider
275that the sources are visible in the sky for few hours only. {\it Kann
276man das wirklich so sagen?}
277
278%Bei den bisher beobachteten galaktischen Objekten handelt es sich um
279%Mikroquasare und Supernova \"Uberreste, die identifizierten extragalaktischen
280%Objekte sind Aktive Galaxien (AGN). Die Objekte sind in Tabelle~\ref{tev_objects}
281%aufgelistet {\bf TESHIMAS VORTRAG IN MADISON}. Bei den AGN handelt es sich um
282%13 BLLacs und um eine FR-I Galaxie, M87.
283
284The so far observed galactic objects are microqasars and supernova
285remnands (SNR). The identified extragalactic sources are active
286galactic nuclei (AGN). The objects are listed in table~\ref{dummy} {\bf
287TESHIMAS VORTRAG IN MADISON}. The AGN are 13 BLLacs and one FR-I
288galaxy, M87. So High-peaked BL Lacertae objects are the prime source
289population for studies with Cherenkov telescopes. It is obvious that
290monitoring observations of strong blazars are orthogonal to the mission
291of the larger Cherenkov telescopes with their discovery potential for
292new sources (luminosity function, redshift distribution).
293
294%Im Falle von hadronischer Teilchenbeschleunigung in den TeV Quellen, kann das
295%TeV Signal von $\pi^0$-Zerf"allen herr"uhren. Die neutralen Pionen kommen
296%von Delta-Resonanz Zerf"allen, die durch Proton-Photon Wechselwirkungen
297%entstehen. Ein weiterer Kanal im Zerfall der Delta-Resonanz f"uhrt zur
298%Produktion von geladenen Pionen und damit zur Produktion von Neutrinos in
299%koinzidenz mit TeV Photonen. Daher sind TeV Quellen auch immer interessant
300%f"ur Hochenergie-Neutrinoteleskope.
301
302In case of hadronic particle acceleration within the TeV emitters, the
303TeV signal may arise from $\pi^0$-decays. These neutral pions are decay
304products of of delta resonances, which are formed in proton-photon
305interactions. Anther decay channel of the delta resonance leads to the
306production of charged pions and thus to neutrino production, coincident
307with the TeV photons mentioned before. Therefrom TeV sources are always
308interesting objects for investigations with high energy neutrino
309telescopes.
310
311%Die hohe Variabilit"at in der zeitlichen Entwicklung der AGN
312%TeV-Photon-Spektren kann bisher noch nicht schl"ussig erkl"art
313%werden
314The strong variability in the temporal evolution of the AGN TeV photon
315spectra cannot be explained conclusively yet,
316
317{\it .... blabla quantitative Untersuchungen, d.h.
318Langzeituntersuchungen notwendig.}
319
320{\bf SENSITIVIT\"ATSPLOT}\\
321{\bf TABELLE QUELLEN}\\
322{\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren}\\
323{\it Die Frage ist, ob man galaktische Quellen mit in die
324Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln
325durchgehen. Ich bau die Argumentation gerade nur auf AGN auf:}
326
327\begin{itemize}
328\item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet?
329\item Welche Sensitivit"at braucht man?
330\item Warum braucht man Langzeitbeobachtungen?
331\item Warum stehen diese Beobachtungen nicht auf der Speisekarte der
332gro"sen neuen Telekope?
333\end{itemize}
334
335\paragraph{Physikalische Modelle}
336Erkl"are die verschiedenen Szenarien:
337\begin{itemize}
338\item Inverse Compton
339\item Proton Synchrotron
340\item Pion decay
341\end{itemize}
342
343Unterschiede darstellen: Pion bump ist nicht so Spitz; Inverse Compton:
344wenn man den 2. bump erh"oht, erh"oht sich automatisch auch der
345erste; oft widerspruch zu den Daten. Ich glaube, Proton Synchrotron hat
346das Problem nicht so, und auch Pion Zerfall nat"urlich nicht.
347
348Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren
349
350\paragraph{Ergebnisse von Multiwavelangth-Kampangen}
351{\it hier m"ussen die verschiedenen Szenarien - inverse Compton von
352elektronen/ proton Synchrotron und Pion-Zerf"alle an Einzelf"allen
353diskutiert werden. Es gibt Bsp., bei denen Inverse Compton sehr gut
354klappt; dann gibt's welche, wo das gar nicht hinhaut. Einen Fall
355gibt's, wo Integral-Daten "uberhaupt nicht ins Bild passen. Da gibts
356z.B. ein Papier von Aharonian zu auf astro-ph - irgendwann aus den
357letzten 3 Monaten.}
358
359Experimente erw"ahnen: EGRET, COMPTEL, Integral, H.E.S.S., MAGIC, wer
360noch??? f"ur bisherige Spektren; GLAST zum F"ullen der L"ucke!!!
361
362Auch hier: Diskussion der Variabilit"at; ``Orphan Flares''...
363
364\paragraph{Die Photon-Neutrino-Verbindung}
365BLABLA-\\
366
367\textbf{The science case:} The variability of blazars, seen across the
368entire electromagnetic spectrum, arises from the dynamics of
369relativistic jets and the particle acceleration going on in them. The
370jets are launched from the vicinity of accreting supermassive black
371holes, and theoretical models predict variability arising from the
372interplay between jet expansion, particle injection, acceleration and
373cooling.\\
374
375Long-term monitor observations of bright blazars are the key to obtain
376a solid data base for variability investigations.
377
378\subsection{Eigene Vorarbeiten/Preliminary work by proposer}
379
380{\em
381\begin{itemize}
382\item Vollst"andige und konkrete Darstellung der eigenen Vorarbeiten
383\item Fremde/eigene Literatur kennzeichenen (ggf. \"im Druck\")
384\item Relevante wissenschaftl. Ver"offentlichung der letzen f"unf Jahre
385\item Relavante Vor"offentlichung beif"ugen
386\end{itemize}
387}
388
389
390\subsubsection{Quellphysik}
391
392\subsubsection{Beteiligung an Experimenten}
393
394\paragraph{MAGIC}
395
396\paragraph{IceCube}
397
398The Dortmund group is IceCube member and working since years on
399phenomenological calculations and data analysis of possible
400coincidences between VHE-gamma and neutrino-emission. \\
401
402The available automatic analysis package developed by the W"urzburg
403group for MAGIC is modular and flexible, and can thus be used with
404minor changes for the DWARF project.\\
405
406Ring-Methode f"ur wobble-modus aus W"urzburg?
407
408Monte Carlo production and storage will take place at Universit"at
409Dortmund Monte-Carlo-Erfahrung Dortmund $\to$ Marijkes Diplomarbeit
410
411A microcontroller based motion control unit (SPS) similar to the one of
412the current MAGIC II drive system will be used.\\
413$\to$DriveSystem-Erfahrung W"urzburg
414
415To correct for axis misalignments and possible deformations of the
416structure (e.g. bending of camera holding masts) a pointing correction
417algorithm as used in the MAGIC tracking system will be applied. It is
418calibrated by measurement of the reflection of bright guide stars on
419the camera surface and ensures a pointing accuracy well below the pixel
420diameter. \\ $\to$ Diplomarbeit Benjamin Riegel (W"urzburg)
421
422\section[3.1]{Ziele/Goals}
423
424\subsection{Ziele/Goals}
425
426{\em
427\begin{itemize}
428\item Gestraffte Darstellung des wissenschaftlichen Programs und Zielsetzung
429\item Ich denke das ist eine Art Abstract des Arbeitsprogramms.
430\end{itemize}
431}
432
433The present application aims at putting the former CT3 of the HEGRA
434collaboration on the Roque de los Muchachos back into operation - with
435an enlarged mirror surface and a new camera and data taking, under the
436name of DWARF. The sensitivity above 500\,GeV of this new instrument
437will thus correspond with the one of the also disused Whipple
438telescope. \textbf{WHIPPLE wird aber noch benutzt!!!}
439
440The layout of the telescope shall be carried out modular in
441such a sense that components of future telescopes (mirror, camera, DAQ)
442can be tested and optimized at this bodywork.
443
444%Wissenschaftlich sollen folgende Punkte realisiert werden:
445Scientifically the following aims shall be realized:
446
447\begin{itemize}
448%\item[(1)] Langzeitbeobachtungen zeitlicher Variationen von TeV-Gamma-Ray-Quellen.\\
449\item[(1)] Long-term observations of temporal variations of TeV gamma
450ray sources.\\
451An understanding of this variability will deepen our knowledge about
452 \begin{itemize}
453 \item the composition and generation of the jets, intimately connected
454to the physics of the ergosphere of rapidly spinning black holes
455embedded into the hot plasma from the accretion flow.
456 \item the plasma physics responsible for highly efficient particle
457acceleration, bearing similarities to plasma physics of the interaction
458between extremely intense laser beams and matter.
459 \item {the orbital modulation of jets due to binary black holes
460expected from galaxy merger models.\\ \textbf{the search for signatures of
461binary black hole systems from orbital modulation of VHE gamma ray
462emission}\\
463\textbf{\item Rieger, Mannheim; Implications of a possible 23 day periodocit for binary black hole models in Mkn 501
464\item Rieger, Mannheim; A possible black hole binary in Mkn 501
465\item Rieger; Periodic variability and binary black hole systems in blazars
466\item Rieger; Supermassive binary black holes among cosmic gamma-ray sources
467\item Rieger; On the geometric origin of periodicity in blazar-type sources
468}}
469 \end{itemize}
470Long-term monitor observations of bright blazars are the key to obtain
471a solid data base for variability investigations. Assuming
472conservatively the performance of a single HEGRA-type telescope,
473long-term monitoring of at least the following blazars is possible:
474Mrk421, Mrk501, 1ES 2344+514, 1ES 1959+650, H 1426+428, PKS 2155-304.
475We emphasize that DWARF will run as a facility dedicated to these
476targets only, providing a maximum observation time for the program.
477\textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2.
478aufgehoben?!}}
479\item[(2)] Coincident observations with gamma telescopes in different
480energy ranges:\\ Flux variations will be determined and compared with
481variability properties in other wavelength ranges.
482\item[(3)] Coincident observations with the neutrino telescope
483IceCube:\\ Hadronic emission processes and possible coincidences
484between VHE-gamma and neutrino-emission will be studied.
485\item [(5)] Furthermore, we seek to obtain know-how for the operation
486of future networks of Cherenkov telescopes (e.g. a monitoring array
487around the globe or CTA) or telescopes at inaccessible sites.
488\end {itemize}
489
490\subsection{Arbeitsprogramm/Work schedule}
491
492{\em
493\begin{itemize}
494\item Detaillierte Angaben "uber Vorgehen w"ahrend der Laufzeit
495\item Hauptkriterium f"ur die Genehmigung
496\item Halber Antrag
497\item Warum welche Mittel f"ur was beantragt werden
498\item Welche Methoden stehen zur Verf"ugung
499\item Welche Methoden m"ussen entwickelt werden
500\item Welche Hilfe von au"serhalb der eigenen Arbeitsgruppe ist notwendig
501\end{itemize}
502}
503
504At least one of the proposed targets will be visible any time of the
505year (see plot/appendix). For calibration purposes, some time will be
506scheduled for observations of the Crab nebula, which is the brightest
507known VHE emitter with constant flux.\\
508
509In detail the following investigations are planned:
510\begin{itemize}
511\item As direct result of the measurements, the duty cycle, the
512baseline emission, and the power spectrum of flux variations will be
513determined and compared with variability properties in other wavelength
514ranges.
515\item The lightcurves will be interpreted using models for the
516nonthermal emission from relativistically expanding plasma jets. In
517particular models currently developed in the context of the Research
518Training Group "Theoretical Astrophysics" in W"urzburg
519(Graduiertenkolleg, GK1147) shall be used. Particle acceleration is
520studied with hybrid MHD and particle-in-cell methods.
521\item {The black hole mass and accretion rate will be determined from
522the emission models. Estimates of the black hole mass from emission
523models, a possible orbital modulation, and the Magorrian relation
524(relating the black hole mass with the stellar bulge mass of the host
525galaxy) will be compared.
526\textbf{\item Rieger, Mannheim; On the central black hole mass in Mkn 501}}
527\item \textbf{To achieve a maximal database for these studies the observation
528schedule will be arranged together with the one for Whipple. (Letter of
529support?) ($\rightarrow$ collaboration with Veritas)}
530\item When flaring states will be discovered during the monitor
531program, MAGIC will issue a Target of Opportunity observation to obtain
532better time resolution (Letters of support?). Corresponding
533Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in
534preparation.
535\item
536\textbf{Additionally DWARF observations will be combined with
537simultaneous MAGIC observations via a software coincidence trigger.
538Recent simulations for CTA ref{MAGIC-CTA-Simulationen} show that by
539this kind of observation the energy range of the larger telescope can
540hugely be stretched to higher energies. This in turn leads to the so
541far unique possibility to cover an energy range of tens of GeV to
542several tens of TeV at the same time leading to the possibility of
543studying inverse compton peaks as well as absorption due to EBL
544simultaneously.}
545
546\item Correlating the arrival times of neutrinos detected by the
547neutrino telescope IceCube with simultaneous measurements of DWARF will
548allow to test the hypothesis that flares in blazar jets are connected
549to hadronic emission processes and thus to neutrino emission from these
550sources. The investigation proposed here is complete for both, neutrino
551and gamma observations, and can therefore lead to conclusive results.
552\item The diffusive fluxes of escaping UHE cosmic rays obtained from
553AUGER or flux limits of neutrinos from IceCube, respectively, will be
554used to constrain models of UHE cosmic ray origin and large-scale
555magnetic fields.
556\item Multi-frequency observations together with the Mets"ahovi Radio
557Observatory and the optical Tuorla Observatory are planned (Letters of
558support appendix). The measurements will be correlated with INTEGRAL
559and GLAST results, when available. X-ray monitoring using the SWIFT and
560Suzaku facilities will be proposed.
561\item The most ambitious scientific goal of this proposal is the search
562for signatures of binary black hole systems from orbital modulation of
563VHE gamma ray emission. In case of a confirmation of the present hints
564in the temporal behaviour of Mrk501, gravitational wave templates could
565be computed with high accuracy to establish their discovery with LISA
566(PhD project at W"urzburg funded by the German LISA consortium).
567\end{itemize}
568
569\textbf{The technical setup:} At the Observatorio de los Muchachos
570(ORM), at the MAGIC site, the mount of the former HEGRA telescope CT3
571now owned by the MAGIC collaboration is still operational. One hut for
572electronics close to the telescope is available. Additional space is
573available in the MAGIC counting house. The MAGIC Memorandum of
574Understanding allows for operating it as an auxiliary instrument, and
575basic support from the shift crew of MAGIC is guaranteed, although
576robotic operation is the primary goal. Robotic operation is necessary
577to reduce costs and man power demands. \textbf{Besides it reduces air
578pollution by significantly reducing traveling.} Furthermore, we seek to obtain
579know-how for the operation of future networks of Cherenkov telescopes
580(e.g. a monitoring array around the globe or CTA) or telescopes at
581inaccessible sites. From the experience with the construction and
582operation of MAGIC or HEGRA, respectively, the proposing groups
583consider the planned focused approach (small number of experienced
584scientists) as optimal for achieving the project goals. The available
585automatic analysis package developed by the W"urzburg group for MAGIC
586is modular and flexible, and can thus be used with minor changes for
587the DWARF project. Therefore construction, commissioning and operation
588of a small scale Cherenkov telescope are best suitable for education
589and training of students by experienced scientists.
590
591To complete the mount to a functional Cherenkov telescope within a
592period of one year, the following steps are necessary:
593
594\paragraph{Camera:}
595For long-term observations stability of the camera is a major
596criterion. To keep the systematic errors small good background
597estimation is mandatory. The only possibility for a synchronous
598determination of the background is the determination from the night-sky
599observed in the same field-of-view with the same instrument. To achieve
600this the observed position is moved out of the camera center which
601allows the estimation of the background from positions symmetric with
602respect to the camera center (so called wobble-mode). This observation
603mode increases the sensitivity by a factor of two \textbf{$\sqrt{2}$?} because spending
604observation for dedicated background observations becomes obsolete,
605which also ensures a better time coverage of the observed sources.
606Having a camera large enough allowing more than one independent
607position for background estimation increases sensitivity further by
608better background statistics. This is the case if the source can be
609shifted 0.6deg-0.7deg out of the camera center. A camera completely
610containing shower images of events in the energy region of 1TeV-10TeV
611should have a diameter in the order of 5 deg. To decrease the
612dependence of the background measurement on the camera geometry, a
613camera layout as symmetric as possible will be chosen. Consequently a
614camera allowing for wobble-mode observations should be round and have a
615diameter of 4.5deg-5.0deg.
616
617To achieve this requirements a 313 Pixel camera (see figure
618\ref{camDWARF}) will been build based on the experience with HEGRA and
619MAGIC. 19 mm diameter Photomultiplier Tubes (PM, EMI 4035) will be
620bought, similar to the HEGRA type (EMI\,9083\,KFLA). With a 20$\%$
621improved quantum efficiency they ensure a granularity which is enough
622to guarantee good results even below the energy threshold (flux peak
623energy). Each individual pixel has to be equipped with a preamplifier,
624an active high-voltage supply and control. The total expense for a
625single pixel will be in the order of 600 EURO.
626
627If development of G-APDs (QE$\ge$50$\%$) will be fast enough,
628respectively the price low enough, and their long term stability is
629proven well in time, their usage will be considered.
630
631For a transition time one of the old HEGRA cameras might be borrowed
632(see figure \ref{camCT3}). With a special coating (wavelength shifter)
633its quantum efficiency might be improved by ~8$\%$\cite{Paneque:2004}.
634\textbf{8\% sind für flat-window-pmts angegeben...nach den Zeichnungen
635in z.B. German Hermanns Diss. sind sie aber nicht völlig flach...demnach
636könnten wir wohl 19\% zitieren.}
637\textbf{Figure?}
638
639\paragraph{Camera support:}
640The camera chassis must be water tight. An automatic lid protecting the
641PMs at day-time will be installed. For further protection a plexi-glass
642window will be installed in the front of the camera. By over-coating
643the window with an anti-reflex layer of magnesium-fluoride a gain in
644transmission of 5$\%$ is expected. Each PM will be equipped with a
645light-guide (Winston Cone) as developed by UC Davis and successfully in
646operation in the MAGIC camera. (3000 EURO). The current design will be
647improved by using a high reflectivity aluminized Mylar mirror-foil,
648overcoated with a dialectical layer (SiO2 alternated with Niobium
649Oxide), to reach a reflectivity in the order of 98$\%$. In total this
650will gain ~15$\%$ in light-collection efficiency compared to the old
651CT3 system.
652
653For this setup the camera holding has to be redesigned. (1500EURO?)
654
655An electric and optical shielding of the individual PMs is planned.
656
657The mechanical work is done at Universit"at Dortmund.
658
659\paragraph{Data acquisition:}
660For the data acquisition system a hardware readout based on an analog
661ring buffer (Domino II/III), currently developed for the MAGIC II
662readout, will be used. This technology allows sampling the pulses with
663high frequencies and allows to readout several channels with a single
664Flash-ADC resulting in low-costs. The low power consumption will allow
665including the digitization near the signal source which makes an analog
666signal transfer obsolete. The advantage is less pick-up noise and less
667signal dispersion. By high sampling rates (0.5\,GHz-1.2\,GHz) additional
668information about the pulse shape can be obtained. This increasing the
669over-all sensitivity further, because the short integration time allows
670for almost perfect suppression of noise due to night-sky background
671photons. The estimated trigger- (readout-) rate of the telescope is
672below 100\,Hz (HEGRA: $<$10\,Hz) which allows to use a low-cost industrial
673solution for readout of the system like USB\,2.0. (30.000-45.000:
67495-145/channel).
675
676As for the HEGRA telescopes a simple multiplicity trigger is enough,
677but also a simple three-next-neighbors (closed package) could be
678programmed. ($<$30.000: $<$100/channel).
679
680To guarantee a homogenous trigger setup over the whole camera the
681individual pixel rates, dominated by night-sky noise, will be monitored
682and kept constant.
683
684Additional data reduction and preprocessing in the readout hardware or
685the readout computer is provided. Assuming conservatively storage of
686raw-data at a readout rate of 30\,Hz the storage space needed is less
687than 250\,GB/month or 3\,TB/year. This amount of data can easily be stored
688and processed by the W"urzburg Datacenter (current online capacity
689$>$20\,TB, offline capacity $>$30\,TB, $>$16\,CPUs). To archive the data
690safely 25 tapes (LTO3 with 400\,GB each, $\sim$1000\,EURO) and a SATA
691disk-array ($\sim$4000EURO) will be bought.
692
693\paragraph{On-site computing:}
694For on-site computing less than three standard PCs are needed
695($\sim$8.000EURO). This includes readout and storage, preprocessing,
696and telescope control. For safety reasons a firewall is mandatory. For
697local storage and backup two RAID\,5 SATA disk arrays with less than one
698Terabyte capacity each will fulfill the requirement ($\sim$4.000EURO).
699The data will be transmitted as soon as possible after data taking via
700Internet to the W"urzburg Datacenter.
701
702Monte Carlo production and storage will take place at Universit"at
703Dortmund
704
705For the absolute time necessary for an accurate source tracking a GPS
706clock will be bought.
707
708\paragraph{Mount and Drive:}
709The present mount is used. Only a smaller investment for safety,
710corrosion protection, cable ducts, etc. is needed (7.500).
711
712For movement motors, shaft encoders and control electronics in the
713order of 10.000 EURO have to be bought. The drive system should allow
714for relatively fast repositioning for three reasons: 1) Fast movement
715might be mandatory for future ToO observations. 2) Wobble-mode
716observations will be done changing the wobble-position continuously
717(each 20\,min) for symmetry reasons. 3) To ensure good time coverage of
718more than one source visible at the same the observed source will be
719changed in constant time intervals ($\sim$20\,min). Therefore three 150
720Watt servo motors are intended. A microcontroller based motion control
721unit (SPS) similar to the one of the current MAGIC II drive system will
722be used. For communication with the readout-system a standard Ethernet
723connection based on the TCP/IP- and UDP-protocol is applied.
724
725\paragraph{Security:}
726An uninterruptible power-supply unit (UPS) with 5-10\,kW will be
727installed to protect the equipment against power cuts and ensure a safe
728telescope position at the time of sun-rise. ($<$2000EURO)
729
730\paragraph{Mirrors:}
731The existing mirrors are replaced by new plastic mirrors which are
732currently developed by the group of Wolfgang Dr"oge. The cheap and
733light-weight material has been formerly used for Winston cones flown in
734balloon experiments. The mirrors are copied from a master, coated with
735a reflecting and a protective material. Previous tests have given
736promising results. By a change of the mirror geometry the mirror area
737can be increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture \ref{CT3} and
738montage \ref{DWARF}); this includes an increase of $\sim$10$\%$ per
739mirror by using a hexagonal layout. A further increase of the mirror
740area would require a reconstruction of parts of the mount and will
741therefore be considered only in later phase of the experiment.
742
743If the current development cannot be finished in time a re-machining of
744the old glass mirrors (8.5\,m$^2$) is possible with high purity aluminum
745and quartz coating. (Both cases: 30 mirrors, 10k, offer by L-Tec
746$\lesssim$500 EURO / mirror *30 mirrors = 15.000 EURO without transfer)
747
748\textbf{In both cases the mirrors can be coated with the same high
749reflectivity aluminized Mylar mirror-foil, and a dialectical layer of SiO2
750as for the Winston Cones (ref: Fraunhofer, private communication?). By this a
751gain in reflectivity of ~10\% is achieved.}
752
753To keep track of the alignment, reflectivity and optical
754quality of the individual mirrors, and the point-spread function of the
755total mirror, during long-term observations the application of an
756automatic mirror adjustment system, as developed by ETH Z"urich and
757successfully operated on the MAGIC telescope, is intended. The system
758will be provided by ETH Z"urich. (1.000 EURO/pannel)
759
760For a 3.5\,m \textbf{4\,m} diameter mirror the delay between an isochronous parabolic
761mirror and a spherical mirror at the edge is in the order of\textbf{well below} 1ns (see
762figure/appendix). For a sampling rate in the order of 1\,GHz a mirror
763mounting with a parabolic shape is \textbf{not} needed. Since their small size the
764individual mirrors can still\textbf{also} have a spherical shape.
765
766\paragraph{Telescope calibration:}
767
768Tracking: To correct for axis misalignments and possible deformations
769of the structure (e.g. bending of camera holding masts) a pointing
770correction algorithm as used in the MAGIC tracking system will be
771applied. It is calibrated by measurement of the reflection of bright
772guide stars on the camera surface and ensures a pointing accuracy well
773below the pixel diameter. Therefore a high sensitive low-cost video
774camera, as already in operation for MAGIC I and II, (300 EURO camera,
775300 EURO optics, 300 EURO housing) will be installed.
776
777PM Gain: For the calibration of the PM gain a calibration system as
778used for the MAGIC telescope is build. (2.000 EURO)
779
780Summarizing, the expenses for the telescope are dominated by the camera
781and DAQ. The financial volume for the complete hardware inclusive
782transport amounts roughly 400.000 EURO.
783
784\textbf{Future extensions:} The known duty cycle of 10\%
785($\sim$1000h/year) for a Cherenkov telescope operated at La Palma
786limits the time-coverage of the observations. Therefore we propose a
787worldwide network of ($<$10) small scale Cherenkov telescopes to be
788build in the future allowing 24\,h monitoring of the bright AGNs. Such a
789system is so far completely unique in this energy range. In a first
790stage of the project mounts of other former HEGRA telescopes could be
791used operated at locations in Croatia, the United States and Mexico.
792For an increased sensitivity and improved energy threshold the use of a
793low-cost mount build by the company MERO for solar power generation is
794proposed. The mount is based on the experiences with the MAGIC
795telescope, also builds by MERO, and has a diameter in the order of
796eight meters. Including support (concrete foundation, railways, etc)
797the costs are below 100.000EURO
798\textbf{The intended future use of a camera built of G-APDs will by their
799highly improved QE (50\% instead of 20\%) increase the sensitivity by a factor
800of $\sim$2 and additionally lower the threshold by an equal amount.\\
801MAGIC PMTs?}
802
803\begin{figure}[ht]
804\centering{
805\includegraphics[width=12cm]{cam271.eps}
806\caption{Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.}
807\label{camDWARF}
808}
809\end{figure}
810
811\begin{figure}[ht]
812\centering{
813\includegraphics[height=0.4\textheight]{cam313.eps}
814\caption{Schematic picture of the 271 pixel CT-3 camera with a field of view of 4.6$^\circ$.}
815\label{camCT3}
816}
817\end{figure}
818
819\begin{figure}[ht]
820\centering{
821\includegraphics[height=0.4\textheight]{cam313.eps}
822\caption{Picture of the HEGRA CT-3 taken at a time when it was still in operation.}
823\label{CT3}
824}
825\end{figure}
826
827\begin{figure}[ht]
828\centering{
829\includegraphics[height=0.4\textheight]{cam313.eps}
830\caption{Photo montage of DWARF as it will look alike after the mirror replacement.}
831\label{DWARF}
832}
833\end{figure}
834
835\clearpage
836\newpage
837\paragraph{3.3 ???? Untersuchungen}~\\
838n/a
839
840\paragraph{3.4 ???? Untersuchungen}~\\
841n/a
842
843\paragraph{3.5 ???? Untersuchungen}~\\
844n/a
845
846\newpage
847
848
849\section[4]{Beantragte Mittel/Funds requested}
850
851We request funding for a total of three years.
852
853\subsection[4.1]{Personalbedarf/Required staff}
854%Wir beantragen die F"orderung von je einem Postdoc und Doktoranden in
855%W"urzburg und Dortmund.
856We request funding for two postdocs (BATIIa, 3y) and two Ph.D. students
857(BATIIa/2, 3y), one in Dortmund and one in W"urzburg each.
858
859(im Antrag ist der qualifizierte Einsatz der studentischen Hilfskraefte
860darzulegen, KEINE Betr"age angeben!)
861
862(Bezahlung ab wann?, Kurzer Abriss der Aufgaben, ggf. Namen)
863
864\anmerk{2 Institute x 3 Jahre x (1
865PD = 60.000 + 1 PhD = 30.000) = 2 x 250.000 = 500.000}
866
867%Von den Mitarbeitern sollen folgende Aufgaben erf"ullt werden:
868The staff members shall fulfill the following tasks:
869
870\begin{itemize}
871
872\item Postdoc W"urzburg
873
874\item Doktorand W"urzbug
875
876\item Postdoc Dortmund
877
878\item Doktorand Dortmund
879
880\end{itemize}
881
882%Geeignete und ggf. interessierte Kandidaten f"ur Postdocstellen sind...
883Suitable candidates interested in these positions are Dr. xxx, Dr. yyy,
884Dipl.-Phys. zzz and Dipl.-Phys. www.
885
886\subsection[4.2]{Wissenschaftliche Ger"ate/Scientific equipment}
887
888{\em
889\begin{itemize}
890\item Alle Ger"ate "uber 10kEur, so spezifizieren, dass nach Bewilligung von der DFG beschafft werden k"onnen
891\item Alle Ger"ate unter 10kEur, "Ubersicht mit Modellen, Begr"undung der Notwendigkeit
892\end{itemize}
893}
894
895
896{\bf Camera} (self-made)\dotfill 204.000,00\,Eur\\[1ex]
897 313\,pixels \'a\\
898 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
899 Photomultiplier Tube EMI 4051\hfill 350,00\,Eur\\
900 High voltage support and control (EMI)\hfill 250,00\,Eur\\
901 Preamplifier\hfill 50,00\,Eur\\
902 \end{minipage}\\[-0.5ex]
903\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{The chosen PMT is the
904successor of the PMT type formerly used in the HEGRA cameras. It has
905an 25\% enhances quantum efficiency and will be delivered with the HV
906support and control, including the control electronics such as the high
907voltage power supply.}\\[2ex]
908
909{\bf Data acquisition}(self-made)\dotfill 77.000\,Eur\\[1ex]
910 313\,pixels \'a\\
911 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
912 Readout/channel\hfill 145,00\,Eur\\
913 Trigger/channel\hfill 100,00\,Eur\\
914 \end{minipage}\\[-0.5ex]
915\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{Wie schreiben wir das auf?
916Wenn ich es richtig verstehe k"onnen wir nicht schreiben wir w"urden
917f"ur Riccardo die Elektronik bezahlen, denn sagt die DFG das m"u"ste
918Riccardo selber beantragen. Es ist ja nicht ausgeschlossen, da"s er es
919tut.}\\[2ex]
920
921{\bf Calibration System}\dotfill 9.000\,Eur\\[1ex]
922 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
923 Absolute light calibration\hfill 2.000\,Eur\\
924 Individual pixel rate control\hfill ?.???\,Eur\\
925 Weather station\hfill 500\,Eur\\
926 GPS clock\hfill 1.500\,Eur\\
927 CCD camera with readout\hfill 5.000\,Eur\\
928 \end{minipage}\\[-0.5ex]
929\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{The GPs clock is necessary
930for an accurate tracking. The light calibration box (was ist das?) will
931be baught from the institute which produced the MAGIC calibration box.
932The weather station helps judging the data quality and the CCD cameras
933are necessary for calibration of the tracking system (misalignment of
934the telescope) and mispointing correction, e.g. due to wind gusts.}\\[2ex]
935
936{\bf Mirrors} (total expense)\dotfill 15.000\,Eur\\
937
938{\bf On-site computing}\dotfill 12.000\,Eur\\
939 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
940 Three PCs\hfill 8.000\,Eur\\
941 SATA RAID 3\,TB\hfill 4.000\,Eur\\
942 \end{minipage}\\[-0.5ex]
943
944{\bf Computing}\dotfill 4.000\,Eur\\
945 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
946 3\,TB disk extension\hfill 4.000\,Eur\\
947 \end{minipage}\\[-0.5ex]
948
949\hspace*{0.66\textwidth}\hrulefill\\[0.5ex]
950\hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Summe 4.1:\hfill{\bf 500.000\,Eur}\hfill\hspace*{0pt}\\[-1ex]
951\hspace*{0.66\textwidth}\hrulefill\\[-1.9ex]
952\hspace*{0.66\textwidth}\hrulefill\\
953
954
955%@{\extracolsep{1em} \vfill
956%\begin{tabular*}{\textwidth}{@{}l@{\extracolsep\fill}r@{}}
957%\begin{tabular*}{\textwidth}{l@{\extracolsep\fill}|r|r}
958%{\bf Ger"at A} (Typ)&& 1.000,75\,Eur\\
959%Angebor der Firma xyz vom&&\\[1ex]
960%{\bf Ger"at B} (Typ)&& 1.000,75\,Eur\\
961%Angebot der Firma... vom&&\\[1ex]
962
963%{\bf Camera} (Eigenbau)&& 204.000\,Eur\\[0.1ex]
964%313\,Pixel*650\,Euro/Pixel&&\\
965
966%\multicolumn{2}{p{0.5\textwidth}}
967%{
968% \begin{tabular}{@{\hspace{1.5em}}l@{\extracolsep\fill}r}
969% 313 Pixel a 650,00\,Eur&xxx,yy Eur\\
970% \multicolumn{2}{p{1.0\textwidth}}
971% {
972% \end{tabular}
973% }\\[0.1ex]
974% Winston Cones&3.000,00\,Eur\\
975% Holding and chassis&3.000,00\,Eur\\
976% \end{tabular}
977
978 %begin{list}{-}{\topsep 0pt\parskip 0pt }
979 %\begin{itemize}
980 %\item Pixel: 650EURO/Pixel
981 % \begin{itemize}
982 % %\begin{itemize}
983 % \item 300-350Euro Photomultiplier (EMI 4051)
984 % \item 50EURO Preamplifier
985 % \item 200-250EURO HV control and support (EMI)
986 % \end{itemize}
987 %\item Winston Cones: 3000Eur (?)
988 %\item Camera holding and chassis: 3000EURO(?)
989 %\end{itemize}
990%}\\
991
992%Linie nur rechts&&\\ \cline{3-3}\\[-1.5ex]
993%&Summe 4.2&{\bf 250.000 Eur}\\ \cline{3-3}\\[-1.9ex]\cline{3-3}
994%\end{tabular*}
995
996
997\begin{itemize}
998
999%\item Data acquisition: 313channel*245EURO/channel ~ 77.000EURO
1000% \begin{itemize}
1001% \item 145 (95) EURO/channel Readout
1002% \item 100EURO/channel Trigger
1003% \end{itemize}
1004
1005%\item Calibration System: 9.000EURO
1006% \begin{itemize}
1007% \item 2000EURO Absolute light calibration?
1008% \item IPR control?
1009% \item Weather station 500EURO
1010% \item 1500EURO GPS clock
1011% \item 5.000EURO CD Cameras + readout
1012% \end{itemize}
1013
1014
1015%\item On-site computing: 12.000EURO
1016% \begin{itemize}
1017% \item 3xPC: 8000EURO
1018% \item SATA RAID 3TB: 4000EURO
1019% \end{itemize}
1020%
1021%\item Computing: 4.000EURO
1022% \begin{itemize}
1023% \item 3TB SATA Disk space: 4000EURO(?)
1024% \end{itemize}
1025
1026\item AMC: 1000EURO/pannel
1027\item UPS: 2000EURO
1028\item 7.500EURO Robotics
1029
1030\end{itemize}
1031
1032\subsection{Verbrauchsmaterial/Consumables}
1033{\em
1034\begin{itemize}
1035\item Chemikalien, Glaswaren, etc. (Werkzeug?)
1036\item Stromrechnung La Palma (IAC Beitrag?), wie hoch pro Jahr?
1037\end{itemize}
1038}
1039
1040\begin{itemize}
1041 \item operation costs: 5000EURO/3years
1042 \item 25 LTO3 Tapes: 1000EURO
1043 \item 10.000EURO Consumables
1044\end{itemize}
1045
1046\subsection{Reisen/Travel expenses}
1047
1048{\em
1049\begin{itemize}
1050\item Alle Reisen begr"unden
1051\item Zusammenarbeit mit anderen Wissenschaftlern
1052\item Einladung von G"asten (Zahl und Dauer)
1053\item Workshops
1054\item Kongressreisen (KEIN weiterer Antrag bei der DFG m"oglich)
1055\item Telskop Aufbau
1056\end{itemize}
1057}
1058
1059\begin{itemize}
1060 \item 35.000EURO Travel and construction
1061\end{itemize}
1062
1063\subsection{Publikationskosten/Publication costs}
1064%keine
1065none
1066
1067\subsection {Sonstige Kosten}
1068%keine\\
1069\begin{itemize}
1070 \item 5.000EURO transport and storage container
1071 \item Dismantling (0, will be covered by proposing institutes)
1072 \item 15.000EURO Transport
1073 \item \textbf{2.000EURO security fence}
1074 \item \textbf{150.000EURO Kick-off Meeting Lapland}
1075\end{itemize}
1076
1077\section[5]{Voraussetzungen f"ur die Durchf"uhrung des Vorhabens\\Preconditions for carrying out the project}
1078%Vor Durchf"uhrung ist die Zustimmung der Magic-Kollaboration und des
1079%IAC einzuholen. Nach Vorgespr"achen ist von der Erteilung dieser
1080%Zustimmung auszugehen.
1081
1082Before realization the consent of the Magic collaboration and the IAC
1083is required. According to preliminary talks this consent is expected to
1084be given.
1085
1086\subsection{Zusammensetzung der Arbeitsgruppe/The research team}
1087
1088{\em
1089\begin{itemize}
1090\item Name, akademischer Grad, Dienststellung aller die am geplanten Vorhaben mitarbeiten sollen
1091\item technisches Personal, Hilfskr"afte: Anzahl reicht
1092\item Trenning nach Drittmitteln (Stipendien) und Istitutsmitteln
1093\end {itemize}
1094}
1095
1096
1097
1098
1099\noindent {\bf Dortmund}:
1100
1101\begin{itemize}
1102\item Prof. Dr. Dr. Wolfgang Rhode (Grundausttattung)
1103\item Dr. Tanja Kneiske (Postdoc (Ph"anomenologie), Forschungsstipendium)
1104\item Dr. Julia Becker (Postdoc (Ph"anomenologie), Grundausttattung)
1105\item Dipl.-Phys. Jens Dreyer (Doktorand (IceCube), Grundausttattung)
1106\item Dipl.-Phys Kirsten M"unich (Doktorandin (IceCube), Projekt-finanziert)
1107\item M.Sc. Valentin Curtef (Doktorand (MAGIC), Projekt-finanziert)
1108\item cand. phys. Jan L"unemann (Diplomand (IceCube), zum F\"orderbeginn diplomiert)
1109\item cand. phys. Dominik Leier (Diplomand (Ph"anomenologie), zum F\"orderbeginn diplomiert)
1110\item cand. phys. Michael Backes (Diplomand (MAGIC), zum F\"orderbeginn diplomiert)
1111\item cand. phys. Daniela Hadasch (Diplomandin (MAGIC))
1112\item Dipl.-Ing. Kai Warda (Elektronik)
1113\item PTA Matthias Domke (Systemadministration)
1114\end{itemize}
1115
1116\noindent{\bf W"urzburg}:
1117
1118\begin{itemize}
1119\item Prof. Dr. Karl Mannheim (Grundausttattung)
1120\item Dipl.-Phys. nn (Grundausstattung)
1121\item Dipl.-Phys. nn (Fremdfinanziert)
1122\end{itemize}
1123
1124\subsection{Zusammenarbeit mit anderen Wissenschaftlern\\Co-operation with other scientists}
1125
1126{\em Nennung der Wissenschaftler mit denen eine konkrete(!) Zusammenarbeit oder Abstimmung besteht}
1127
1128Both applying groups co-operate with the international MAGIC-Collaboration
1129and the institutes represented therein. (W"urzburg funded by the BMBF, Dortmund
1130by means of appointment for the moment.)\\
1131{\bf Dr.~Adrian Biland, Prof.~Dr.~Eckart Lorenz (both ETH Z"urich)}\\
1132{\bf Prof.~Riccardo Paoletti (Università di Siena and INFN sez. di Pisa, Italy)}\\
1133
1134\noindent The group in Dortmund is involved in the IceCube experiment
1135(BMBF funding) and maintains close contacts to the collaboration
1136partners. Moreover on the field of phenomenology there do exist good
1137working contacts to the groups of Prof.~Dr.~Reinhard~Schlickeiser,
1138Ruhr-Universit"at Bochum and Prof.~Dr.~Peter~Biermann, MPIfR Bonn.
1139There are furthermore contacts to Dr.~Anita Reimer, Stanford (USA) and
1140Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\ {\bf Francis Halzen,
1141evtl. John Quenby}\\
1142
1143\noindent W"urzburg is involved in ... maintains contacts to ...\\
1144Prof.~Dr.~Wolfgang Dr\"oge\\
1145
1146\subsection{Arbeiten im Ausland, Kooperation mit Partnern im Ausland\\Work outside Germany, Cooperation with foreign partners}
1147
1148{\em
1149\begin{itemize}
1150\item Wird das Vorhaben ganz oder teilw. im Ausland durchgef"uhrt
1151\item Findet konkrete Kooperation (Kolaboration!) statt (welche L"ander)
1152\item Art und Umfang der Zusammenhang darlegen (Name, Adresse, Stellung)
1153\end{itemize}
1154}
1155
1156The work on DWARF will take place at the ORM on the Spanish island La
1157Palma. It will be performed in close collaboration with the
1158MAGIC-collaboration.
1159
1160\subsection{Apparative Ausstattung/Scientific equipment available}
1161
1162{\em
1163\begin{itemize}
1164\item Am Ort vorhandene gr"o"sere Ger"ate
1165\end{itemize}
1166}
1167
1168
1169Both in Dortmund and in W"urzburg there are extensive computer
1170capacities available for data storing as well as for data analysis.
1171
1172%Dortmund: Der Fachbereich Physik der Universit"at Dortmund verf"ugt "uber
1173%modern ausgestattete mechanische und elektronische Werkst"atten
1174%einschlie"slich einer Elektronik-Entwicklung. Der Lehrstuhlbereich
1175%Astroteilchenphysik verf"ugt "uber g"angige zur Erstellung moderner
1176%DAQ erforderliche apparative Ausstattung.\\
1177Dortmund: The Fachbereich Physik at the Universit"at Dortmund has
1178modern equipped mechanical and electrical workshops including a
1179department for development of electronics at its command. The
1180Lehrstuhlbereich Astroteilchenphysik possesses common technical
1181equipment required for constructing modern DAQ.
1182
1183W"urzburg:...
1184
1185\subsection{Laufende Mittel f"ur Sachausgaben\\The institution's general contribution}
1186
1187{\em
1188\begin{itemize}
1189\item Angaben "uber Instituts-/Drittmittel (trennen) die f"ur das Projekt(!) j"arhrlich zur Verf"ugung stehen
1190\end{itemize}
1191}
1192
1193%Das gegenw"artige Budget des Lehrstuhls f"ur Astronomie der Universit"at
1194%W"urzburg betr"agt $\approx $ 12345 EURO pro Jahr.\\
1195%Das gegenw"artige Budget des Lehrstuhlbereiches Astroteilchnphysik der
1196%Universit"at Dortmund betr"agt $\approx $ 20000 EURO pro Jahr.
1197Current total institute budget from the Universit"at Dortmund $\approx$
119820000 EURO per year.\\
1199
1200Current total institute budget from the Universit"at W"urzburg
1201$\approx$ xxxxx EURO per year.\\
1202
1203\newpage
1204\paragraph{5.6 Conflicts of interest in economic activities\\Interessenskonflikte bei wirtschaftlichen Aktivit"aten}~\\
1205none
1206
1207\paragraph{5.7 Other requirements (Sonstige Voraussetzungen)}~\\
1208none
1209
1210\paragraph{6 Declarations (Erkl"arungen)}
1211
1212A request for funding this project has not been submitted to
1213any other addressee. In case we submit such a request we will inform
1214the Deutsche Forschungsgemeinschaft immediately. \\
1215
1216The corresponding persons (Vertrauensdozenten) at the
1217Universit"at Dortmund (Prof. Dr. Gather) and at the Universit"at
1218W"urzburg (Prof. XXXXX) have been informed about the submission of this
1219proposal.
1220
1221\paragraph{7 Signatures (Unterschriften)}~\\
1222
1223\vspace{2.5 cm}
1224
1225\hfill
1226\begin{minipage}[t]{6cm}
1227W"urzburg,\\[3.0cm]
1228\parbox[t]{6cm}{\hrulefill}\\
1229\parbox[t]{6cm}{~\hfill Prof.\ Dr.\ Karl Mannheim\hfill~}\\
1230\end{minipage}
1231\hfill
1232\begin{minipage}[t]{6cm}
1233Dortmund,\\[3.0cm]
1234\parbox[t]{6cm}{\hrulefill}\\
1235\parbox[t]{6cm}{~\hfill Prof.\ Dr.\ Dr.\ Wolfgang Rhode\hfill~}\\
1236\end{minipage}\hfill~
1237
1238\newpage
1239\section[8]{Verzeichnis der Anlagen/List of appendages}
1240
1241\begin{itemize}
1242\item
1243%Schriftenverzeichnis der Antragsteller seit dem Jahr 2000
1244List of refereed publications of the applicants since 2000
1245\item
1246CV of Karl Mannheim
1247\item
1248CV of Wolfgang Rhode
1249\end{itemize}
1250
1251\newpage
1252%\section{References}
1253
1254\vskip0.3cm
1255
1256%\bibliographystyle{alpha}
1257\newpage
1258%(Referenzen aus unseren Gruppen sind mit einem Stern gekennzeichnet *)
1259(References of our groups are marked by an asterix *)
1260\bibliography{application}
1261%This in the bibtex style, is ok.
1262\bibliographystyle{plain}
1263References will be added in the final version.
1264%\begin{thebibliography}{99}
1265%\bibitem{andreas_05} *M.~Ackermann et al., ''On the selection of AGN neutrino
1266% source candidates $\ldots$'', submitted to {\app}
1267
1268
1269%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1270%\end{thebibliography}
1271
1272\end{document}
Note: See TracBrowser for help on using the repository browser.