1 | \documentclass[12pt,openbib]{article} |
---|
2 | \usepackage{german,graphicx,eurosym,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr} |
---|
3 | \usepackage[round]{natbib} |
---|
4 | |
---|
5 | %\renewcommand{\familydefault}{\sfdefault} |
---|
6 | %\usepackage{helvet} |
---|
7 | |
---|
8 | \originalTeX |
---|
9 | |
---|
10 | \setlength{\parindent}{0pt} |
---|
11 | |
---|
12 | %\label{dummy} |
---|
13 | |
---|
14 | %cleardoubleplain,liststotoc,bibtotoc,idxtotoc, |
---|
15 | |
---|
16 | %\documentclass[a4paper,12pt,oneside,german]{article} |
---|
17 | %\usepackage[ansinew]{inputenc} |
---|
18 | |
---|
19 | \input library.def |
---|
20 | |
---|
21 | %\frenchspacing |
---|
22 | |
---|
23 | \newcommand{\loi}{\large \textbf{LoI:}\normalsize} |
---|
24 | \newcommand{\anmerk}[1]{ \marginpar |
---|
25 | [{\parbox[t]{19.mm}{\footnotesize\sf {#1}} |
---|
26 | \parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}}] |
---|
27 | {\parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}\parbox[t]{17.mm}{ |
---|
28 | \footnotesize \sf {#1} } } } |
---|
29 | |
---|
30 | |
---|
31 | %\textwidth17cm |
---|
32 | %\oddsidemargin-0.5cm |
---|
33 | %\oddsidemargin-1.cm |
---|
34 | %\textheight25cm |
---|
35 | %\topmargin=-1.5cm |
---|
36 | |
---|
37 | \title{Neuantrag auf Gew\"{a}hrung einer Sachbeihilfe\\Proposal for a new research project} |
---|
38 | \author{Prof.\ Dr.\ Karl\ Mannheim\\Prof.\ Dr.\ Dr.\ Wolfgang Rhode} |
---|
39 | |
---|
40 | \begin{document} |
---|
41 | |
---|
42 | \maketitle |
---|
43 | \thispagestyle{empty} |
---|
44 | %\begin{figure}[ht] |
---|
45 | \vspace{2.7cm} |
---|
46 | \begin{center} |
---|
47 | \includegraphics*[width=0.496\textwidth,angle=0,clip]{DWARF.eps} |
---|
48 | \end{center} |
---|
49 | %\end{figure} |
---|
50 | \newpage |
---|
51 | \mbox{} |
---|
52 | \thispagestyle{empty} |
---|
53 | \cleardoublepage |
---|
54 | \newpage |
---|
55 | |
---|
56 | \section[1]{General Information (Allgemeine Angaben)} |
---|
57 | |
---|
58 | \subsection[1.1]{Applicants (Antragsteller)} |
---|
59 | \germanTeX |
---|
60 | \begin{tabular}{|p{0.44\textwidth}|p{0.22\textwidth}|p{0.22\textwidth}|}\hline |
---|
61 | {\bf Name}&\multicolumn{2}{l|}{\bf Akademischer Grad}\\ |
---|
62 | {\sc Rhode, Wolfgang, Prof.~Dr.~Dr.}&\multicolumn{2}{l|}{Universit"atsprofessor (C3)}\\\hline\hline |
---|
63 | {\ }&{\bf Birthday}&{\bf Nationality}\\ |
---|
64 | {\ }&Oct 17 1961&German\\\hline |
---|
65 | \multicolumn{3}{|l|}{\bf Institut, Lehrstuhl}\\ |
---|
66 | \multicolumn{3}{|l|}{Institut f"ur Physik}\\ |
---|
67 | \multicolumn{3}{|l|}{Experimentelle Physik V (Astroteilchenphysik)}\\\hline |
---|
68 | {\bf Address at work }&\multicolumn{2}{l|}{\bf Home address}\\[0.5ex] |
---|
69 | {Universit"at Dortmund }&\multicolumn{2}{l|}{ }\\ |
---|
70 | { }&\multicolumn{2}{l|}{Am Schilken 28 }\\ |
---|
71 | {44221 Dortmund }&\multicolumn{2}{l|}{58285 Gevelsberg}\\ |
---|
72 | {Germany }&\multicolumn{2}{l|}{Germany }\\[0.5ex] |
---|
73 | {\parbox[t]{1.5cm}{Phone:}+49\,(231)\,755-3550}&\multicolumn{2}{l|}{\parbox[t]{1.5cm}{Phone:}+49\,(173)\,284\,79\,10}\\ |
---|
74 | {\parbox[t]{1.5cm}{Fax:}+49\,(231)\,755-4547}&\multicolumn{2}{l|}{~}\\\hline\hline |
---|
75 | \multicolumn{3}{|c|}{{\bf email}: wolfgang.rhode@udo.edu}\\\hline |
---|
76 | |
---|
77 | \multicolumn{3}{c}{~}\\[1ex]\hline |
---|
78 | |
---|
79 | {\bf Name}&\multicolumn{2}{l|}{\bf Akademischer Grad}\\ |
---|
80 | {\sc Mannheim, Karl, Prof.~Dr.}&\multicolumn{2}{l|}{Universit"atsprofessor (C4)}\\\hline\hline |
---|
81 | {\ }&{\bf Birthday}&{\bf Nationality}\\ |
---|
82 | {\ }&Jan 4 1963&German\\\hline |
---|
83 | \multicolumn{3}{|l|}{\bf Institut, Lehrstuhl}\\ |
---|
84 | \multicolumn{3}{|l|}{Institut f"ur Theoretische Physik und Astrophysik}\\ |
---|
85 | \multicolumn{3}{|l|}{Lehrstuhl f"ur Astronomie}\\\hline |
---|
86 | {\bf Address at work }&\multicolumn{2}{l|}{\bf Home address}\\[0.5ex] |
---|
87 | {Julius-Maximilians-Universit"at}&\multicolumn{2}{l|}{ }\\ |
---|
88 | { }&\multicolumn{2}{l|}{Oswald-Kunzemann-Str. 12}\\ |
---|
89 | {97074 W"urzburg }&\multicolumn{2}{l|}{97299 Zell am Main }\\ |
---|
90 | {Germany }&\multicolumn{2}{l|}{Germany }\\[0.5ex] |
---|
91 | {\parbox[t]{1.5cm}{Phone:}+49\,(931)\,888-5031}&\multicolumn{2}{l|}{\parbox[t]{1.5cm}{Phone: +49\,(931)\,404\,81\,90} }\\ |
---|
92 | {\parbox[t]{1.5cm}{Fax:}+49\,(931)\,888-4603}&\multicolumn{2}{l|}{~}\\\hline\hline |
---|
93 | \multicolumn{3}{|c|}{{\bf email}: mannheim@astro.uni-wuerzbueg.de}\\\hline |
---|
94 | \end{tabular} |
---|
95 | \originalTeX |
---|
96 | \newpage |
---|
97 | |
---|
98 | \paragraph{1.2 Topic}~\\ |
---|
99 | %\subsection[1.2]{Topic} |
---|
100 | Long-term VHE $\gamma$-ray monitoring of bright blazars with a dedicated Cherenkov telescope |
---|
101 | |
---|
102 | \paragraph{1.2 Thema}~\\ |
---|
103 | %\subsection[1.2]{Thema} |
---|
104 | Langzeitbeobachtung von hellen VHE $\gamma$-Blazaren mit einem dedizierten Cherenkov Teleskop |
---|
105 | |
---|
106 | \paragraph{1.3 Discipline and field of work (Fachgebiet und Arbeitsrichtung)}~\\ |
---|
107 | %\subsection[1.3]{Discipline and field of work (Fachgebiet und Arbeitsrichtung)} |
---|
108 | Astronomy and Astrophysics, Particle Astrophysics |
---|
109 | |
---|
110 | \paragraph{\bf 1.4 Scheduled duration in total (Voraussichtliche Gesamtdauer)}~\\ |
---|
111 | %\subsection[1.4]{Scheduled duration in total (Voraussichtliche Gesamtdauer)} |
---|
112 | After successful completion of the three-year work plan developed in |
---|
113 | this proposal, we will ask for an extension of the project for another |
---|
114 | two years to carry out an observation program centered on the signatures |
---|
115 | of supermassive binary black holes. |
---|
116 | |
---|
117 | \paragraph{\bf 1.5 Application period (Antragszeitraum)}~\\ |
---|
118 | %\subsection[1.5]{Application period (Antragszeitraum)} |
---|
119 | 3\,years. The work on the project will begin immediately after the |
---|
120 | funding. |
---|
121 | |
---|
122 | \newpage |
---|
123 | \paragraph{\bf 1.6 Summary}~\\ |
---|
124 | %\subsection[1.6]{Summary} |
---|
125 | We propose to set up a robotic imaging air-Cherenkov telescope with low |
---|
126 | cost, but a high performance design for remote operation. The goal is |
---|
127 | the long-term monitoring observations of nearby, bright blazars at very |
---|
128 | high energies. We will (i) search for orbital modulation of the blazar |
---|
129 | emission due to supermassive black hole binaries, (ii) study the |
---|
130 | statistics of flares and their physical origin, and (iii) correlate the |
---|
131 | data with corresponding data from the neutrino observatory IceCube to |
---|
132 | search for evidence of hadronic emission processes. The observations |
---|
133 | will furthermore trigger follow-up observations of flares with higher |
---|
134 | sensitivity telescopes such as MAGIC, \mbox{VERITAS} and H.E.S.S. Joint |
---|
135 | observations with the Whipple monitoring telescope will start a future |
---|
136 | \mbox{24\,h-monitoring} of selected sources with a distributed network of |
---|
137 | robotic telescopes. The telescope design is based on a complete |
---|
138 | technological upgrade of one of the former telescopes of the HEGRA |
---|
139 | collaboration (CT3) still located at the Observatorio del Roque de los |
---|
140 | Muchachos on the Canary Island La Palma (Spain). After this upgrade, |
---|
141 | the telescope will be operated robotically, a much lower energy |
---|
142 | threshold below 350\,GeV will be achieved, and the observation time |
---|
143 | required for gaining the same signal as with CT3 will be reduced by a |
---|
144 | factor of six. |
---|
145 | |
---|
146 | \germanTeX |
---|
147 | \paragraph{\bf 1.6 Zusammenfassung}~\\ |
---|
148 | %\subsection[1.6]{Zusammenfassung} |
---|
149 | Das Ziel unseres Vorhabens ist es, ein abbildendes |
---|
150 | Luft-Cherenkov-Teleskop mit geringen Kosten, aber hoher Leistung f"ur |
---|
151 | den ferngesteuerten Betrieb aufzubauen. Die Motivation ist die |
---|
152 | kontinuierliche Langzeitbeobachtung von hellen, nahen Blazaren bei sehr |
---|
153 | hohen Energien. Mit diesen Beobachtungen werden wir nach |
---|
154 | bahndynamischen Modulationen suchen, welche von Bin"arsystemen |
---|
155 | supermassiver schwarzer L"ocher in der emittierten Strahlung |
---|
156 | hervorgerufen werden. Au"serdem werden die gewonnenen Daten mit den |
---|
157 | entsprechenden Daten des Neutrinoteleskops IceCube korreliert, um nach |
---|
158 | Hinweisen f"ur hadroninduzierte Emissionsprozesse zu suchen. Die |
---|
159 | kontinuierliche "Uberwachung ausgew"ahlter Quellen wird zudem besser |
---|
160 | aufgel"oste Beobachtungen und Nachbeobachtungen von |
---|
161 | Strahlungsausbr"uchen durch Teleskope h"oherer Sensitivit"at, wie z.B.\ |
---|
162 | MAGIC, VERITAS und H.E.S.S., erlauben. Die zeitversetzten, gemeinsamen |
---|
163 | Beobachtungen zusammen mit dem Whipple-Teleskop stellen den Beginn |
---|
164 | ununterbrochener Beobachtungen mit einem weltweiten Netzwerk |
---|
165 | robotischer Teleskope dar. Unser Teleskopdesign basiert auf einer |
---|
166 | technischen Runderneuerung eines Teleskops der fr"uheren |
---|
167 | HEGRA-Kollaboration (CT3), welches noch immer am Observatorio del Roque de |
---|
168 | los Muchachos auf der Kanarischen Insel La Palma (Spanien) steht. Nach |
---|
169 | dieser Aufr"ustung wird das Teleskop vollst"andig ferngesteuert |
---|
170 | betrieben werden, eine viel niedrigere Energieschwelle von unter |
---|
171 | 350\,GeV erreichen und die Beobachtungszeit, um ein gleichstarkes |
---|
172 | Signal wie mit CT3 zu erhalten, wird um einen Faktor sechs k"urzer |
---|
173 | sein. |
---|
174 | \originalTeX |
---|
175 | \newpage |
---|
176 | |
---|
177 | \section[2]{Science case, preliminary work by proposer\\(Stand der Forschung, eigene Vorarbeiten)} |
---|
178 | |
---|
179 | \subsection[2.1]{Science case (Stand der Forschung)} |
---|
180 | |
---|
181 | Since the termination of the HEGRA observations, the succeeding |
---|
182 | experiments MAGIC and H.E.S.S.\ have impressively extended the physical |
---|
183 | scope of gamma-ray astronomy detecting tens of formerly unknown gamma-ray |
---|
184 | sources and analyzing their energy spectra, morphology and |
---|
185 | temporal behavior. This became possible by lowering the energy |
---|
186 | threshold from 700\,GeV to less than 100\,GeV and increasing at the same |
---|
187 | time the sensitivity by a factor of five. A diversity of astrophysical |
---|
188 | source types such as pulsar wind nebulae, supernova remnants, |
---|
189 | micro-quasars, pulsars, radio galaxies, clusters of galaxies, Gamma-Ray |
---|
190 | Bursts and blazars have been studied with these telescopes. |
---|
191 | |
---|
192 | The main class of extragalactic, very high energy gamma-rays sources |
---|
193 | detected with imaging air-Cherenkov telescopes are blazars, i.e.\ |
---|
194 | accreting supermassive black holes exhibiting a relativistic jet that |
---|
195 | is closely aligned with the line of sight. The non-thermal blazar |
---|
196 | spectrum covers up to 20 orders of magnitude in energy, from |
---|
197 | long-wavelength radio waves to multi-TeV gamma-rays. In addition, |
---|
198 | blazars are characterized by rapid variability, high degrees of |
---|
199 | polarization, and superluminal motion of knots in their |
---|
200 | high-resolution radio images. The observed behavior can readily be |
---|
201 | explained assuming relativistic bulk motion and in situ particle |
---|
202 | acceleration, e.g.\ at shock waves, leading to synchrotron |
---|
203 | (radio-to-x-ray) and self-Compton (gamma-ray) emission \citep{Blandford}. |
---|
204 | Additionally, inverse Compton scattering of external photons may play a |
---|
205 | role in producing the observed gamma-rays \citep{Dermer,Begelman}. |
---|
206 | Variability may hold the key to understanding the details of the |
---|
207 | emission processes and the source geometry. The development of |
---|
208 | time-dependent models is currently under investigation |
---|
209 | worldwide. |
---|
210 | |
---|
211 | Although particle acceleration inevitably affects electrons and protons |
---|
212 | (ions), the electrons are commonly believed to be responsible for |
---|
213 | producing the observed emission owing to their lower mass and thus much |
---|
214 | stronger energy losses (at the same energy). The relativistic protons, |
---|
215 | which could either originate from the accretion flow or from entrained |
---|
216 | ambient matter, will quickly dominate the momentum flow of the jet. |
---|
217 | This {\em baryon pollution} has been suggested to solve the energy |
---|
218 | transport problem in Gamma-Ray Bursts and is probably present in |
---|
219 | blazar jets as well, even if they originate as pair jets in a black |
---|
220 | hole ergosphere \citep{Meszaros}. Protons and ions accelerated in the |
---|
221 | jets of blazars can reach extremely high energies, before energy losses |
---|
222 | become important \citep{Mannheim:1993}. Escaping particles contribute |
---|
223 | to the observed flux of ultrahigh energy cosmic rays in a major way. |
---|
224 | Blazars and their unbeamed hosts, the radio galaxies, are thus the |
---|
225 | prime candidates for origin of ultrahigh energy cosmic rays |
---|
226 | \citep{Rachen}. This can be investigated with the IceCube and AUGER |
---|
227 | experiments. Recent results of the AUGER experiment show a significant |
---|
228 | anisotropy of the highest energy cosmic rays and point at either nearby |
---|
229 | AGN or sources with a similar spacial distribution as their origin |
---|
230 | \citep{AUGER-AGN}. |
---|
231 | |
---|
232 | In some flares, a large ratio of the gamma-ray to optical luminosity is |
---|
233 | observed. This is difficult to reconcile with the primary leptonic |
---|
234 | origin of the emission, since the accelerated electron pressure would |
---|
235 | largely exceed the magnetic field pressure. For shock acceleration to |
---|
236 | work efficiently, particles must be confined by the magnetic field for |
---|
237 | a time longer than the cooling time. The problem vanishes in the |
---|
238 | following model: Photo-hadronic interactions of accelerated protons and |
---|
239 | synchrotron photons induce electromagnetic cascades, which in turn |
---|
240 | produce secondary electrons causing high energy synchrotron |
---|
241 | gamma-radiation. This demands much stronger magnetic fields in line |
---|
242 | with magnetic confinement \citep{Mannheim:1995}. Short variability time |
---|
243 | scales can result from dynamical changes of the emission zone, running |
---|
244 | e.g.\ through an inhomogeneous environment. |
---|
245 | |
---|
246 | The contemporaneous spectral energy distributions for hadronic and |
---|
247 | leptonic models bear many similarities, but also marked differences, |
---|
248 | such as multiple bumps which are possible even in a one-zone hadronic |
---|
249 | model \citep{Mannheim:1999}. These properties allow conclusions |
---|
250 | about the accelerated particles. Noteworthy, even for nearby blazars |
---|
251 | the spectrum must be corrected for attenuation of the gamma-rays due to |
---|
252 | pair production in collisions with low-energy photons from the |
---|
253 | extragalactic background radiation field \citep{Kneiske}. |
---|
254 | Ultimately, the hadronic origin of the emission must be probed with |
---|
255 | correlated gamma-ray and neutrino observations, since the pion decay |
---|
256 | initiating the cascades involves a fixed ratio of electron-positron |
---|
257 | pairs, gamma-rays, and neutrinos. A dedicated monitoring campaign |
---|
258 | jointly with IceCube has the best chance for success. Pilot studies |
---|
259 | done with MAGIC and IceCube indicate that the investigation of neutrino |
---|
260 | event triggered gamma-ray observations are statistically |
---|
261 | inconclusive \citep{Leier:2006}. |
---|
262 | |
---|
263 | The variability time scale of blazars ranges from minutes to months, |
---|
264 | generally showing the largest amplitudes and the shortest time scales |
---|
265 | at the highest energies. Recently, a doubling time scale of two minutes |
---|
266 | has been observed in a flare of Mrk\,501 with the MAGIC telescope |
---|
267 | \citep{Albert:501}. A giant flare of PKS\,2155-304 discovered by |
---|
268 | H.E.S.S.\ \citep{Aharonian:2007pks} has shown similarly short doubling |
---|
269 | time scales and a flux of up to 16 times the flux of the Crab Nebula. |
---|
270 | Indications for TeV flares without evidence for an accompanying x-ray |
---|
271 | flare, coined orphan flares, have been observed, questioning the |
---|
272 | synchrotron-self-Compton mechanism being responsible for the |
---|
273 | gamma-rays. Model ramifications involving several emission components, |
---|
274 | external seed photons, or hadronically induced emission may solve the |
---|
275 | problem \citep{Blazejowski}. Certainly, the database for |
---|
276 | contemporaneous multi-wavelength observations is still far from proving |
---|
277 | the synchrotron-self-Compton model. |
---|
278 | |
---|
279 | Generally, observations of flares are prompted by optical or x-ray |
---|
280 | alerts, leading to a strong selection bias. The variability presumably |
---|
281 | reflects the non-steady feeding of the jets and the changing interplay |
---|
282 | between particle acceleration and cooling. In this situation, |
---|
283 | perturbations of the electron density or the bulk plasma velocity are |
---|
284 | traveling down the jet. The variability could also reflect the changing |
---|
285 | conditions of the external medium to which the jet flow adapts during |
---|
286 | its passage through it. In fact, a clumpy, highly inhomogeneous |
---|
287 | external medium is typical for active galactic nuclei, as indicated by |
---|
288 | their clumpy emission line regions, if visible against the |
---|
289 | Doppler-enhanced blazar emission. Often the jets bend with a large |
---|
290 | angle indicating shocks resulting from reflections off intervening |
---|
291 | high-density clouds. Changes in the direction of the jet flow lead to |
---|
292 | large flux variations due to differential Doppler boosting. |
---|
293 | |
---|
294 | Helical trajectories, as seen in high-resolution radio maps resulting |
---|
295 | from the orbital modulation of the jet base in supermassive black hole |
---|
296 | binaries, would lead to periodic variability on time scales of months |
---|
297 | to years \citep{Rieger:2007}. Binaries are expected to be the most |
---|
298 | common outcome of the repeated mergers of galaxies which have |
---|
299 | originally built up the blazar host galaxy. Each progenitor galaxy |
---|
300 | brings its own supermassive black hole as expected from the |
---|
301 | Magorrian-Kormendy relations. It is subject to stellar dynamical |
---|
302 | evolution in the core of the merger galaxy, of which only one pair of |
---|
303 | black holes is expected to survive near the center of gravity. |
---|
304 | Supermassive black hole binaries close to coalescence are thus expected |
---|
305 | to be generic in blazars. Angular momentum transport by collective |
---|
306 | stellar dynamical processes is efficient to bring them to distances |
---|
307 | close to where the emission of gravitational waves begins to dominate |
---|
308 | their further evolution until coalescence. Their expected gravitational |
---|
309 | wave luminosity is spectacularly high, even long before final |
---|
310 | coalescence and the frequencies are favorable for the detectors under |
---|
311 | consideration (LISA). The detection of gravitational waves relies on exact |
---|
312 | templates to filter out the signals and the templates can be computed |
---|
313 | from astrophysical constraints on the orbits and masses of the black |
---|
314 | holes. TeV gamma-rays, showing the shortest variability time scales, |
---|
315 | probe deepest into the jet and are thus the most sensitive probe of the |
---|
316 | orbital modulation at the jet base. Relativistic aberration is helpful |
---|
317 | in bringing down the observed periods to below the time scale of years. |
---|
318 | A tentative hint for a 23-day periodicity of the TeV emission from |
---|
319 | Mrk\,501 during a phase of high activity in 1997 was reported by |
---|
320 | HEGRA \citep{Kranich}, and was later confirmed including x-ray and |
---|
321 | Telescope Array data \citep{Osone}. The observations can be explained in |
---|
322 | a supermassive black hole binary scenario \citep{Rieger:2000}. |
---|
323 | Indications for helical trajectories and periodic modulation of optical |
---|
324 | and radio lightcurves on time scales of tens of years have also been |
---|
325 | described in the literature (e.g. \cite{Hong,Merrit}). |
---|
326 | |
---|
327 | To overcome the limitations of biased sampling, a complete monitoring |
---|
328 | database for a few representative bright sources needs to be obtained. |
---|
329 | Space missions with all-sky observations at lower photon energies, such |
---|
330 | as GLAST, GRIPS, or eROSITA, will provide significant multi-wavelength |
---|
331 | exposure simultaneous to the VHE observations, and this is a new |
---|
332 | qualitative step for blazar research. For the same reasons, the VERITAS |
---|
333 | collaboration keeps the Whipple telescope alive. It is obvious that the |
---|
334 | large Cherenkov telescopes such as MAGIC, H.E.S.S.\ or VERITAS are mainly |
---|
335 | used to discover new sources at the sensitivity limit. Thus they will |
---|
336 | not perform monitoring observations of bright sources with complete |
---|
337 | sampling during their visibility. However, these telescopes will be |
---|
338 | triggered by monitoring telescopes and thus improve the described |
---|
339 | investigations. In turn, operating a smaller but robotic telescope is |
---|
340 | an essential and cost-effective contribution to the plans for |
---|
341 | next-generation instruments in ground-based gamma-ray astronomy. |
---|
342 | Know-how for the operation of future networks of robotic Cherenkov |
---|
343 | telescopes, e.g. a monitoring array around the globe or a single-place |
---|
344 | array like CTA, is certainly needed given the high operating shift |
---|
345 | demands of the current installations. |
---|
346 | |
---|
347 | In summary, there are strong reasons to make an effort for the |
---|
348 | continuous monitoring of the few exceptionally bright blazars. This can |
---|
349 | be achieved by operating a dedicated monitoring telescope of the |
---|
350 | HEGRA-type, referred to in the following as DWARF (Dedicated |
---|
351 | multiWavelength Agn Research Facility). Its robotic design will keep |
---|
352 | the demands on personal and infrastructure on the low side, rendering |
---|
353 | it compatible with the resources of University groups. The approach is |
---|
354 | also optimal to educate students in the strongly expanding field of |
---|
355 | astroparticle physics. |
---|
356 | |
---|
357 | Assuming conservatively the performance of a single HEGRA-type |
---|
358 | telescope, long-term monitor\-ing of at least the following known |
---|
359 | blazars is possible: Mrk\,421, Mrk\,501, 1ES\,2344+514, 1ES\,1959+650, |
---|
360 | H\,1426+428, PKS\,2155-304. We emphasize, that DWARF will run as a |
---|
361 | facility dedicated to these targets only, providing a maximum |
---|
362 | observation time for the program. Utilizing recent developments, such |
---|
363 | as improvements of the light collection efficiency due to an improved |
---|
364 | mirror reflectivity and a better PM quantum efficiency, a 30\% |
---|
365 | improvement in sensitivity and a lower energy-threshold is reasonable. |
---|
366 | Current studies show that with a good timing resolution (2\,GHz) a |
---|
367 | further 40\% increase in sensitivity (compared to a 300\,MHz system) is |
---|
368 | feasible. Together with an extended mirror area and a large camera, a |
---|
369 | sensitivity improvement compared to a single HEGRA telescope of a |
---|
370 | factor of 2.5 and an energy threshold below 350\,GeV is possible. |
---|
371 | |
---|
372 | \subsection[2.2]{Preliminary work by proposers (Eigene Vorarbeiten)} |
---|
373 | |
---|
374 | From the experience with the construction, operation and data analysis |
---|
375 | of Amanda, IceCube, HEGRA and MAGIC the proposing groups contribute the |
---|
376 | necessary knowledge and experience to build and operate a small imaging |
---|
377 | air-Cherenkov telescope. |
---|
378 | |
---|
379 | \paragraph{Hardware} |
---|
380 | |
---|
381 | The Dortmund group is working on experimental and phenomenological |
---|
382 | astroparticle physics. In the past, the following hardware components |
---|
383 | were successfully developed: a Flash-ADC based DAQ (TWR, transient |
---|
384 | waveform recorder), currently in operation for data acquisition in the |
---|
385 | AMANDA subdetector within the IceCube telescope \citep{Wagner:PhD}, an |
---|
386 | online software Trigger for the TWR-DAQ system \citep{Messarius:PhD}, |
---|
387 | online data compression mechanisms (TWR DAQ) \citep{Refflinghaus:Dipl}, |
---|
388 | monitoring software for the TWR-DAQ-data \citep{Dreyer:Dipl} and |
---|
389 | in-ice-HV-power-supply for IceCube. This development was done with the |
---|
390 | companies CAEN, Pisa, Italy and Iseg, Rossendorf, Germany. The HV |
---|
391 | modules were long time tested under different temperature conditions |
---|
392 | connected to operating photomultipliers \citep{Bartelt:Dipl}. Prototypes |
---|
393 | for the scintillator counters of the planned Air Shower Array {\em |
---|
394 | SkyView} were developed and operated for two years \citep{Deeg:Dipl}. |
---|
395 | Members of the group (engineers) were involved in the fast trigger |
---|
396 | development for H1 and are involved in the FPGA-programming for the |
---|
397 | LHCb data read out. The group may further use the well equipped |
---|
398 | mechanical and electronic workshops in Dortmund and the electronic |
---|
399 | development departure of the faculty. |
---|
400 | |
---|
401 | The ultra fast drive system of the MAGIC telescopes, suitable for fast |
---|
402 | repositioning in case of Gamma-Ray Bursts, has been developed, |
---|
403 | commissioned and programmed by the W\"{u}rzburg group |
---|
404 | \citep{Bretz:2003drive,Bretz:2005drive}. To correct for axis |
---|
405 | misalignments and possible deformations of the structure (e.g.\ bending |
---|
406 | of camera holding masts), a pointing correction algorithm was developed |
---|
407 | \citep{Dorner:Diploma}. Its calibration is done by measurement of the |
---|
408 | reflection of bright guide stars on the camera surface and ensures a |
---|
409 | pointing accuracy well below the pixel diameter. Hardware and software |
---|
410 | (CCD readout, image processing and pointing correction algorithms) have |
---|
411 | also been developed and are in operation successfully since more than |
---|
412 | three years \citep{Riegel:2005icrc2}. |
---|
413 | |
---|
414 | Mirror structures made of plastic material have been developed as |
---|
415 | Winston cones for balloon flight experiments previously by the group of |
---|
416 | Wolfgang Dr\"{o}ge. W\"{u}rzburg has also participated in the development of |
---|
417 | a HPD test bench, which has been setup in Munich and W\"{u}rzburg. With |
---|
418 | this setup, HPDs for future improvement of the sensitivity of the MAGIC |
---|
419 | camera are investigated. |
---|
420 | |
---|
421 | \paragraph{Software} |
---|
422 | |
---|
423 | The W\"{u}rzburg group has developed a full MAGIC analysis package, |
---|
424 | flexible and modular enough to easily process DWARF data |
---|
425 | \citep{Bretz:2005paris,Riegel:2005icrc,Bretz:2005mars}. A method for |
---|
426 | absolute light calibration of the PMs based on Muon images, especially |
---|
427 | important for long-term monitoring, has been |
---|
428 | adapted and further improved for the MAGIC telescope |
---|
429 | \citep{Meyer:Diploma,Goebel:2005}. Both, data analysis and Monte Carlo |
---|
430 | production, have been fully automatized, such that both can run with |
---|
431 | sparse user interaction \citep{Dorner:2005icrc}. The analysis was |
---|
432 | developed to be powerful and as robust as possible to be best suited |
---|
433 | for automatic processing \citep{Dorner:2005paris}. Experience with |
---|
434 | large amount of data (up to 8\,TB/month) has been gained since 2004. |
---|
435 | The datacenter is equipped with a professional multi-stage |
---|
436 | (hierarchical) storage system. Two operators are paid by the physics |
---|
437 | faculty. Currently efforts in W\"{u}rzburg and Dortmund are ongoing to |
---|
438 | turn the old, inflexible Monte Carlo programs, used by the MAGIC |
---|
439 | collaboration, into modular packages allowing for easy simulation of |
---|
440 | other setups. Experience with Monte Carlo simulations, especially |
---|
441 | CORSIKA, is contributed by the Dortmund group, which has actively |
---|
442 | implemented changes into the CORSIKA program, such as an extension to |
---|
443 | large zenith angles, prompt meson production and a new atmospheric |
---|
444 | model \citep{Haffke:Dipl,Schroeder:PhD} for the local atmosphere of La |
---|
445 | Palma. Furthermore the group has developed high precision Monte Carlos |
---|
446 | for Lepton propagation in different media \citep{Chirkin:2004}. |
---|
447 | An energy unfolding method and program has been adapted for IceCube and |
---|
448 | MAGIC data analysis \citep{Curtef:CM,Muenich:ICRC}. |
---|
449 | |
---|
450 | \paragraph{Phenomenology} |
---|
451 | |
---|
452 | Both groups have experience with source models and theoretical |
---|
453 | computations of gamma-ray and neutrino spectra expected from blazars. |
---|
454 | The relation between the two messengers is a prime focus of interest. |
---|
455 | Experience with corresponding multi-messenger data analyses involving |
---|
456 | MAGIC and IceCube data is available in the Dortmund group. Research |
---|
457 | activities are also related with relativistic particle acceleration |
---|
458 | \citep{Meli} and gamma-ray attenuation \citep{Kneiske}. The W\"{u}rzburg |
---|
459 | group has organized and carried out multi-wavelength observations of |
---|
460 | bright blazars involving MAGIC, Suzaku, the IRAM telescopes and the |
---|
461 | KVA optical telescope \citep{Ruegamer}. Signatures of supermassive |
---|
462 | black hole binaries, which are most relevant also for gravitational |
---|
463 | wave detectors, are investigated jointly with the German LISA |
---|
464 | consortium (Burkart, Elbracht ongoing research, funded by DLR). |
---|
465 | \mbox{Secondary} gamma-rays due to dark matter annihilation events are |
---|
466 | investigated both from their particle physics and astrophysics aspects. |
---|
467 | Another main focus of research is on models of radiation and particle |
---|
468 | acceleration processes in blazar jets (hadronic and leptonic models), |
---|
469 | leading to predictions of correlated neutrino emission \citep{Rueger}. |
---|
470 | This includes simulations of particle acceleration due to the Weibel |
---|
471 | instability \citep{Burkart}. Much of this research at W\"{u}rzburg is |
---|
472 | carried out in the context of the research training school GRK\,1147 |
---|
473 | {\em Theoretical Astrophysics and Particle Physics}. |
---|
474 | |
---|
475 | \section[3]{Goals and Work Schedule (Ziele und Arbeitsprogramm)} |
---|
476 | |
---|
477 | \subsection[3.1]{Goals (Ziele)} |
---|
478 | |
---|
479 | The aim of the project is to put the former CT3 of the HEGRA |
---|
480 | collaboration on the Roque de los Muchachos back into operation. It |
---|
481 | will be setup, under the name DWARF, with an enlarged mirror surface |
---|
482 | (fig.~\ref{DWARF}), a new camera with higher quantum efficiency and new |
---|
483 | fast data acquisition system. The energy threshold will be lowered, and |
---|
484 | the sensitivity of DWARF will be greatly improved compared to HEGRA CT3 |
---|
485 | (see fig.~\ref{sensitivity}). Commissioning and the first year of data |
---|
486 | taking should be carried out within the three years of the requested |
---|
487 | funding period. |
---|
488 | |
---|
489 | \begin{figure}[ht] |
---|
490 | \begin{center} |
---|
491 | \includegraphics*[width=0.496\textwidth,angle=0,clip]{CT3.eps} |
---|
492 | \includegraphics*[width=0.496\textwidth,angle=0,clip]{DWARF.eps} |
---|
493 | \caption{The old CT3 telescope as operated within the |
---|
494 | HEGRA System (left) and a photomontage of the revised CT3 telescope |
---|
495 | with more and hexagonal mirrors (right).} |
---|
496 | \label{CT3} |
---|
497 | \label{DWARF} |
---|
498 | \end{center} |
---|
499 | \end{figure} |
---|
500 | |
---|
501 | The telescope will be operated robotically to reduce costs and man |
---|
502 | power demands. Furthermore, we seek to obtain know-how for the |
---|
503 | operation of future networks of robotic Cherenkov telescopes (e.g. a |
---|
504 | monitoring array around the globe or CTA) or telescopes at sited |
---|
505 | difficult to access. From the experience with the construction and |
---|
506 | operation of MAGIC or HEGRA, the proposing groups consider the planned |
---|
507 | focused approach (small number of experienced scientists) as optimal |
---|
508 | for achieving the project goals. The available automatic analysis |
---|
509 | package developed by the W\"{u}rzburg group for MAGIC is modular and |
---|
510 | flexible, and can thus be used with minor changes for the DWARF |
---|
511 | project. |
---|
512 | |
---|
513 | \begin{figure}[htb] |
---|
514 | \begin{center} |
---|
515 | \includegraphics*[width=0.7\textwidth,angle=0,clip]{visibility.eps} |
---|
516 | \caption{Source visibility in hours per night versus month of the year |
---|
517 | considering a maximum observation zenith angle of 65$^\circ$ |
---|
518 | for all sources which we want to monitor including the Crab Nebula, |
---|
519 | necessary for calibration and quality assurance.} |
---|
520 | \label{visibility} |
---|
521 | \end{center} |
---|
522 | \end{figure} |
---|
523 | |
---|
524 | The scientific focus of the project will be on the long-term monitoring |
---|
525 | of bright, nearby VHE emitting blazars. At least one of the proposed |
---|
526 | targets will be visible any time of the year (see |
---|
527 | fig.~\ref{visibility}). For calibration purposes, some time will be |
---|
528 | scheduled for observations of the Crab \mbox{Nebula}.\\ |
---|
529 | |
---|
530 | The blazar observations will allow |
---|
531 | \begin{itemize} |
---|
532 | \item to determine the baseline emission, the duty cycle and the power |
---|
533 | spectrum of flux variations. |
---|
534 | \item to cooperate with the Whipple monitoring telescope for an |
---|
535 | extended time coverage. |
---|
536 | \item to prompt Target-of-Opportunity (ToO) observations with MAGIC in |
---|
537 | the case of flares increasing time resolution. Corresponding |
---|
538 | ToO proposals to H.E.S.S.\ and VERITAS are in preparation. |
---|
539 | \item to observe simultaneously with MAGIC which will provide an |
---|
540 | extended bandwidth from below 100\,GeV to multi-TeV energies. |
---|
541 | \item to obtain multi-frequency observations together with the |
---|
542 | Mets\"{a}hovi Radio Observatory and the optical telescopes of the |
---|
543 | Tuorla Observatory. The measurements will be correlated with INTEGRAL |
---|
544 | and GLAST results, when available. X-ray monitoring using the SWIFT and |
---|
545 | Suzaku facilities will be proposed. |
---|
546 | |
---|
547 | \end{itemize} |
---|
548 | |
---|
549 | Interpretation of the data will yield crucial information about |
---|
550 | \begin{itemize} |
---|
551 | \item the nature of the emission processes going on in relativistic |
---|
552 | jets. We plan to interpret the data with models currently developed in |
---|
553 | the context of the Research Training Group {\em Theoretical |
---|
554 | Astrophysics} in W\"{u}rzburg (Graduiertenkolleg, GK\,1147), including |
---|
555 | particle-in-cell and hybrid MHD models. |
---|
556 | \item the black hole mass and accretion rate fitting the data with |
---|
557 | emission models. Results will be compared with estimates of the black |
---|
558 | hole mass from the Magorrian relation. |
---|
559 | \item the flux of relativistic protons (ions) by correlating the rate |
---|
560 | of neutrinos detected with the neutrino telescope IceCube and the rate |
---|
561 | of gamma-ray photons detected with DWARF, and thus the rate of escaping |
---|
562 | cosmic rays. |
---|
563 | \item the orbital modulation owing to a supermassive binary black hole. |
---|
564 | Constraints on the binary system will allow to compute most accurate |
---|
565 | templates of gravitational waves, which is a connected project at |
---|
566 | W\"{u}rzburg in the German LISA consortium funded by DLR. |
---|
567 | \end{itemize} |
---|
568 | |
---|
569 | \subsection[3.2]{Work schedule (Arbeitsprogramm)} |
---|
570 | |
---|
571 | To complete the mount to a functional Cherenkov telescope within a |
---|
572 | period of one year, the following steps are necessary: |
---|
573 | |
---|
574 | The work schedule assumes, that the work will begin in January 2008, |
---|
575 | immediately after funding. Later funding would accordingly shift the |
---|
576 | schedule. Each year is divided into quarters (see fig.~\ref{schedule}). |
---|
577 | |
---|
578 | \begin{figure}[htb] |
---|
579 | \begin{center} |
---|
580 | \includegraphics*[width=\textwidth,angle=0,clip]{schedule.eps} |
---|
581 | \caption{Work schedule for the expected funding period of three years. |
---|
582 | More details about the work distribution is given in the text.} |
---|
583 | \label{schedule} |
---|
584 | %\label{DWARF} |
---|
585 | \end{center} |
---|
586 | \end{figure} |
---|
587 | |
---|
588 | \paragraph{Software} |
---|
589 | \begin{itemize} |
---|
590 | \item MC adaption (Do/W\"{u}): Due to the large similarities with the |
---|
591 | MAGIC telescope, within half a year new Monte Carlo code can be |
---|
592 | programmed using parts of the existing MAGIC Monte Carlo code. For |
---|
593 | tests and cross-checks another period of six months is necessary. |
---|
594 | \item Analysis adaption (W\"{u}): The modular concept of the Magic |
---|
595 | Analysis and Reconstruction Software (MARS) allows a very fast adaption |
---|
596 | of the telescope setup, camera and data acquisition properties within |
---|
597 | half a year. |
---|
598 | \item Adaption Drive software (W\"{u}): Since the new drive electronics |
---|
599 | will be based on the design of the MAGIC~II drive system the control |
---|
600 | software can be reused unchanged. The integration into the new slow |
---|
601 | control system will take about half a year. It has to be finished at |
---|
602 | the time of arrival of the drive system components in 2009/1. |
---|
603 | \item Slow control/DAQ (Do): A new data acquisition and slow control |
---|
604 | system for camera and auxiliary systems has to be developed. Based on |
---|
605 | experiences with the AMANDA DAQ, the Domino DAQ developed for MAGIC~II |
---|
606 | will be adapted and the slow control integrated within three quarters |
---|
607 | of a year. Commissioning will take place with the full system in |
---|
608 | 2009/3. |
---|
609 | \end{itemize} |
---|
610 | |
---|
611 | \paragraph{Mirrors (W\"{u})} First prototypes for the mirrors are |
---|
612 | already available. After testing (six months), the production will |
---|
613 | start in summer 2008, and the shipment will be finished before the full |
---|
614 | system assembly 2009/2. |
---|
615 | \paragraph{Drive (W\"{u})} After a planning phase of half a year to |
---|
616 | simplify the MAGIC~II drive system for a smaller telescope (together |
---|
617 | with the delivering company), ordering, production and shipment should |
---|
618 | be finished in 2009/1. The MAGIC~I and~II drive systems have been |
---|
619 | planned and implemented successfully by the W\"{u}rzburg group. |
---|
620 | \paragraph{Auxiliary (W\"{u})} Before the final setup in 2009/1, all |
---|
621 | auxiliary systems (weather station, computers, etc.) will have been |
---|
622 | specified, ordered and shipped. |
---|
623 | \paragraph{Camera (Do)} The camera has to be ready six month after the |
---|
624 | shipment of the other mechanical parts of the telescope. For this |
---|
625 | purpose camera tests have to take place in 2009/2, which requires the |
---|
626 | assembly of the camera within six months before. By now, a PM test |
---|
627 | bench is set up in Dortmund, which allows to finish planning and |
---|
628 | ordering of parts of the camera, including the PMs, until summer 2008, |
---|
629 | before the construction begins. |
---|
630 | In addition to the manpower permanently provided by Dortmund |
---|
631 | for production and commissioning, two engineers will participate in the |
---|
632 | construction phase. |
---|
633 | \paragraph{Full System (Do/W\"{u})} The full system will be assembled |
---|
634 | after the delivery of all parts in the beginning of spring 2009. Start of |
---|
635 | the commissioning is planned four months later. First light is expected |
---|
636 | in autumn 2009. This would allow an immediate full system test with a |
---|
637 | well measured, strong and steady source (Crab Nebula). After the |
---|
638 | commissioning phase will have been finished in spring 2010, complete |
---|
639 | robotic operation will be provided. |
---|
640 | |
---|
641 | Based on the experience with setting up the MAGIC telescope we estimate |
---|
642 | this workschedule as conservative. |
---|
643 | |
---|
644 | \subsection[3.3]{Experiments with humans (Untersuchungen am Menschen)} |
---|
645 | none |
---|
646 | \subsection[3.4]{Experiments with animals (Tierversuche)} |
---|
647 | none |
---|
648 | \subsection[3.5]{Experiments with recombinant DNA (Gentechnologische Experimente)} |
---|
649 | none |
---|
650 | |
---|
651 | \clearpage |
---|
652 | |
---|
653 | \section[4]{Funds requested (Beantragte Mittel)} |
---|
654 | |
---|
655 | Summarizing, the expenses for the telescope are dominated by the camera |
---|
656 | and data acquisition. We request funding for a total of three years. |
---|
657 | %The financial volume for the complete hardware inclusive |
---|
658 | %transport amounts to {\bf 372.985,-\,\euro}. |
---|
659 | |
---|
660 | \subsection[4.1]{Required Staff (Personalkosten)} |
---|
661 | |
---|
662 | For this period, we request funding for two postdocs and two PhD |
---|
663 | students, one in Dortmund and one in W\"{u}rzburg each (3\,x\,TV-L13).The |
---|
664 | staff members shall fulfill the tasks given in the work schedule above. |
---|
665 | To cover these tasks completely, one additional PhD and a various |
---|
666 | number of Diploma students will complete the working group. |
---|
667 | |
---|
668 | Suitable candidates interested in these positions are Dr.\ Thomas |
---|
669 | Bretz, Dr.\ dest.\ Daniela Dorner, Dr.\ dest.\ Kirsten M\"{u}nich, |
---|
670 | cand.\ phys.\ Michael Backes, cand.\ phys.\ Daniela Hadasch and cand.\ |
---|
671 | phys.\ Dominik Neise. |
---|
672 | |
---|
673 | \subsection[4.2]{Scientific equipment (Wissenschaftliche Ger\"{a}te)} |
---|
674 | |
---|
675 | At the Observatorio del Roque de los Muchachos (ORM), at the MAGIC site, |
---|
676 | the mount of the former HEGRA telescope CT3 now owned by the MAGIC |
---|
677 | collaboration is still serviceable. One hut for electronics close to |
---|
678 | the telescope is available. Additional space is available in the MAGIC |
---|
679 | counting house. The MAGIC Memorandum of Understanding allows for |
---|
680 | operating DWARF as an auxiliary instrument (see appendix). Also |
---|
681 | emergency support from the shift crew is guaranteed, although |
---|
682 | autonomous robotic operation is the primary goal. |
---|
683 | \begin{figure}[hb] |
---|
684 | \centering{ |
---|
685 | %\includegraphics[width=0.605\textwidth]{sensitivity.eps} |
---|
686 | \includegraphics[width=0.70\textwidth]{sensitivity.eps} |
---|
687 | \caption{Integral flux sensitivity of several telescopes |
---|
688 | \citep{Juan:2000,MAGICsensi,Vassiliev:1999} |
---|
689 | and the expectation for DWARF, with both a PMT- and a |
---|
690 | GAPD-camera, scaled from the sensitivity of |
---|
691 | HEGRA~CT1 by the improvements mentioned in the text. |
---|
692 | } \label{sensitivity} } |
---|
693 | \end{figure} |
---|
694 | |
---|
695 | To achieve the planned sensitivity and threshold |
---|
696 | (fig.~\ref{sensitivity}), the following components have to be bought. |
---|
697 | To obtain reliable results as fast as possible well known components |
---|
698 | have been chosen.\\ |
---|
699 | |
---|
700 | {\bf Camera}\dotfill 206.450,-\,\euro\\[-3ex] |
---|
701 | \begin{quote} |
---|
702 | To setup a camera with 313 pixels the following components are needed:\\ |
---|
703 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
704 | Photomultiplier Tube EMI\,9083B\hfill 220,-\,\euro\\ |
---|
705 | Active voltage divider (EMI)\hfill 80,-\,\euro\\ |
---|
706 | High voltage support and control\hfill 300,-\,\euro\\ |
---|
707 | Preamplifier\hfill 50,-\,\euro\\ |
---|
708 | Spare parts (overall)\hfill 3000,-\,\euro\\ |
---|
709 | \end{minipage}\\[-0.5ex] |
---|
710 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
711 | For long-term observations, the stability of the camera is a major |
---|
712 | criterion. To keep the systematic errors small, a good background |
---|
713 | estimation is mandatory. The only possibility for a synchronous |
---|
714 | determination of the background is the measurement from the night-sky |
---|
715 | observed in the same field-of-view with the same instrument. To achieve |
---|
716 | this, the observed position is moved out of the camera center which |
---|
717 | allows the estimation of the background from positions symmetric with |
---|
718 | respect to the camera center (so called Wobble mode). This observation |
---|
719 | mode increases the sensitivity by a factor of $\sqrt{2}$, because |
---|
720 | spending observation time for dedicated background observations becomes |
---|
721 | obsolete, i.e.\ observation time for the source is doubled. This |
---|
722 | ensures in addition a better time coverage of the observed sources.\\ |
---|
723 | A further increase in sensitivity can be achieved by better background |
---|
724 | statistics from not only one but several independent positions for the |
---|
725 | background estimation in the camera \citep{Lessard:2001}. To allow for |
---|
726 | this the source position in Wobble mode should be shifted |
---|
727 | $0.6^\circ-0.7^\circ$ out of the camera center. |
---|
728 | |
---|
729 | A camera completely containing the shower images of events in the energy |
---|
730 | region of 1\,TeV-10\,TeV should have a diameter in the order of |
---|
731 | 5$^\circ$. To decrease the dependence of the measurements on the camera |
---|
732 | geometry, a camera layout as symmetric as possible will be chosen. |
---|
733 | Consequently a camera allowing to fulfill these requirements should be |
---|
734 | round and have a diameter of $4.5^\circ-5.0^\circ$. |
---|
735 | \begin{figure}[th] |
---|
736 | \begin{center} |
---|
737 | \includegraphics*[width=0.495\textwidth,angle=0,clip]{cam271.eps} |
---|
738 | \includegraphics*[width=0.495\textwidth,angle=0,clip]{cam313.eps} |
---|
739 | \caption{Left: Schematic picture of the 271 pixel CT3 camera with a field of view of 4.6$^\circ$. |
---|
740 | Right: Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.} |
---|
741 | \label{camCT3} |
---|
742 | \label{camDWARF} |
---|
743 | \end{center} |
---|
744 | \end{figure} |
---|
745 | |
---|
746 | Therefore a camera with 313 pixel camera (see fig.~\ref{camDWARF}) is |
---|
747 | chosen. The camera will be built based on the experience with HEGRA and |
---|
748 | MAGIC. 19\,mm diameter Photomultiplier Tubes (PM, EMI\,9083B/KFLA-UD) |
---|
749 | will be bought, similar to the HEGRA type (EMI\,9083\,KFLA). They have |
---|
750 | a quantum efficiency improved by 25\% (see fig.~\ref{qe}) and ensure a |
---|
751 | granularity which is enough to guarantee good results even below the |
---|
752 | energy threshold (flux peak energy). Each individual pixel has to be |
---|
753 | equipped with a preamplifier, an active high-voltage supply and |
---|
754 | control. The total expense for a single pixel will be in the order of |
---|
755 | 650,-\,\euro. |
---|
756 | |
---|
757 | All possibilities of borrowing one of the old HEGRA cameras for a |
---|
758 | transition time have been probed and refused by the owners of the |
---|
759 | cameras. |
---|
760 | |
---|
761 | At ETH~Z\"{u}rich currently test measurements are ongoing to prove the |
---|
762 | ability, i.e.\ stability, aging, quantum efficiency, etc., of using |
---|
763 | Geiger-mode APDs (GAPD) as photon detectors in the camera of a |
---|
764 | Cherenkov telescope. The advantages are an extremely high quantum |
---|
765 | efficiency ($>$50\%), easier gain stabilization and simplified |
---|
766 | application compared to classical PMs. If these test measurements are |
---|
767 | successfully finished until 8/2008, we consider to use GAPDs in favor |
---|
768 | of classical PMs. The design of such a camera would take place at |
---|
769 | University Dortmund in close collaboration with the experts from ETH. |
---|
770 | The construction would also take place at the electronics workshop of |
---|
771 | Dortmund. |
---|
772 | |
---|
773 | \end{quote}\vspace{3ex} |
---|
774 | |
---|
775 | {\bf Camera support}\dotfill 7.500,-\,\euro\\[-3ex] |
---|
776 | \begin{quote} |
---|
777 | For this setup the camera holding has to be redesigned. (1500,-\,\euro) |
---|
778 | The camera chassis must be water tight and will be equipped with an |
---|
779 | automatic lid, protecting the PMs at daytime. For further protection, a |
---|
780 | plexi-glass window will be installed in front of the camera. By coating |
---|
781 | this window with an anti-reflex layer of magnesium-fluoride, a gain in |
---|
782 | transmission of 5\% is expected. Each PM will be equipped with a |
---|
783 | light-guide (Winston cone) as developed by UC Davis and successfully in |
---|
784 | operation in the MAGIC camera. (3000,-\,\euro\ for all Winston cones). The |
---|
785 | current design will be improved by using a high reflectivity aluminized |
---|
786 | Mylar mirror-foil, coated with a dialectical layer ($Si\,O_2$ |
---|
787 | alternated with Niobium Oxide), to reach a reflectivity in the order of |
---|
788 | 98\%. An electric and optical shielding of the individual PMs is |
---|
789 | planned. |
---|
790 | |
---|
791 | In total a gain of $\sim$15\% in light-collection |
---|
792 | efficiency compared to the old CT3 system can be achieved. |
---|
793 | \end{quote}\vspace{3ex} |
---|
794 | |
---|
795 | \newpage |
---|
796 | {\bf Data acquisition}\dotfill 61.035,-\,\euro\\[-3ex] |
---|
797 | \begin{quote} |
---|
798 | 313 pixels a\\ |
---|
799 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
800 | Readout\hfill 95,-\,\euro\\ |
---|
801 | Trigger\hfill 100,-\,\euro\\ |
---|
802 | \end{minipage}\\[-0.5ex] |
---|
803 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
804 | For the data acquisition system a hardware readout based on an analog |
---|
805 | ring buffer (Domino\ II/IV), currently developed for the MAGIC~II |
---|
806 | readout, will be used \citep{Barcelo}. This technology allows to sample |
---|
807 | the pulses with high frequencies and readout several channels with a |
---|
808 | single Flash-ADC resulting in low costs. The low power consumption will |
---|
809 | allow to include the digitization near the signal source making |
---|
810 | the transfer of the analog signal obsolete. This results in less |
---|
811 | pick-up noise and reduces the signal dispersion. By high sampling rates |
---|
812 | (1.2\,GHz), additional information about the pulse shape can be |
---|
813 | obtained. This increases the over-all sensitivity further, because the |
---|
814 | short integration time allows for almost perfect suppression of noise |
---|
815 | due to night-sky background photons. The estimated trigger-, i.e.\ |
---|
816 | readout-rate of the telescope is below 100\,Hz (HEGRA: $<$10\,Hz) which |
---|
817 | allows to use a low-cost industrial solution for readout of the system, |
---|
818 | like USB\,2.0. |
---|
819 | |
---|
820 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
821 | Current results obtained with the new 2\,GHz FADC system in the MAGIC |
---|
822 | data acquisition show, that for a single telescope a sensitivity |
---|
823 | improvement of 40\% with a fast FADC system is achievable \citep{Tescaro:2007}. |
---|
824 | |
---|
825 | Like for the HEGRA telescopes a simple multiplicity trigger is |
---|
826 | sufficient, but also a simple neighbor-logic could be programmed (both |
---|
827 | cases $\sim$100,-\,\euro/channel). |
---|
828 | |
---|
829 | Additional data reduction and preprocessing within the readout chain is |
---|
830 | provided. Assuming conservatively a readout rate of 30\,Hz, the storage |
---|
831 | space needed will be less than 250\,GB/month or 3\,TB/year. This amount |
---|
832 | of data can easily be stored and processed by the W\"{u}rzburg |
---|
833 | Datacenter (current capacity $>$80\,TB, $>$40\,CPUs). |
---|
834 | \end{quote}\vspace{3ex} |
---|
835 | |
---|
836 | {\bf Mirrors}\dotfill 15.000,-\,\euro\\[-3ex] |
---|
837 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
838 | \begin{quote} |
---|
839 | The existing mirrors will be replaced by new plastic mirrors currently |
---|
840 | developed by Wolfgang Dr\"{o}ge's group. The cheap and light-weight |
---|
841 | material has been formerly used for Winston cones in balloon |
---|
842 | experiments. The mirrors are copied from a master and coated with a |
---|
843 | reflecting and a protective material. Tests have given promising |
---|
844 | results. By a change of the mirror geometry, the mirror area can be |
---|
845 | increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture~\ref{CT3} and |
---|
846 | montage~\ref{DWARF}). This includes an increase of $\sim$10$\%$ per |
---|
847 | mirror by using a hexagonal layout instead of a round one. A further |
---|
848 | increase of the mirror area would require a reconstruction of parts of |
---|
849 | the mount and will therefore be considered only in a later phase of the |
---|
850 | experiment. |
---|
851 | |
---|
852 | If the current development of the plastic mirrors cannot be finished in |
---|
853 | time, a re-machining of the old glass mirrors (8.5\,m$^2$) is possible |
---|
854 | with high purity aluminum and quartz coating. |
---|
855 | |
---|
856 | In both cases the mirrors can be coated with the same high reflectivity |
---|
857 | aluminized Mylar mirror-foil and a dialectical layer of $SiO_2$ as for |
---|
858 | the Winston cones. By this, a gain in reflectivity of $\sim10\%$ is |
---|
859 | achieved, see fig.~\ref{reflectivity} \citep{Fraunhofer}. Both |
---|
860 | solutions would require the same expenses. |
---|
861 | |
---|
862 | To keep track of the alignment, reflectivity and optical quality of the |
---|
863 | individual mirrors and the point-spread function of the total mirror |
---|
864 | during long-term observations, the application of an automatic mirror |
---|
865 | adjustment system, as developed by ETH~Z\"{u}rich and successfully |
---|
866 | operated on the MAGIC telescope, is intended. |
---|
867 | |
---|
868 | %<grey>The system |
---|
869 | %will be provided by ETH Z"urich.</grey> |
---|
870 | |
---|
871 | %{\bf For a diameter mirror of less than 2.4\,m, the delay between an |
---|
872 | %parabolic (isochronous) and a spherical mirror shape at the edge is well |
---|
873 | %below 1ns (see figure). Thus for a sampling rate of 1.2\,GHz parabolic |
---|
874 | %individual mirrors are not needed. Due to their small size the |
---|
875 | %individual mirrors can have a spherical shape.} |
---|
876 | %}\\[2ex] |
---|
877 | \end{quote}\vspace{3ex} |
---|
878 | |
---|
879 | {\bf Calibration System}\dotfill 9.650,-\,\euro\\[-3ex] |
---|
880 | \begin{quote} |
---|
881 | Components\\ |
---|
882 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
883 | Absolute light calibration\hfill 2.000,-\,\euro\\ |
---|
884 | Individual pixel rate control\hfill 3.000,-\,\euro\\ |
---|
885 | Weather station\hfill 500,-\,\euro\\ |
---|
886 | GPS clock\hfill 1.500,-\,\euro\\ |
---|
887 | CCD cameras with readout\hfill 2.650,-\,\euro\\ |
---|
888 | \end{minipage}\\[-0.5ex] |
---|
889 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
890 | For the absolute light calibration (gain-calibration) of the PMs a |
---|
891 | calibration box, as successfully used in the MAGIC telescope, will be |
---|
892 | produced. |
---|
893 | |
---|
894 | To ensure a homogeneous acceptance of the camera, essential for |
---|
895 | Wobble mode observations, the trigger rate of the individual pixels |
---|
896 | will be measured and controlled. |
---|
897 | |
---|
898 | For a correction of axis misalignments and possible deformations of the |
---|
899 | structure (e.g.\ bending of camera holding masts) a pointing correction |
---|
900 | algorithm will be applied, as used in the MAGIC tracking system. It is |
---|
901 | calibrated by measurements of the reflection of bright guide stars on |
---|
902 | the camera surface and ensures a pointing accuracy well below the pixel |
---|
903 | diameter. Therefore a high sensitive low-cost video camera, as for |
---|
904 | MAGIC\ I and~II, (300,-\,\euro\ camera, 600,-\,\euro\ optics, |
---|
905 | 300,-\,\euro\ housing, 250,-\,\euro\ frame grabber) will be installed. |
---|
906 | |
---|
907 | A second identical CCD camera for online monitoring (starguider) will |
---|
908 | be bought. |
---|
909 | |
---|
910 | For an accurate tracking a GPS clock is necessary. The weather station |
---|
911 | helps judging the data quality. |
---|
912 | %}\\[2ex] |
---|
913 | \end{quote}\vspace{3ex} |
---|
914 | |
---|
915 | {\bf Computing}\dotfill 12.000,-\,\euro\\[-3ex] |
---|
916 | \begin{quote} |
---|
917 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
918 | Three PCs\hfill 8.000,-\,\euro\\ |
---|
919 | SATA RAID 3TB\hfill 4.000,-\,\euro\\ |
---|
920 | \end{minipage}\\[-0.5ex] |
---|
921 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
922 | For on-site computing three standard PCs are needed ($\sim$8.000,-\,\euro). |
---|
923 | This includes readout and storage, preprocessing and telescope control. |
---|
924 | For safety reasons, a firewall is mandatory. For local cache-storage |
---|
925 | and backup, two RAID\,5 SATA disk arrays with one Terabyte capacity |
---|
926 | each will fulfill the requirement ($\sim$4.000,-\,\euro). The data will be |
---|
927 | transmitted as soon as possible after data taking via Internet to the |
---|
928 | W\"{u}rzburg Datacenter. Enough storage capacity and computing power |
---|
929 | is available there and already reserved for this purpose. |
---|
930 | |
---|
931 | Monte Carlo production and storage will take place at University |
---|
932 | Dortmund.%}\\[2ex] |
---|
933 | \end{quote}\vspace{3ex} |
---|
934 | |
---|
935 | %%%%%%%%%%%%%% PLOTS HERE???? %%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
936 | |
---|
937 | {\bf Mount and Drive}\dotfill 17.500,-\,\euro\\[-3ex] |
---|
938 | \begin{quote} |
---|
939 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
940 | The present mount is used. Only a smaller investment for safety, |
---|
941 | corrosion protection, cable ducts, etc. is needed (7.500,-\,\euro). |
---|
942 | |
---|
943 | Motors, shaft encoders and control electronics in the order of |
---|
944 | 10.000,-\,\euro\ have to be bought. The costs have been estimated with |
---|
945 | the experience from building the MAGIC drive systems. The DWARF drive |
---|
946 | system should allow for relatively fast repositioning for three |
---|
947 | reasons: (i)~Fast movement might be mandatory for future ToO |
---|
948 | observations. (ii)~Wobble mode observations will be done changing the |
---|
949 | Wobble-position continuously (each 20\,min) for symmetry reasons. |
---|
950 | (iii)~To ensure good time coverage of more than one source visible at |
---|
951 | the same time, the observed source will be changed in constant time |
---|
952 | intervals. |
---|
953 | |
---|
954 | For the drive system three 150\,Watt servo motors are intended to be bought. A |
---|
955 | micro-controller based motion control unit (Siemens SPS L\,20) similar to |
---|
956 | the one of the current MAGIC~II drive system will be used. For |
---|
957 | communication with the readout-system, a standard Ethernet connection |
---|
958 | based on the TCP/IP- and UDP-protocol will be setup. |
---|
959 | %}\\[2ex] |
---|
960 | \end{quote}\vspace{3ex} |
---|
961 | |
---|
962 | {\bf Security}\dotfill 4.000,-\,\euro\\[-3ex] |
---|
963 | \begin{quote} |
---|
964 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
965 | Uninterruptable power-supply (UPS)\hfill 2.000,-\,\euro\\ |
---|
966 | Security fence\hfill 2.000,-\,\euro\\ |
---|
967 | \end{minipage}\\[-0.5ex] |
---|
968 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
969 | A UPS with 5\,kW-10\,kW will be |
---|
970 | installed to protect the equipment against power cuts and ensure a safe |
---|
971 | telescope position at the time of sunrise. |
---|
972 | |
---|
973 | For protection in case of robotic movement a fence will be |
---|
974 | installed.%}\\[2ex] |
---|
975 | \end{quote}\vspace{3ex} |
---|
976 | |
---|
977 | {\bf Other expenses}\dotfill 7.500,-\,\euro\\[-3ex] |
---|
978 | \begin{quote} |
---|
979 | %\parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
980 | % Robotics\hfill 7.500,-\,\euro\\ |
---|
981 | % \end{minipage}\\[-0.5ex] |
---|
982 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
983 | For remote, robotic operation a variety of remote controllable electronic |
---|
984 | components such as Ethernet controlled sockets and switches will be |
---|
985 | bought. Monitoring equipment, for example different kind of sensors, is |
---|
986 | also mandatory.%}\\[2ex] |
---|
987 | \end{quote} |
---|
988 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
989 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.2:\hfill{\bf |
---|
990 | 341.135,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
991 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
992 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
993 | |
---|
994 | \begin{figure}[p] |
---|
995 | \centering{ |
---|
996 | \includegraphics[width=0.57\textwidth]{cherenkov.eps} |
---|
997 | \includegraphics[width=0.57\textwidth]{reflectivity.eps} |
---|
998 | \includegraphics[width=0.57\textwidth]{qe.eps} |
---|
999 | \caption{Top to bottom: The Cherenkov spectrum as observed by a |
---|
1000 | telescope located at 2000\,m above sea level. The mirror's reflectivity |
---|
1001 | of a 300\,nm thick aluminum layer with a protection layer of 10\,nm and |
---|
1002 | 100\,nm thickness respectively. For comparison the reflectivity of |
---|
1003 | HEGRA CT1's mirrors \citep{Kestel:2000} are shown. The bottom plot depicts |
---|
1004 | the quantum efficiency of the preferred PMs (EMI) together with the |
---|
1005 | predecessor used in CT1. A proper coating \citep{Paneque:2004} will |
---|
1006 | further enhance its efficiency. An even better increase would be the |
---|
1007 | usage of Geiger-mode APDs.} |
---|
1008 | |
---|
1009 | \label{cherenkov} |
---|
1010 | \label{reflectivity} |
---|
1011 | \label{qe} |
---|
1012 | } |
---|
1013 | \end{figure} |
---|
1014 | |
---|
1015 | \subsection[4.3]{Consumables (Verbrauchsmaterial)} |
---|
1016 | |
---|
1017 | \begin{quote} |
---|
1018 | % \parbox[t]{1em}{~}\begin{minipage}[t]{0.9\textwidth} |
---|
1019 | 10 LTO\,4 tapes (8\,TB)\dotfill 750,-\,\euro\\ |
---|
1020 | Consumables (overalls): tools and materials\dotfill 10.000,-\,\euro |
---|
1021 | % \end{minipage}\\[-0.5ex] |
---|
1022 | \end{quote} |
---|
1023 | |
---|
1024 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1025 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.3:\hfill{\bf |
---|
1026 | 10.750,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1027 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1028 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1029 | |
---|
1030 | \subsection[4.4]{Travel expenses (Reisen)} |
---|
1031 | The large amount of travel funding is required due to the very close |
---|
1032 | cooperation between Dortmund and W\"{u}rzburg and the work demands on |
---|
1033 | the construction site.\\[-2ex] |
---|
1034 | |
---|
1035 | \begin{quote} |
---|
1036 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1037 | Per year one senior group member from Dortmund and W\"{u}rzburg should |
---|
1038 | present the status of the work in progress at an international workshop |
---|
1039 | or conference:\\ |
---|
1040 | 2 x 3\,years x 1.500,-\,\euro\dotfill 9.000,-\,\euro\\[-2ex] |
---|
1041 | |
---|
1042 | One participation at the biannual MAGIC collaboration meeting:\\ |
---|
1043 | 2 x 3\,years x 1.000,-\,\euro\dotfill 6.000,-\,\euro\\[-2ex] |
---|
1044 | |
---|
1045 | PhD student exchange between W\"{u}rzburg and Dortmund:\\ |
---|
1046 | 1\,student x 1\,week x 24 (every six weeks) x 800,-\,\euro\dotfill |
---|
1047 | 19.200,-\,\euro\\[-2ex] |
---|
1048 | |
---|
1049 | For setup of the telescope at La Palma the following travel expenses |
---|
1050 | are necessary:\\ |
---|
1051 | 4 x 2\,weeks at La Palma x 2\,persons x 1.800,-\,\euro\dotfill |
---|
1052 | 28.800,-\,\euro |
---|
1053 | %} |
---|
1054 | \end{quote} |
---|
1055 | |
---|
1056 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1057 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.4:\hfill{\bf |
---|
1058 | 63.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1059 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1060 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1061 | |
---|
1062 | |
---|
1063 | \subsection[4.5]{Publication costs (Publikationskosten)} |
---|
1064 | Will be covered by the proposing institutes. |
---|
1065 | |
---|
1066 | |
---|
1067 | \subsection[4.6]{Other costs (Sonstige Kosten)} |
---|
1068 | \begin{quote} |
---|
1069 | Storage container (for shipment of the mirrors)\dotfill 5.000,-\,\euro\\ |
---|
1070 | Transport\dotfill 15.000,-\,\euro\\ |
---|
1071 | Dismantling (will be covered by proposing institutes)\dotfill n/a |
---|
1072 | \end{quote} |
---|
1073 | |
---|
1074 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1075 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.6:\hfill{\bf |
---|
1076 | 20.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1077 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1078 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1079 | |
---|
1080 | \newpage |
---|
1081 | \germanTeX |
---|
1082 | \section[5]{Preconditions for carrying out the project\\(Voraussetzungen f"ur die Durchf"uhrung des Vorhabens)} |
---|
1083 | none |
---|
1084 | |
---|
1085 | \subsection[5.1]{The research team (Zusammensetzung der Arbeitsgruppe)} |
---|
1086 | |
---|
1087 | \paragraph{Dortmund} |
---|
1088 | \begin{itemize} |
---|
1089 | \setlength{\itemsep}{0pt} |
---|
1090 | \setlength{\parsep}{0pt} |
---|
1091 | \item Prof.\ Dr.\ Dr.\ Wolfgang Rhode (Grundauststattung) |
---|
1092 | \item Dr.\ Tanja Kneiske (Postdoc (Ph"anomenologie), DFG-Forschungsstipendium) |
---|
1093 | \item Dr.\ Julia Becker (Postdoc (Ph"anomenologie), Drittmittel) |
---|
1094 | \item Dipl.-Phys.\ Kirsten M"unich (Doktorand (IceCube), Drittmittel) |
---|
1095 | \item Dipl.-Phys.\ Jens Dreyer (Doktorand (IceCube), Grundauststattung) |
---|
1096 | \item M.Sc.\ Valentin Curtef (Doktorand (MAGIC), Grundausstattung) |
---|
1097 | \item cand.\ phys.\ Michael Backes (Diplomand (MAGIC), zum F"orderbeginn diplomiert) |
---|
1098 | \item cand.\ phys.\ Daniela Hadasch (Diplomand (MAGIC)) |
---|
1099 | \item cand.\ phys.\ Anne Wiedemann (Diplomand (IceCube)) |
---|
1100 | \item cand.\ phys.\ Dominik Neise (Diplomand (MAGIC)) |
---|
1101 | \item Dipl.-Ing.\ Kai Warda (Elektronik) |
---|
1102 | \item PTA Matthias Domke (Systemadministration) |
---|
1103 | \end{itemize} |
---|
1104 | |
---|
1105 | \paragraph{W\"{u}rzburg} |
---|
1106 | \begin{itemize} |
---|
1107 | \setlength{\itemsep}{0pt} |
---|
1108 | \setlength{\parsep}{0pt} |
---|
1109 | \item Prof.\ Dr.\ Karl Mannheim (Landesmittel) |
---|
1110 | \item Prof.\ Dr.\ Thomas Trefzger (Landesmittel) |
---|
1111 | \item Prof.\ Dr.\ Wolfgang Dr"oge (Landesmittel) |
---|
1112 | \item Dr.\ Thomas Bretz (Postdoc (MAGIC), BMBF) |
---|
1113 | \item Dr.\ Felix Spanier (Postdoc, Landesmittel) |
---|
1114 | \item Dipl.-Phys.\ Jordi Albert (Doktorand, DFG-GRK1147) |
---|
1115 | \item Dipl.-Phys.\ Karsten Berger (Doktorand (MAGIC), Landesmittel) |
---|
1116 | \item Dipl.-Phys.\ Thomas Burkart (Doktorand (LISA), DLR) |
---|
1117 | \item Dipl.-Phys.\ Oliver Elbracht (Doktorand, Elitenetzwerk Bayern) |
---|
1118 | \item Dipl.-Phys.\ Dominik Els"asser (Doktorand, Elitenetzwerk Bayern) |
---|
1119 | \item Dipl.-Phys.\ Daniela Dorner (Doktorand (MAGIC), BMBF) |
---|
1120 | \item Dipl.-Phys.\ Daniel H"ohne (Doktorand (MAGIC), Landesmittel) |
---|
1121 | \item Dipl.-Phys.\ Markus Meyer (Doktorand, DFG-GRK1147) |
---|
1122 | \item M.Sc.\ Surajit Paul (Doktorand, DFG-GRK1147) |
---|
1123 | \item Dipl.-Phys.\ Stefan R"ugamer (Doktorand (MAGIC), Landesmittel) |
---|
1124 | \item Dipl.-Phys.\ Michael R"uger (Doktorand, Elitenetzwerk Bayern) |
---|
1125 | \item Dipl.-Phys.\ Martina Wei"s (Doktorand, Elitenetzwerk Bayern) |
---|
1126 | \item cand.\ phys.\ Sebastian Huber |
---|
1127 | \item cand.\ phys.\ Tobias Hein |
---|
1128 | \item cand.\ phys.\ Tobias Viering |
---|
1129 | \end{itemize} |
---|
1130 | \originalTeX |
---|
1131 | |
---|
1132 | \subsection[5.2]{Cooperation with other scientists\\(Zusammenarbeit mit |
---|
1133 | anderen Wissenschaftlern)} |
---|
1134 | |
---|
1135 | Both applying groups cooperate with the international |
---|
1136 | MAGIC collaboration and the institutes represented therein. (W\"{u}rzburg |
---|
1137 | funded by the BMBF, Dortmund by means of appointment for the moment). |
---|
1138 | |
---|
1139 | W\"{u}rzburg is also in close scientific exchange with the group of |
---|
1140 | Prof.~Dr.~Victoria Fonseca, UCM Madrid and the University of Turku |
---|
1141 | (Finland) operating the KVA optical telescope at La Palma. Other |
---|
1142 | cooperations refer to the projects JEM-EUSO (science case), GRIPS |
---|
1143 | (simulation), LISA (astrophysical input for templates), STEREO (data |
---|
1144 | analysis), and SOLAR ORBITER (electron-proton telescope). A cooperation |
---|
1145 | with GLAST science team members (Dr.~Anita and Dr.~Olaf Reimer, |
---|
1146 | Stanford) is also relevant for the proposed project. |
---|
1147 | |
---|
1148 | The group in Dortmund is involved in the IceCube experiment (BMBF |
---|
1149 | funding) and maintains close contacts to the collaboration partners. |
---|
1150 | Moreover on the field of phenomenology good working contacts exist to |
---|
1151 | the groups of Prof.~Dr.~Reinhard Schlickeiser, Ruhr-Universit\"{a}t |
---|
1152 | Bochum and Prof.~Dr.~Peter Biermann, MPIfR Bonn. There are furthermore |
---|
1153 | intense contacts to Prof.~Dr.~Francis Halzen, Madison, Wisconsin. |
---|
1154 | |
---|
1155 | The telescope design will be worked out in close cooperation with the |
---|
1156 | group of Prof.~Dr.~Felicitas Pauss, Dr.~Adrian Biland and |
---|
1157 | Prof.~Dr.~Eckart Lorenz (ETH~Z\"{u}rich). They will provide help in design |
---|
1158 | studies, construction and software development. The DAQ design will be |
---|
1159 | contributed by the group of Prof.~Dr.~Riccardo Paoletti (Universit\`{a} di |
---|
1160 | Siena and INFN sez.\ di Pisa, Italy). |
---|
1161 | |
---|
1162 | The group of the newly appointed {\em Lehrstuhl f\"{u}r Physik und ihre |
---|
1163 | Didaktik} (Prof.~Dr.~Thomas Trefzger) has expressed their interest to |
---|
1164 | join the project. They bring in a laboratory for photo-sensor testing, |
---|
1165 | know-how from former contributions to ATLAS and a joint interest in |
---|
1166 | operating a data pipeline using GRID technologies. |
---|
1167 | |
---|
1168 | \subsection[5.3]{Work outside Germany, Cooperation with foreign |
---|
1169 | partners\\(Arbeiten im Ausland, Kooperation mit Partnern im Ausland)} |
---|
1170 | |
---|
1171 | The work on DWARF will take place at the ORM on the Spanish island La |
---|
1172 | Palma. It will be performed in close collaboration with the |
---|
1173 | MAGIC collaboration. |
---|
1174 | |
---|
1175 | \subsection[5.4]{Scientific equipment available (Apparative |
---|
1176 | Ausstattung)} |
---|
1177 | In Dortmund and W\"{u}rzburg extensive computer capacities for data |
---|
1178 | storage as well as for data analysis are available. |
---|
1179 | |
---|
1180 | The faculty of physics at the University Dortmund has modern |
---|
1181 | equipped mechanical and electrical workshops including a department for |
---|
1182 | development of electronics at its command. The chair of astroparticle |
---|
1183 | physics possesses common technical equipment required for constructing |
---|
1184 | modern DAQ. |
---|
1185 | |
---|
1186 | The faculty of physics at the University of W\"{u}rzburg comes with a |
---|
1187 | mechanical and an electronic workshop, as well as a special laboratory |
---|
1188 | of the chair for astronomy suitable for photosensor testing. |
---|
1189 | |
---|
1190 | \subsection[5.5]{The institution's general contribution\\(Laufende |
---|
1191 | Mittel f\"{u}r Sachausgaben)} |
---|
1192 | |
---|
1193 | Current total institute budget from the University Dortmund |
---|
1194 | $\sim$20.000,-\,\euro\ per year. |
---|
1195 | |
---|
1196 | Current total institute budget from the University W\"{u}rzburg |
---|
1197 | $\sim$30.000,-\,\euro\ per year. |
---|
1198 | |
---|
1199 | %\paragraph{5.6 Conflicts of interest in economic activities\\Interessenskonflikte bei wirtschaftlichen Aktivit\"aten}~\\ |
---|
1200 | \subsection[5.6]{Conflicts of interest in economic activities\\(Interessenskonflikte bei wirtschaftlichen Aktivit\"{a}ten)}~\\ |
---|
1201 | none |
---|
1202 | |
---|
1203 | \subsection[5.7]{Other requirements (Sonstige Voraussetzungen)}~\\ |
---|
1204 | none |
---|
1205 | |
---|
1206 | \newpage |
---|
1207 | \thispagestyle{empty} |
---|
1208 | |
---|
1209 | \paragraph{6 Declarations (Erkl\"{a}rungen)} |
---|
1210 | |
---|
1211 | A request for funding this project has not been submitted to |
---|
1212 | any other addressee. In case we submit such a request we will inform |
---|
1213 | the Deutsche Forschungsgemeinschaft immediately. \\ |
---|
1214 | |
---|
1215 | The corresponding persons (Vertrauensdozenten) at the |
---|
1216 | Universit\"{a}t Dortmund (Prof.\ Dr.\ Gather) and at the Universit\"{a}t |
---|
1217 | W\"{u}rzburg (Prof.\ Dr.\ G.\ Bringmann) have been informed about the |
---|
1218 | submission of this proposal. |
---|
1219 | |
---|
1220 | \paragraph{7 Signatures (Unterschriften)}~\\ |
---|
1221 | |
---|
1222 | \vspace{2.5 cm} |
---|
1223 | |
---|
1224 | \hfill |
---|
1225 | \begin{minipage}[t]{6cm} |
---|
1226 | W\"{u}rzburg,\\[3.0cm] |
---|
1227 | \parbox[t]{6cm}{\hrulefill}\\ |
---|
1228 | \parbox[t]{6cm}{~\hfill Prof.\ Dr.\ Karl Mannheim\hfill~}\\ |
---|
1229 | \end{minipage} |
---|
1230 | \hfill |
---|
1231 | \begin{minipage}[t]{6cm} |
---|
1232 | Dortmund,\\[3.0cm] |
---|
1233 | \parbox[t]{6cm}{\hrulefill}\\ |
---|
1234 | \parbox[t]{6cm}{~\hfill Prof.\ Dr.\ Dr.\ Wolfgang Rhode\hfill~}\\ |
---|
1235 | \end{minipage}\hfill~ |
---|
1236 | |
---|
1237 | \thispagestyle{empty} |
---|
1238 | \newpage |
---|
1239 | \mbox{} |
---|
1240 | \thispagestyle{empty} |
---|
1241 | \newpage |
---|
1242 | \paragraph{8 List of appendices (Verzeichnis der Anlagen)} |
---|
1243 | |
---|
1244 | \begin{itemize} |
---|
1245 | \item |
---|
1246 | %Schriftenverzeichnis der Antragsteller seit dem Jahr 2000 |
---|
1247 | List of refereed publications of the applicants since 2000 |
---|
1248 | \item Appendix A: Chapter 4 in German |
---|
1249 | \item CV of Karl Mannheim |
---|
1250 | \item CV of Wolfgang Rhode |
---|
1251 | \item Letter of Support from the MAGIC collaboration |
---|
1252 | \item Letter of Support from Mets\"{a}hovi Radio Observatory |
---|
1253 | \item Letter of Support from the IceCube collaboration |
---|
1254 | \item Letter of Support from KVA optical telescope |
---|
1255 | \item Email with offer from EMI for the PMs |
---|
1256 | \end{itemize} |
---|
1257 | \newpage |
---|
1258 | \mbox{} |
---|
1259 | \thispagestyle{empty} |
---|
1260 | \newpage |
---|
1261 | |
---|
1262 | \appendix |
---|
1263 | \germanTeX |
---|
1264 | \section[4]{Beantragte Mittel} |
---|
1265 | |
---|
1266 | Die beantragten Mittel werden durch die Ausgaben f"ur die Kamera und |
---|
1267 | die Datennahme dominiert. Wir beantragen eine F"orderung von drei Jahren. |
---|
1268 | |
---|
1269 | \subsection[4.1]{Personalkosten} |
---|
1270 | |
---|
1271 | F"ur diesen Zeitraum beantragen wir die Finanzierung von zwei Postdocs |
---|
1272 | und zwei Doktoranden, jeweils einer in Dortmund und einer in W"urzburg |
---|
1273 | (3\,x\,TV-L13). Mit den besetzten Stellen sollen die erw"ahnten Arbeiten |
---|
1274 | zur Planung und zum Bau des Teleskops durchgef"uhrt werden. Zus"atzlich |
---|
1275 | wird noch eine schwankende Zahl an Doktoranden und Diplomanden |
---|
1276 | zur Verf"ugung stehen. |
---|
1277 | |
---|
1278 | Interessierte Kandidaten sind Dr.\ Thomas |
---|
1279 | Bretz, Dr.\ dest.\ Daniela Dorner, Dr.\ dest.\ Kirsten M\"{u}nich, |
---|
1280 | cand.\ phys.\ Michael Backes, cand.\ phys.\ Daniela Hadasch und cand.\ |
---|
1281 | phys.\ Dominik Neise. |
---|
1282 | |
---|
1283 | \subsection[4.2]{Wissenschaftliche Ger\"{a}te} |
---|
1284 | |
---|
1285 | Am Observatorio del Roque de los Muchachos (ORM), nahe dem MAGIC |
---|
1286 | Teleskop, steht noch das ehemalige HEGRA-Teleskop (CT3) zur Verf"ugung. |
---|
1287 | Es ist noch immer nutzbar und geh"ort jetzt der MAGIC Kollaboration. |
---|
1288 | Au"serdem ist noch ein Container zur Unterbringung von Elektronik, |
---|
1289 | sowie weiterer Platz im MAGIC-eignenen Haus vorhanden. Der Memorandum |
---|
1290 | of Understanding der MAGIC-Kollaboration erlaubt uns den Betrieb des |
---|
1291 | Teleskops als DWARF (siehe Anlage). F"ur Notfallsituationen steht die |
---|
1292 | MAGIC Schichtmannschaft zur Verf"ugung. |
---|
1293 | |
---|
1294 | Um die angestrebte Sensitivit"at und Energieschwelle (Abb.~\ref{sensitivity}) |
---|
1295 | in m"oglichgst kurzer Zeit zu erreichen, wurden die folgenden |
---|
1296 | Komponenten ausgew"ahlt. Einzelheiten zu den Auswahlkriterien k"onnen |
---|
1297 | im Kapitel~4 nachgelesen werden.\\ |
---|
1298 | |
---|
1299 | {\bf Kamera}\dotfill 206.450,-\,\euro\\[-3ex] |
---|
1300 | \begin{quote} |
---|
1301 | F"ur eine Kamera mit 313 Pixel werden folgende Komponenten ben"otigt:\\ |
---|
1302 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1303 | Photomultiplier R"ohre EMI\,9083B\hfill 220,-\,\euro\\ |
---|
1304 | Aktiver Spannungsteiler (EMI)\hfill 80,-\,\euro\\ |
---|
1305 | Hochspannungsversorgung und -kontrolle\hfill 300,-\,\euro\\ |
---|
1306 | Vorverst"arker\hfill 50,-\,\euro\\ |
---|
1307 | Ersatzteile (pauschal)\hfill 3000,-\,\euro\\ |
---|
1308 | \end{minipage}\\[-0.5ex] |
---|
1309 | %For long-term observations, the stability of the camera is a major |
---|
1310 | %criterion. To keep the systematic errors small, a good background |
---|
1311 | %estimation is mandatory. The only possibility for a synchronous |
---|
1312 | %determination of the background is the measurement from the night-sky |
---|
1313 | %observed in the same field-of-view with the same instrument. To achieve |
---|
1314 | %this, the observed position is moved out of the camera center which |
---|
1315 | %allows the estimation of the background from positions symmetric with |
---|
1316 | %respect to the camera center (so called Wobble mode). This observation |
---|
1317 | %mode increases the sensitivity by a factor of $\sqrt{2}$, because |
---|
1318 | %spending observation time for dedicated background observations becomes |
---|
1319 | %obsolete, i.e.\ observation time for the source is doubled. This |
---|
1320 | %ensures in addition a better time coverage of the observed sources.\\ |
---|
1321 | %A further increase in sensitivity can be achieved by better background |
---|
1322 | %statistics from not only one but several independent positions for the |
---|
1323 | %background estimation in the camera \citep{Lessard:2001}. To allow for |
---|
1324 | %this the source position in Wobble mode should be shifted |
---|
1325 | %$0.6^\circ-0.7^\circ$ out of the camera center. |
---|
1326 | % |
---|
1327 | %A camera completely containing the shower images of events in the energy |
---|
1328 | %region of 1\,TeV-10\,TeV should have a diameter in the order of |
---|
1329 | %5$^\circ$. To decrease the dependence of the measurements on the camera |
---|
1330 | %geometry, a camera layout as symmetric as possible will be chosen. |
---|
1331 | %Consequently a camera allowing to fulfill these requirements should be |
---|
1332 | %round and have a diameter of $4.5^\circ-5.0^\circ$. |
---|
1333 | % |
---|
1334 | %Therefore a camera with 313 pixel camera (see fig.~\ref{camDWARF}) is |
---|
1335 | %chosen. The camera will be built based on the experience with HEGRA and |
---|
1336 | %MAGIC. 19\,mm diameter Photomultiplier Tubes (PM, EMI\,9083B/KFLA-UD) |
---|
1337 | %will be bought, similar to the HEGRA type (EMI\,9083\,KFLA). They have |
---|
1338 | %a quantum efficiency improved by 25\% (see fig.~\ref{qe}) and ensure a |
---|
1339 | %granularity which is enough to guarantee good results even below the |
---|
1340 | %energy threshold (flux peak energy). Each individual pixel has to be |
---|
1341 | %equipped with a preamplifier, an active high-voltage supply and |
---|
1342 | %control. The total expense for a single pixel will be in the order of |
---|
1343 | %650,-\,\euro. |
---|
1344 | % |
---|
1345 | %All possibilities of borrowing one of the old HEGRA cameras for a |
---|
1346 | %transition time have been probed and refused by the owners of the |
---|
1347 | %cameras. |
---|
1348 | % |
---|
1349 | %At ETH~Z\"{u}rich currently test measurements are ongoing to prove the |
---|
1350 | %ability, i.e.\ stability, aging, quantum efficiency, etc., of using |
---|
1351 | %Geiger-mode APDs (GAPD) as photon detectors in the camera of a |
---|
1352 | %Cherenkov telescope. The advantages are an extremely high quantum |
---|
1353 | %efficiency ($>$50\%), easier gain stabilization and simplified |
---|
1354 | %application compared to classical PMs. If these test measurements are |
---|
1355 | %successfully finished until 8/2008, we consider to use GAPDs in favor |
---|
1356 | %of classical PMs. The design of such a camera would take place at |
---|
1357 | %University Dortmund in close collaboration with the experts from ETH. |
---|
1358 | %The construction would also take place at the electronics workshop of |
---|
1359 | %Dortmund. |
---|
1360 | \end{quote}\vspace{3ex} |
---|
1361 | \newpage |
---|
1362 | {\bf Kameraaufh"angung und -geh"ause}\dotfill 7.500,-\,\euro\\[-3ex] |
---|
1363 | \begin{quote} |
---|
1364 | %For this setup the camera holding has to be redesigned. (1500,-\,\euro) |
---|
1365 | %The camera chassis must be water tight and will be equipped with an |
---|
1366 | %automatic lid, protecting the PMs at daytime. For further protection, a |
---|
1367 | %plexi-glass window will be installed in front of the camera. By coating |
---|
1368 | %this window with an anti-reflex layer of magnesium-fluoride, a gain in |
---|
1369 | %transmission of 5\% is expected. Each PM will be equipped with a |
---|
1370 | %light-guide (Winston cone) as developed by UC Davis and successfully in |
---|
1371 | %operation in the MAGIC camera. (3000,-\,\euro\ for all Winston cones). The |
---|
1372 | %current design will be improved by using a high reflectivity aluminized |
---|
1373 | %Mylar mirror-foil, coated with a dialectical layer ($Si\,O_2$ |
---|
1374 | %alternated with Niobium Oxide), to reach a reflectivity in the order of |
---|
1375 | %98\%. An electric and optical shielding of the individual PMs is |
---|
1376 | %planned. |
---|
1377 | % |
---|
1378 | %In total a gain of $\sim$15\% in light-collection |
---|
1379 | %efficiency compared to the old CT3 system can be achieved. |
---|
1380 | \end{quote}%\vspace{1ex} |
---|
1381 | {\bf Datennahme}\dotfill 61.035,-\,\euro\\[-3ex] |
---|
1382 | \begin{quote} |
---|
1383 | 313 Pixel\\ |
---|
1384 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1385 | Auslese\hfill 95,-\,\euro\\ |
---|
1386 | Triggerelektronik\hfill 100,-\,\euro\\ |
---|
1387 | \end{minipage}\\[-0.5ex] |
---|
1388 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1389 | %For the data acquisition system a hardware readout based on an analog |
---|
1390 | %ring buffer (Domino\ II/IV), currently developed for the MAGIC~II |
---|
1391 | %readout, will be used \citep{Barcelo}. This technology allows to sample |
---|
1392 | %the pulses with high frequencies and readout several channels with a |
---|
1393 | %single Flash-ADC resulting in low costs. The low power consumption will |
---|
1394 | %allow to include the digitization near the signal source making |
---|
1395 | %the transfer of the analog signal obsolete. This results in less |
---|
1396 | %pick-up noise and reduces the signal dispersion. By high sampling rates |
---|
1397 | %(1.2\,GHz), additional information about the pulse shape can be |
---|
1398 | %obtained. This increases the over-all sensitivity further, because the |
---|
1399 | %short integration time allows for almost perfect suppression of noise |
---|
1400 | %due to night-sky background photons. The estimated trigger-, i.e.\ |
---|
1401 | %readout-rate of the telescope is below 100\,Hz (HEGRA: $<$10\,Hz) which |
---|
1402 | %allows to use a low-cost industrial solution for readout of the system, |
---|
1403 | %like USB\,2.0. |
---|
1404 | % |
---|
1405 | %Current results obtained with the new 2\,GHz FADC system in the MAGIC |
---|
1406 | %data acquisition show, that for a single telescope a sensitivity |
---|
1407 | %improvement of 40\% with a fast FADC system is achievable \citep{Tescaro:2007}. |
---|
1408 | % |
---|
1409 | %Like for the HEGRA telescopes a simple multiplicity trigger is |
---|
1410 | %sufficient, but also a simple neighbor-logic could be programmed (both |
---|
1411 | %cases $\sim$100,-\,\euro/channel). |
---|
1412 | % |
---|
1413 | %Additional data reduction and preprocessing within the readout chain is |
---|
1414 | %provided. Assuming conservatively a readout rate of 30\,Hz, the storage |
---|
1415 | %space needed will be less than 250\,GB/month or 3\,TB/year. This amount |
---|
1416 | %of data can easily be stored and processed by the W\"{u}rzburg |
---|
1417 | %Datacenter (current capacity $>$80\,TB, $>$40\,CPUs). |
---|
1418 | \end{quote}\vspace{3ex} |
---|
1419 | |
---|
1420 | {\bf Spiegel}\dotfill 15.000,-\,\euro\\[-3ex] |
---|
1421 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1422 | \begin{quote} |
---|
1423 | %The existing mirrors will be replaced by new plastic mirrors currently |
---|
1424 | %developed by Wolfgang Dr\"{o}ge's group. The cheap and light-weight |
---|
1425 | %material has been formerly used for Winston cones in balloon |
---|
1426 | %experiments. The mirrors are copied from a master and coated with a |
---|
1427 | %reflecting and a protective material. Tests have given promising |
---|
1428 | %results. By a change of the mirror geometry, the mirror area can be |
---|
1429 | %increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture~\ref{CT3} and |
---|
1430 | %montage~\ref{DWARF}). This includes an increase of $\sim$10$\%$ per |
---|
1431 | %mirror by using a hexagonal layout instead of a round one. A further |
---|
1432 | %increase of the mirror area would require a reconstruction of parts of |
---|
1433 | %the mount and will therefore be considered only in a later phase of the |
---|
1434 | %experiment. |
---|
1435 | % |
---|
1436 | %If the current development of the plastic mirrors cannot be finished in |
---|
1437 | %time, a re-machining of the old glass mirrors (8.5\,m$^2$) is possible |
---|
1438 | %with high purity aluminum and quartz coating. |
---|
1439 | % |
---|
1440 | %In both cases the mirrors can be coated with the same high reflectivity |
---|
1441 | %aluminized Mylar mirror-foil and a dialectical layer of $SiO_2$ as for |
---|
1442 | %the Winston cones. By this, a gain in reflectivity of $\sim10\%$ is |
---|
1443 | %achieved, see fig.~\ref{reflectivity} \citep{Fraunhofer}. Both |
---|
1444 | %solutions would require the same expenses. |
---|
1445 | % |
---|
1446 | %To keep track of the alignment, reflectivity and optical quality of the |
---|
1447 | %individual mirrors and the point-spread function of the total mirror |
---|
1448 | %during long-term observations, the application of an automatic mirror |
---|
1449 | %adjustment system, as developed by ETH~Z\"{u}rich and successfully |
---|
1450 | %operated on the MAGIC telescope, is intended. |
---|
1451 | \end{quote}%\vspace{3ex} |
---|
1452 | {\bf Kalibrationssystem}\dotfill 9.650,-\,\euro\\[-3ex] |
---|
1453 | \begin{quote} |
---|
1454 | Einzelkomponenten\\ |
---|
1455 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1456 | Absolute Lichtkalibration\hfill 2.000,-\,\euro\\ |
---|
1457 | Messung der Triggerrate einzelner Pixel\hfill 3.000,-\,\euro\\ |
---|
1458 | Wetterstation\hfill 500,-\,\euro\\ |
---|
1459 | GPS gesteuerte Uhr\hfill 1.500,-\,\euro\\ |
---|
1460 | CCD Kameras mit Auslese\hfill 2.650,-\,\euro\\ |
---|
1461 | \end{minipage}\\[-0.5ex] |
---|
1462 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1463 | %For the absolute light calibration (gain-calibration) of the PMs a |
---|
1464 | %calibration box, as successfully used in the MAGIC telescope, will be |
---|
1465 | %produced. |
---|
1466 | % |
---|
1467 | %To ensure a homogeneous acceptance of the camera, essential for |
---|
1468 | %Wobble mode observations, the trigger rate of the individual pixels |
---|
1469 | %will be measured and controlled. |
---|
1470 | % |
---|
1471 | %For a correction of axis misalignments and possible deformations of the |
---|
1472 | %structure (e.g.\ bending of camera holding masts) a pointing correction |
---|
1473 | %algorithm will be applied, as used in the MAGIC tracking system. It is |
---|
1474 | %calibrated by measurements of the reflection of bright guide stars on |
---|
1475 | %the camera surface and ensures a pointing accuracy well below the pixel |
---|
1476 | %diameter. Therefore a high sensitive low-cost video camera, as for |
---|
1477 | %MAGIC\ I and~II, (300,-\,\euro\ camera, 600,-\,\euro\ optics, |
---|
1478 | %300,-\,\euro\ housing, 250,-\,\euro\ frame grabber) will be installed. |
---|
1479 | % |
---|
1480 | %A second identical CCD camera for online monitoring (starguider) will |
---|
1481 | %be bought. |
---|
1482 | % |
---|
1483 | %For an accurate tracking a GPS clock is necessary. The weather station |
---|
1484 | %helps judging the data quality. |
---|
1485 | %}\\[2ex] |
---|
1486 | \end{quote}\vspace{3ex} |
---|
1487 | |
---|
1488 | {\bf Computing}\dotfill 12.000,-\,\euro\\[-3ex] |
---|
1489 | \begin{quote} |
---|
1490 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1491 | Drei PCs\hfill 8.000,-\,\euro\\ |
---|
1492 | SATA RAID 3TB\hfill 4.000,-\,\euro\\ |
---|
1493 | \end{minipage}\\[-0.5ex] |
---|
1494 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1495 | %For on-site computing three standard PCs are needed ($\sim$8.000,-\,\euro). |
---|
1496 | %This includes readout and storage, preprocessing and telescope control. |
---|
1497 | %For safety reasons, a firewall is mandatory. For local cache-storage |
---|
1498 | %and backup, two RAID\,5 SATA disk arrays with one Terabyte capacity |
---|
1499 | %each will fulfill the requirement ($\sim$4.000,-\,\euro). The data will be |
---|
1500 | %transmitted as soon as possible after data taking via Internet to the |
---|
1501 | %W\"{u}rzburg Datacenter. Enough storage capacity and computing power |
---|
1502 | %is available there and already reserved for this purpose. |
---|
1503 | % |
---|
1504 | %Monte Carlo production and storage will take place at University |
---|
1505 | %Dortmund.%}\\[2ex] |
---|
1506 | \end{quote}\vspace{3ex} |
---|
1507 | |
---|
1508 | {\bf Antrieb und Positionsauslese}\dotfill 17.500,-\,\euro\\[-3ex] |
---|
1509 | \begin{quote} |
---|
1510 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1511 | %The present mount is used. Only a smaller investment for safety, |
---|
1512 | %corrosion protection, cable ducts, etc. is needed (7.500,-\,\euro). |
---|
1513 | % |
---|
1514 | %Motors, shaft encoders and control electronics in the order of |
---|
1515 | %10.000,-\,\euro\ have to be bought. The costs have been estimated with |
---|
1516 | %the experience from building the MAGIC drive systems. The DWARF drive |
---|
1517 | %system should allow for relatively fast repositioning for three |
---|
1518 | %reasons: (i)~Fast movement might be mandatory for future ToO |
---|
1519 | %observations. (ii)~Wobble mode observations will be done changing the |
---|
1520 | %Wobble-position continuously (each 20\,min) for symmetry reasons. |
---|
1521 | %(iii)~To ensure good time coverage of more than one source visible at |
---|
1522 | %the same time, the observed source will be changed in constant time |
---|
1523 | %intervals. |
---|
1524 | % |
---|
1525 | %For the drive system three 150\,Watt servo motors are intended to be bought. A |
---|
1526 | %micro-controller based motion control unit (Siemens SPS L\,20) similar to |
---|
1527 | %the one of the current MAGIC~II drive system will be used. For |
---|
1528 | %communication with the readout-system, a standard Ethernet connection |
---|
1529 | %based on the TCP/IP- and UDP-protocol will be setup. |
---|
1530 | %}\\[2ex] |
---|
1531 | \end{quote}%\vspace{3ex} |
---|
1532 | % |
---|
1533 | {\bf Sicherheit}\dotfill 4.000,-\,\euro\\[-3ex] |
---|
1534 | \begin{quote} |
---|
1535 | \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1536 | Unterbrechungsfreie Stromversorgung (UPS)\hfill 2.000,-\,\euro\\ |
---|
1537 | Sicherheitszaun\hfill 2.000,-\,\euro\\ |
---|
1538 | \end{minipage}\\[-0.5ex] |
---|
1539 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1540 | %A UPS with 5\,kW-10\,kW will be |
---|
1541 | %installed to protect the equipment against power cuts and ensure a safe |
---|
1542 | %telescope position at the time of sunrise. |
---|
1543 | % |
---|
1544 | %For protection in case of robotic movement a fence will be |
---|
1545 | %installed.%}\\[2ex] |
---|
1546 | \end{quote}\vspace{3ex} |
---|
1547 | |
---|
1548 | {\bf Andere Ausgaben}\dotfill 7.500,-\,\euro\\[-3ex] |
---|
1549 | \begin{quote} |
---|
1550 | %\parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} |
---|
1551 | % Robotics\hfill 7.500,-\,\euro\\ |
---|
1552 | % \end{minipage}\\[-0.5ex] |
---|
1553 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1554 | F"ur den Betrieb in Fernsteuerung |
---|
1555 | werden verschiedene fernbedienbare Komponenten, wie z.B.\ |
---|
1556 | Ethernet steuerbare Steckdosen und "Uberwachungselektronik, gekauft. |
---|
1557 | \end{quote} |
---|
1558 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1559 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.2:\hfill{\bf |
---|
1560 | 341.135,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1561 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1562 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1563 | |
---|
1564 | \subsection[4.3]{Verbrauchsmaterial} |
---|
1565 | |
---|
1566 | \begin{quote} |
---|
1567 | % \parbox[t]{1em}{~}\begin{minipage}[t]{0.9\textwidth} |
---|
1568 | 10 LTO\,4 B"ander (8\,TB)\dotfill 750,-\,\euro\\ |
---|
1569 | Verbrauchsgegenst"ande (pauschal): Werkzeug und Materialien\dotfill 10.000,-\,\euro |
---|
1570 | % \end{minipage}\\[-0.5ex] |
---|
1571 | \end{quote} |
---|
1572 | |
---|
1573 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1574 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.3:\hfill{\bf |
---|
1575 | 10.750,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1576 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1577 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1578 | |
---|
1579 | \subsection[4.4]{Reisen} |
---|
1580 | Die hohen Reisekosten sind in der engen Zusammenarbeit zwischen |
---|
1581 | Dortmund und W"urzburg, sowie den notwendigen Aufenthalten in La Palma |
---|
1582 | begr"undet.\\[-2ex] |
---|
1583 | |
---|
1584 | \begin{quote} |
---|
1585 | %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ |
---|
1586 | Jedes Jahr sollte ein erfahrenes Gruppenmitglied aus Dortmund und |
---|
1587 | W"urzburg den Status des Projektes bei einer internationalen Konferenz |
---|
1588 | vorstellen:\\ |
---|
1589 | 2 x 3\,Jahre x 1.500,-\,\euro\dotfill 9.000,-\,\euro\\[-2ex] |
---|
1590 | |
---|
1591 | Teilnahme am MAGIC Kollaborationstreffen (zweimal j"ahrlich):\\ |
---|
1592 | 2 x 3\,Jahre x 1.000,-\,\euro\dotfill 6.000,-\,\euro\\[-2ex] |
---|
1593 | |
---|
1594 | Austausch von Doktoranden zwischen W\"{u}rzburg and Dortmund:\\ |
---|
1595 | 1\,Student x 1\,Woche x 24 (alle sechs Wochen) x 800,-\,\euro\dotfill |
---|
1596 | 19.200,-\,\euro\\[-2ex] |
---|
1597 | |
---|
1598 | Zum Aufbau des Teleskops vor Ort sind folgende Reisekosten n"otig:\\ |
---|
1599 | 4 x 2\,Wochen auf La Palma x 2\,Personen x 1.800,-\,\euro\dotfill |
---|
1600 | 28.800,-\,\euro |
---|
1601 | %} |
---|
1602 | \end{quote} |
---|
1603 | |
---|
1604 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1605 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.4:\hfill{\bf |
---|
1606 | 63.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1607 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1608 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1609 | |
---|
1610 | |
---|
1611 | \subsection[4.5]{Publikationskosten} |
---|
1612 | Werden von den beantragenden Universit"aten "ubernommen. |
---|
1613 | |
---|
1614 | |
---|
1615 | \subsection[4.6]{Sonstige Kosten} |
---|
1616 | \begin{quote} |
---|
1617 | Euro-Container (zum Versand der Spiegel)\dotfill 5.000,-\,\euro\\ |
---|
1618 | Transport\dotfill 15.000,-\,\euro\\ |
---|
1619 | Abbau (wird von den Antragstellern "ubernommen)\dotfill n/a |
---|
1620 | \end{quote} |
---|
1621 | |
---|
1622 | \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] |
---|
1623 | \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.6:\hfill{\bf |
---|
1624 | 20.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] |
---|
1625 | \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] |
---|
1626 | \hspace*{0.66\textwidth}\hrulefill\\ |
---|
1627 | |
---|
1628 | \newpage |
---|
1629 | \thispagestyle{empty} |
---|
1630 | \mbox{} |
---|
1631 | \newpage |
---|
1632 | |
---|
1633 | \originalTeX |
---|
1634 | |
---|
1635 | %(References of our groups are marked by an asterix *) |
---|
1636 | \bibliography{application} |
---|
1637 | \bibliographystyle{plainnat} |
---|
1638 | %\bibliographystyle{alpha} |
---|
1639 | %\bibliographystyle{plain} |
---|
1640 | |
---|
1641 | \end{document} |
---|