1 | #include "erfa.h"
|
---|
2 |
|
---|
3 | void eraApco(double date1, double date2,
|
---|
4 | double ebpv[2][3], double ehp[3],
|
---|
5 | double x, double y, double s, double theta,
|
---|
6 | double elong, double phi, double hm,
|
---|
7 | double xp, double yp, double sp,
|
---|
8 | double refa, double refb,
|
---|
9 | eraASTROM *astrom)
|
---|
10 | /*
|
---|
11 | ** - - - - - - - -
|
---|
12 | ** e r a A p c o
|
---|
13 | ** - - - - - - - -
|
---|
14 | **
|
---|
15 | ** For a terrestrial observer, prepare star-independent astrometry
|
---|
16 | ** parameters for transformations between ICRS and observed
|
---|
17 | ** coordinates. The caller supplies the Earth ephemeris, the Earth
|
---|
18 | ** rotation information and the refraction constants as well as the
|
---|
19 | ** site coordinates.
|
---|
20 | **
|
---|
21 | ** Given:
|
---|
22 | ** date1 double TDB as a 2-part...
|
---|
23 | ** date2 double ...Julian Date (Note 1)
|
---|
24 | ** ebpv double[2][3] Earth barycentric PV (au, au/day, Note 2)
|
---|
25 | ** ehp double[3] Earth heliocentric P (au, Note 2)
|
---|
26 | ** x,y double CIP X,Y (components of unit vector)
|
---|
27 | ** s double the CIO locator s (radians)
|
---|
28 | ** theta double Earth rotation angle (radians)
|
---|
29 | ** elong double longitude (radians, east +ve, Note 3)
|
---|
30 | ** phi double latitude (geodetic, radians, Note 3)
|
---|
31 | ** hm double height above ellipsoid (m, geodetic, Note 3)
|
---|
32 | ** xp,yp double polar motion coordinates (radians, Note 4)
|
---|
33 | ** sp double the TIO locator s' (radians, Note 4)
|
---|
34 | ** refa double refraction constant A (radians, Note 5)
|
---|
35 | ** refb double refraction constant B (radians, Note 5)
|
---|
36 | **
|
---|
37 | ** Returned:
|
---|
38 | ** astrom eraASTROM* star-independent astrometry parameters:
|
---|
39 | ** pmt double PM time interval (SSB, Julian years)
|
---|
40 | ** eb double[3] SSB to observer (vector, au)
|
---|
41 | ** eh double[3] Sun to observer (unit vector)
|
---|
42 | ** em double distance from Sun to observer (au)
|
---|
43 | ** v double[3] barycentric observer velocity (vector, c)
|
---|
44 | ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
|
---|
45 | ** bpn double[3][3] bias-precession-nutation matrix
|
---|
46 | ** along double longitude + s' (radians)
|
---|
47 | ** xpl double polar motion xp wrt local meridian (radians)
|
---|
48 | ** ypl double polar motion yp wrt local meridian (radians)
|
---|
49 | ** sphi double sine of geodetic latitude
|
---|
50 | ** cphi double cosine of geodetic latitude
|
---|
51 | ** diurab double magnitude of diurnal aberration vector
|
---|
52 | ** eral double "local" Earth rotation angle (radians)
|
---|
53 | ** refa double refraction constant A (radians)
|
---|
54 | ** refb double refraction constant B (radians)
|
---|
55 | **
|
---|
56 | ** Notes:
|
---|
57 | **
|
---|
58 | ** 1) The TDB date date1+date2 is a Julian Date, apportioned in any
|
---|
59 | ** convenient way between the two arguments. For example,
|
---|
60 | ** JD(TDB)=2450123.7 could be expressed in any of these ways, among
|
---|
61 | ** others:
|
---|
62 | **
|
---|
63 | ** date1 date2
|
---|
64 | **
|
---|
65 | ** 2450123.7 0.0 (JD method)
|
---|
66 | ** 2451545.0 -1421.3 (J2000 method)
|
---|
67 | ** 2400000.5 50123.2 (MJD method)
|
---|
68 | ** 2450123.5 0.2 (date & time method)
|
---|
69 | **
|
---|
70 | ** The JD method is the most natural and convenient to use in cases
|
---|
71 | ** where the loss of several decimal digits of resolution is
|
---|
72 | ** acceptable. The J2000 method is best matched to the way the
|
---|
73 | ** argument is handled internally and will deliver the optimum
|
---|
74 | ** resolution. The MJD method and the date & time methods are both
|
---|
75 | ** good compromises between resolution and convenience. For most
|
---|
76 | ** applications of this function the choice will not be at all
|
---|
77 | ** critical.
|
---|
78 | **
|
---|
79 | ** TT can be used instead of TDB without any significant impact on
|
---|
80 | ** accuracy.
|
---|
81 | **
|
---|
82 | ** 2) The vectors eb, eh, and all the astrom vectors, are with respect
|
---|
83 | ** to BCRS axes.
|
---|
84 | **
|
---|
85 | ** 3) The geographical coordinates are with respect to the ERFA_WGS84
|
---|
86 | ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN
|
---|
87 | ** CONVENTION: the longitude required by the present function is
|
---|
88 | ** right-handed, i.e. east-positive, in accordance with geographical
|
---|
89 | ** convention.
|
---|
90 | **
|
---|
91 | ** 4) xp and yp are the coordinates (in radians) of the Celestial
|
---|
92 | ** Intermediate Pole with respect to the International Terrestrial
|
---|
93 | ** Reference System (see IERS Conventions), measured along the
|
---|
94 | ** meridians 0 and 90 deg west respectively. sp is the TIO locator
|
---|
95 | ** s', in radians, which positions the Terrestrial Intermediate
|
---|
96 | ** Origin on the equator. For many applications, xp, yp and
|
---|
97 | ** (especially) sp can be set to zero.
|
---|
98 | **
|
---|
99 | ** Internally, the polar motion is stored in a form rotated onto the
|
---|
100 | ** local meridian.
|
---|
101 | **
|
---|
102 | ** 5) The refraction constants refa and refb are for use in a
|
---|
103 | ** dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
|
---|
104 | ** (i.e. refracted) zenith distance and dZ is the amount of
|
---|
105 | ** refraction.
|
---|
106 | **
|
---|
107 | ** 6) It is advisable to take great care with units, as even unlikely
|
---|
108 | ** values of the input parameters are accepted and processed in
|
---|
109 | ** accordance with the models used.
|
---|
110 | **
|
---|
111 | ** 7) In cases where the caller does not wish to provide the Earth
|
---|
112 | ** Ephemeris, the Earth rotation information and refraction
|
---|
113 | ** constants, the function eraApco13 can be used instead of the
|
---|
114 | ** present function. This starts from UTC and weather readings etc.
|
---|
115 | ** and computes suitable values using other ERFA functions.
|
---|
116 | **
|
---|
117 | ** 8) This is one of several functions that inserts into the astrom
|
---|
118 | ** structure star-independent parameters needed for the chain of
|
---|
119 | ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
|
---|
120 | **
|
---|
121 | ** The various functions support different classes of observer and
|
---|
122 | ** portions of the transformation chain:
|
---|
123 | **
|
---|
124 | ** functions observer transformation
|
---|
125 | **
|
---|
126 | ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
|
---|
127 | ** eraApci eraApci13 terrestrial ICRS <-> CIRS
|
---|
128 | ** eraApco eraApco13 terrestrial ICRS <-> observed
|
---|
129 | ** eraApcs eraApcs13 space ICRS <-> GCRS
|
---|
130 | ** eraAper eraAper13 terrestrial update Earth rotation
|
---|
131 | ** eraApio eraApio13 terrestrial CIRS <-> observed
|
---|
132 | **
|
---|
133 | ** Those with names ending in "13" use contemporary ERFA models to
|
---|
134 | ** compute the various ephemerides. The others accept ephemerides
|
---|
135 | ** supplied by the caller.
|
---|
136 | **
|
---|
137 | ** The transformation from ICRS to GCRS covers space motion,
|
---|
138 | ** parallax, light deflection, and aberration. From GCRS to CIRS
|
---|
139 | ** comprises frame bias and precession-nutation. From CIRS to
|
---|
140 | ** observed takes account of Earth rotation, polar motion, diurnal
|
---|
141 | ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
|
---|
142 | ** transformation), and atmospheric refraction.
|
---|
143 | **
|
---|
144 | ** 9) The context structure astrom produced by this function is used by
|
---|
145 | ** eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.
|
---|
146 | **
|
---|
147 | ** Called:
|
---|
148 | ** eraAper astrometry parameters: update ERA
|
---|
149 | ** eraC2ixys celestial-to-intermediate matrix, given X,Y and s
|
---|
150 | ** eraPvtob position/velocity of terrestrial station
|
---|
151 | ** eraTrxpv product of transpose of r-matrix and pv-vector
|
---|
152 | ** eraApcs astrometry parameters, ICRS-GCRS, space observer
|
---|
153 | ** eraCr copy r-matrix
|
---|
154 | **
|
---|
155 | ** Copyright (C) 2013-2015, NumFOCUS Foundation.
|
---|
156 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
---|
157 | */
|
---|
158 | {
|
---|
159 | double sl, cl, r[3][3], pvc[2][3], pv[2][3];
|
---|
160 |
|
---|
161 | /* Longitude with adjustment for TIO locator s'. */
|
---|
162 | astrom->along = elong + sp;
|
---|
163 |
|
---|
164 | /* Polar motion, rotated onto the local meridian. */
|
---|
165 | sl = sin(astrom->along);
|
---|
166 | cl = cos(astrom->along);
|
---|
167 | astrom->xpl = xp*cl - yp*sl;
|
---|
168 | astrom->ypl = xp*sl + yp*cl;
|
---|
169 |
|
---|
170 | /* Functions of latitude. */
|
---|
171 | astrom->sphi = sin(phi);
|
---|
172 | astrom->cphi = cos(phi);
|
---|
173 |
|
---|
174 | /* Refraction constants. */
|
---|
175 | astrom->refa = refa;
|
---|
176 | astrom->refb = refb;
|
---|
177 |
|
---|
178 | /* Local Earth rotation angle. */
|
---|
179 | eraAper(theta, astrom);
|
---|
180 |
|
---|
181 | /* Disable the (redundant) diurnal aberration step. */
|
---|
182 | astrom->diurab = 0.0;
|
---|
183 |
|
---|
184 | /* CIO based BPN matrix. */
|
---|
185 | eraC2ixys(x, y, s, r);
|
---|
186 |
|
---|
187 | /* Observer's geocentric position and velocity (m, m/s, CIRS). */
|
---|
188 | eraPvtob(elong, phi, hm, xp, yp, sp, theta, pvc);
|
---|
189 |
|
---|
190 | /* Rotate into GCRS. */
|
---|
191 | eraTrxpv(r, pvc, pv);
|
---|
192 |
|
---|
193 | /* ICRS <-> GCRS parameters. */
|
---|
194 | eraApcs(date1, date2, pv, ebpv, ehp, astrom);
|
---|
195 |
|
---|
196 | /* Store the CIO based BPN matrix. */
|
---|
197 | eraCr(r, astrom->bpn );
|
---|
198 |
|
---|
199 | /* Finished. */
|
---|
200 |
|
---|
201 | }
|
---|
202 | /*----------------------------------------------------------------------
|
---|
203 | **
|
---|
204 | **
|
---|
205 | ** Copyright (C) 2013-2015, NumFOCUS Foundation.
|
---|
206 | ** All rights reserved.
|
---|
207 | **
|
---|
208 | ** This library is derived, with permission, from the International
|
---|
209 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
---|
210 | ** available from http://www.iausofa.org.
|
---|
211 | **
|
---|
212 | ** The ERFA version is intended to retain identical functionality to
|
---|
213 | ** the SOFA library, but made distinct through different function and
|
---|
214 | ** file names, as set out in the SOFA license conditions. The SOFA
|
---|
215 | ** original has a role as a reference standard for the IAU and IERS,
|
---|
216 | ** and consequently redistribution is permitted only in its unaltered
|
---|
217 | ** state. The ERFA version is not subject to this restriction and
|
---|
218 | ** therefore can be included in distributions which do not support the
|
---|
219 | ** concept of "read only" software.
|
---|
220 | **
|
---|
221 | ** Although the intent is to replicate the SOFA API (other than
|
---|
222 | ** replacement of prefix names) and results (with the exception of
|
---|
223 | ** bugs; any that are discovered will be fixed), SOFA is not
|
---|
224 | ** responsible for any errors found in this version of the library.
|
---|
225 | **
|
---|
226 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
---|
227 | ** that you are using a library derived from SOFA, rather than SOFA
|
---|
228 | ** itself.
|
---|
229 | **
|
---|
230 | **
|
---|
231 | ** TERMS AND CONDITIONS
|
---|
232 | **
|
---|
233 | ** Redistribution and use in source and binary forms, with or without
|
---|
234 | ** modification, are permitted provided that the following conditions
|
---|
235 | ** are met:
|
---|
236 | **
|
---|
237 | ** 1 Redistributions of source code must retain the above copyright
|
---|
238 | ** notice, this list of conditions and the following disclaimer.
|
---|
239 | **
|
---|
240 | ** 2 Redistributions in binary form must reproduce the above copyright
|
---|
241 | ** notice, this list of conditions and the following disclaimer in
|
---|
242 | ** the documentation and/or other materials provided with the
|
---|
243 | ** distribution.
|
---|
244 | **
|
---|
245 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
---|
246 | ** the International Astronomical Union nor the names of its
|
---|
247 | ** contributors may be used to endorse or promote products derived
|
---|
248 | ** from this software without specific prior written permission.
|
---|
249 | **
|
---|
250 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
251 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
252 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
---|
253 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
---|
254 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
255 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
---|
256 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
---|
257 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
---|
258 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
259 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
---|
260 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
---|
261 | ** POSSIBILITY OF SUCH DAMAGE.
|
---|
262 | **
|
---|
263 | */
|
---|